First steps in Derived Symplectic Geometry

Gabriele Vezzosi (Institut de Mathématiques de Jussieu, Paris)

GGI, Firenze, September 9th 2013

joint work with T. Pantev, B. Toën, and M. Vaquié (*Publ. Math. IHES , Volume 117, June 2013*)

Plan of the talk

- 1 Motivation : quantizing moduli spaces
- 2 The Derived Algebraic Geometry we'll need below
- 3 Examples of derived stacks
 - Derived symplectic structures I Definition
- 5 Derived symplectic structures II Three existence theorems
 - MAP(CY, Sympl)
 - Lagrangian intersections
 - **RPerf**
- **6** From derived to underived symplectic structures
- \bigcirc (-1)-shifted symplectic structures and symmetric obstruction theories

Motivation : quantizing moduli spaces

X - derived stack, $D_{qcoh}(X)$ - dg-category of quasi-coherent complexes on X.

 $D_{qcoh}(X)$ is a symmetric monoidal i.e. $E_{\infty} - \otimes$ -dg-category \Rightarrow in particular: a dg-category ($\equiv E_0 - \otimes$ -dg-cat), a monoidal dg-category ($\equiv E_1 - \otimes$ -dg-cat), a braided monoidal dg-category ($\equiv E_2 - \otimes$ -dg-cat), ... $E_n - \otimes$ -dg-cat (for any $n \ge 0$). (Rmk - For ordinary categories $E_n - \otimes \equiv E_3 - \otimes$, for any $n \ge 3$; for ∞ -categories, like dg-categories, all different, a priori !)

n-quantization of a derived moduli space

- An *n*-quantization of a derived moduli space X is a (formal) deformation of D_{qcoh}(X) as an E_n − ⊗-dg-category.
- Main Theorem An *n*-shifted syplectic form on X determines an *n*-quantization of X.

Motivation : quantizing moduli spaces

- Main line of the proof -

- Step 1. Show that an *n*-shifted symplectic form on X induces a *n*-shifted Poisson structure on X.
- Step 2. A derived extension of Kontsevich formality (plus a fully developed deformation theory for E_n − ⊗-dg-category) gives a map

 $\{n\text{-shifted Poisson structures on } X\} \rightarrow \{n\text{-quantizations of } X\}.$

We aren't there yet ! We have established Step 2 for all n (using also a recent result by N. Rozenblyum), and Step 1 for X a derived DM stack (all n); the Artin case is harder...

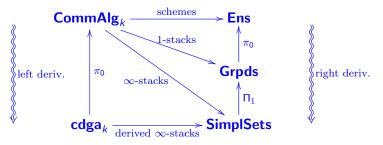
Perspective applications - quantum geometric Langlands, higher categorical TQFT's, higher representation theory, non-abelian Hodge theory, Poisson and symplectic structures on classical moduli spaces, etc. In this talk I will concentrate on derived a.k.a **shifted symplectic structures**.

Derived Algebraic Geometry (DAG)

Derived Algebraic Geometry (say over a base commutative \mathbb{Q} -algebra k) is a kind of algebraic geometry whose affine objects are k-cdga's i.e. commutative differential nonpositively graded algebras

$$\xrightarrow{d} A^{-2} \xrightarrow{d} A^{-1} \xrightarrow{d} A^{0}$$

The functor of points point of view is



Both source and target categories are homotopy theories \Rightarrow derived spaces are obtained by gluing cdga's up to homotopy (roughly).

Derived stacks

This gives us a category \mathbf{dSt}_k of derived stacks over k, which admits, in particular

- $\mathbb{R}Spec(A)$ as affine objects (A being a cdga)
- fiber products (up to homotopy)
- internal HOM's (up to homotopy)
- an adjunction $\mathbf{dSt}_k \xrightarrow{\mathbf{t}_0}_{j} \mathbf{St}_k$, where
 - The truncation functor t_0 is right adjoint, and $\mathrm{t}_0(\mathbb{R}\mathrm{Spec}(A))\simeq \mathrm{Spec}(H^0A)$
 - *j* is fully faithful (up to homotopy) but does **not** preserve fiber products nor internal HOM's → tgt space of a scheme Y is different from tgt space of *j*(Y) !

(and, in fact, the derived tangent stack

 $\mathbb{R}TX := \operatorname{HOM}_{\mathsf{dSt}_k}(\operatorname{Spec} k[\varepsilon], X) \simeq \operatorname{Spec}_X(\operatorname{Sym}_X(\mathbb{L}_X))$

for any X).

deformation theory (e.g. the cotangent complex) is natural in DAG (i.e. satisfies universal properties in dSt_k).

Some examples of derived stacks

- [Derived affines] A ∈ cdga^{≤0}_k ℝSpec A : cdga^{≤0}_k → SSets B ↦ Map_{cdga^{≤0}_k}(A, B) = (Hom_{cdga^{≤0}_k}(QA, B ⊗_k Ω_n))_{n≥0} where Ω_n is the cdga of differential forms on the algebraic *n*-simplex Spec(k[t₀,...,t_n]/(∑_i t₁ − 1))
- [Local systems] M topological space of the homotopy type of a CW-complex, Sing(M) singular simplicial set of M. Denote as Sing(M) the constant functor cdga^{≤0} → SSets : A → Sing(M). G group scheme over k ⇒ ℝLoc(M; G) := MAP_{dSt_k}(Sing(M), BG) derived stack of G-local systems on M. Its truncation is the classical stack Loc(M; G). Note that ℝLoc(M; G) might be nontrivial even if M is simply connected (e.g. T_EℝLoc(M; GL_n) ≃ ℝΓ(X, E ⊗ E[∨])[1]).
- [Derived tangent stack] X scheme $\Rightarrow TX := MAP_{dSt_k}(Spec k[\varepsilon], X)$ derived tangent stack of X. $TX \simeq \mathbb{R}Spec(Sym_{\mathcal{O}_X}(\mathbb{L}_X)), \mathbb{L}_X$ cotangent complex of X/k.

Some examples of derived stacks

- [Derived loop stack] X derived stack, S¹ := BZ ⇒ LX : MAP_{dSt_k}(S¹, X) - derived (free) loop stack of X. Its truncation is the inertia stack of t₀(X) (i.e. X itself, if X is a scheme). Functions on LX give the Hochschild homology of X. S¹-invariant functions on LX give negative cyclic homology of X.
- [Perfect complexes]

 $\mathbb{R}\mathsf{Perf}: \mathsf{cdga}_{\iota}^{\leq 0} \to SSets: A \mapsto Nerve(Perf(A)^{cof}, q-iso)$ where Perf(A) is the subcategory of all A-dg-modules consisting of dualizable (= homotopically finitely presented) A-dg-modules. Its truncation is the stack **Perf**. The tangent complex at $E \in \mathbb{R}$ **Perf**(k) is $\mathbb{T}_F \mathbb{R} \operatorname{Perf} \simeq \mathbb{R} \operatorname{End}(E)[1]$. $\mathbb{R} \operatorname{Perf}$ is locally Artin of finite presentation. Note also that for any derived stack X, we define the derived stack of perfect complexes on X as \mathbb{R} **Perf**(X) := MAP_{dSt}(X, \mathbb{R} **Perf**). Its truncation is the classical stack **Perf**(X). The tangent complex, at \mathcal{E} perfect over X, is $\mathbb{R}\Gamma(X, End(\mathcal{E}))[1].$

Derived symplectic structures I - Definition

To generalize the notion of symplectic form in the derived world, we need to generalize the notion of 2-form, of closedness , and of nondegeneracy. In the derived setting, it is closedness the trickier one: it is no more a property but a list of coherent data on the underlying 2-form !

Why? Let A be a (cofibrant) cdga, then $\Omega^{\bullet}_{A/k}$ is a bicomplex : vertical d coming from the differential on A, horizontal d is de Rham differential d_{DR} . So you don't really want $d_{DR}\omega = 0$ but $d_{DR}\omega \sim 0$ with a specified 'homotopy'; but such a homotopy is still a form ω_1

$$d_{DR}\omega = \pm d\omega_1$$

And we further require that $d_{DR}\omega_1 \sim 0$ with a specified homotopy

$$d_{DR}\omega_1=\pm d(\omega_2),$$

and so on.

This $(\omega, \omega_1, \omega_2, \cdots)$ is an infinite set of higher coherencies data not properties!

9/39

More precisely: the guiding paradigm comes from negative cyclic homology: if X = Spec R is smooth over k (char(k) = 0) then the HKR theorem tells us that

$$HC_p^{-}(X/k) = \Omega_{X/k}^{p,cl} \oplus \prod_{i \ge 0} H_{DR}^{p+2i}(X/k)$$

and the summand $\Omega_{X/k}^{p,cl}$ is the weight (grading) p part.

So, a fancy (but homotopy invariant) way of defining classical closed p-forms on X is to say that they are elements in $HC_p^{-}(X/k)^{(p)}$ (weight p part).

How do we see the weights appearing geometrically?

Through derived loop stacks.

Derived loop stacks

X derived Artin stack locally of finite presentation

- $LX := MAP_{dSt_k}(S^1 := B\mathbb{Z}, X)$ derived free loop stack of X
- \widehat{LX} formal derived free loop stack of X (formal completion of LX along constant loops $X \to LX$)
- $\mathcal{H} := \mathbb{G}_m \ltimes B\mathbb{G}_a$ acts on \widehat{LX}

Rmk - If X is a derived **scheme**, the canonical map $\widehat{LX} \rightarrow LX$ is an equivalence.

- \mathcal{H} -action on \widehat{LX} : $\widehat{LX} \simeq \widehat{L^{aff}X}$, where $L^{aff}X := MAP_{dSt_k}(B\mathbb{G}_a, X)$, and the obvious action of $\mathbb{G}_m \ltimes B\mathbb{G}_a$ on $L^{aff}X$ descends to the formal completion. The S^1 -action factors through this \mathcal{H} -action:

$$\mathbb{G}_m \circlearrowright S^1 \to B\mathbb{G}_a \circlearrowright \mathbb{G}_m.$$

Derived symplectic structures I - Definition

$$[\widehat{LX}/\mathbb{G}_m] \longrightarrow [\widehat{LX}/\mathcal{H}] = [\widehat{LX}/S^1]$$

 $\begin{array}{l} q_*\mathcal{O}_{[\widehat{LX}/\mathcal{H}]} \coloneqq NC^w(X/k) : (\text{weighted}) \text{ negative cyclic homology of } X/k \\ (\mathbb{G}_m\text{-equivariance} \rightsquigarrow \text{grading by weights}); \\ \pi_*\mathcal{O}_{[\widehat{LX}/\mathbb{G}_m]} \coloneqq DR(X/k) \simeq \mathbb{R}\Gamma(X, Sym^\bullet_X(\mathbb{L}_X[1]) \simeq \mathbb{R}\Gamma(X, \oplus_p(\wedge^p\mathbb{L}_X)[p]) : \\ (\text{weighted}) \text{ derived de Rham complex (Hochschild homology) of } X/k \\ ((\wedge^p\mathbb{L}_X)[p] : \text{ weight-}p \text{ part}) \\ \text{So, the diagram above gives a weight-preserving map} \end{array}$

$$NC^w(X/k) \longrightarrow DR(X/k)$$

(classically: $HC^- \rightarrow HH$: negative-cyclic to Hochschild)

Derived symplectic structures I - Definition

We use the map $NC^w(X/k) \longrightarrow DR(X/k)$ to define

n-shifted (closed) *p*-forms

X derived Artin stack locally of finite presentation ($\rightsquigarrow \mathbb{L}_X$ is perfect).

- The space of *n*-shifted *p*-forms on X/k is $\mathcal{A}^{p}(X; n) := |DR(X/k)[n-p](p)| \simeq |\mathbb{R}\Gamma(X, (\wedge^{p}\mathbb{L}_{X})[n])|$
- The space of closed *n*-shifted *p*-forms on X/k is $\mathcal{A}^{p,cl}(X; n) := |NC^w(X/k)[n-p](p)|$
- The homotopy fiber of the map A^{p,cl}(X; n) → A^p(X; n) is the space of keys of a given n-shifted p-form on X/k.

Rmks - |-| is the geometric realization; for an *n*-shifted *p*-form, being closed is not a condition; any *n*-shifted closed *p*-form has an underlying *n*-shifted *p*-form (via the map above); for n = 0, and X a smooth underived scheme, we recover the usual notions.

n-shifted symplectic forms

X derived Artin stack locally of finite presentation (so that \mathbb{L}_X is perfect).

- A *n*-shifted 2-form ω : O_X → L_X ∧ L_X[n] i.e. ω ∈ π₀(A²(X; n)) is nondegenerate if its adjoint ω^b : T_X → L_X[n] is an isomorphism (in D_{qcoh}(X)). The subspace of A²(X, n) of connected components of nondegenerate 2-forms is denoted by A²(X, n)nd.
- The space of *n*-shifted symplectic forms Sympl(X; n) on X/k is the subspace of A^{2,cl}(X; n) of closed 2-forms whose underlying 2-forms are nondegenerate i.e. we have a homotopy cartesian diagram of spaces

Derived symplectic structures I - Definition

- Nondegeneracy involves a kind of duality between the stacky (positive degrees) and the derived (negative degrees) parts of L_X
- In particular: X smooth underived scheme → may only admit 0-shifted symplectic structures, and these are then just usual symplectic structures.
- $G = GL_n \rightsquigarrow BG$ has a canonical 2-shifted symplectic form whose underlying 2-shifted 2-form is

 $k
ightarrow (\mathbb{L}_{BG} \wedge \mathbb{L}_{BG})[2] \simeq (\mathfrak{g}^{ee}[-1] \wedge \mathfrak{g}^{ee}[-1])[2] = Sym^2 \mathfrak{g}^{ee}$

given by the dual of the trace map $(A, B) \mapsto tr(AB)$.

- Same as above (with a choice of G-invariant symm bil form on g) for G reductive over k. Rmk The induced quantization is the "quantum group" (i.e. quantization is the C[[t]]-braided mon cat given by completion at q = 1 of Rep(G(g)) C[q, q⁻¹]-braided mon cat).
- The *n*-shifted cotangent bundle T^{*}X[n] := Spec_X(Sym(T_X[-n])) has a canonical *n*-shifted symplectic form.

Derived symplectic structures on mapping stacks

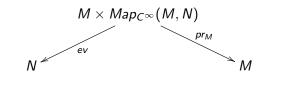
Derived version of a result by Alexandrov-Kontsevich-Schwarz-Zaboronsky:

Existence Theorem 1 - Derived mapping stacks

Let *F* be a derived Artin stack equipped with an *n*-shifted symplectic form $\omega \in Symp(F, n)$. Let *X* be an *O*-compact derived stack equipped with an *O*-orientation $[X] : \mathbb{R}\underline{End}(\mathcal{O}_X) \longrightarrow k[-d]$ of degree *d*. If the derived mapping stack MAP(X, F) is a derived Artin stack locally of finite presentation over *k*, then, MAP(X, F) carries a canonical (n - d)-shifted symplectic structure.

Important Rmk - A degree d \mathcal{O} -orientation on X is a kind of Calabi-Yau structure of dimension d, in particular any smooth and proper Calabi-Yau scheme (or Deligne-Mumford stack) $f: X \to Spec k$ of dim d admits a degree d \mathcal{O} -orientation. Indeed, any $\omega_X = \wedge^d \Omega^1_X \simeq \mathcal{O}_X$ gives $\mathbb{R}Hom(\mathcal{O}_X, \mathcal{O}_X) \simeq \mathbb{R}Hom(\mathcal{O}_X, \omega_X) \simeq \mathbb{R}f_*\omega_X \simeq \mathbb{R}f_*f^!k[-d] \to k[-d]$ (where last map is trace map in coherent duality).

Idea of the proof of Theorem 1 – We can mimick the following well-known construction (hat-product) in differential geometry. Let M^m compact C^{∞} , $N C^{\infty}$



$$\Omega^{p}_{M} \times \Omega^{q}_{N} \to \Omega^{p+q-m}_{Map(M,N)} : (\alpha,\beta) \mapsto \int_{M} pr^{*}_{M} \alpha \wedge ev^{*}\beta := \widehat{\alpha\beta}$$

 $(\int_{M}$: integration along the fiber).

If (N, ω) is symplectic, η volume form on M, then $\widehat{\eta \omega} \in \Omega^2_{Map(M,N)}$ is symplectic.

Note that in this case there is no shift (n = 0).

Derived symplectic structures on mapping stacks

Some Corollaries of Theorem 1

Let (F, ω) be *n*-shifted symplectic derived Artin stack.

- Betti If $X = M^d$ compact, connected, topological manifold. The choice of fund class [X] yields a canonical (n d)-shifted sympl structure on MAP(X, F).
- Calabi-Yau X Calabi-Yau smooth and proper k-scheme (or k-DM stack), with geometrically connected fibres of dim d. The choice of a trivialization of the canonical sheaf ω_X yields a canonical (n d)-shifted sympl structure on MAP(X, F).
- de Rham Y smooth proper DM stack with geometrically connected fibres of dim d. The choice of a fundamental class $[Y] \in H^{2d}_{DR}(Y, \mathcal{O})$ yields a canonical (n 2d)-shifted symplectic structure on $MAP(X := Y_{DR}, F)$.

Example of Betti: X *n*-symplectic \Rightarrow its derived loop space LX is (n-1)-symplectic.

Corollaries of the previous corollaries - E.g. one could take F = BG, G reductive affine group scheme, with a chosen G-invariant symm bil form on Lie(G). The corollaries give (2 - d)-shifted (resp. (2 - 2d)-shifted) symplectic structures on the derived stack of G-local systems and G-bundles (resp. of de Rham G-local systems = flat G-bundles on Y) on Y.

Derived symplectic structures on lagrangian intersections

Existence Theorem 2 - Derived lagrangian intersections

Let (F, ω) be *n*-shifted symplectic derived Artin stack, and $L_i \to F$ a map of derived stacks equipped with a Lagrangian structure, i = 1, 2. Then the homotopy fiber product $L_1 \times_F L_2$ is canonically a (n-1)-shifted derived Artin stack.

In particular, if F = Y is a smooth symplectic Deligne-Mumford stack (e.g. a smooth symplectic variety), and $L_i \hookrightarrow Y$ is a smooth closed lagrangian substack, i = 1, 2, then the derived intersection $L_1 \times_F L_2$ is canonically (-1)-shifted symplectic.

Rmk - An interesting case is the derived critical locus $\mathbb{R}Crit(f)$ for f a global function on a smooth symplectic Deligne-Mumford stack Y. Here

$$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

 (M, ω) smooth symplectic (usual sense);

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

 $L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$.

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

What is a self-homotopy h of the zero form?

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

What is a self-homotopy h of the zero form?

It is a map

$$h:\wedge^2\mathbb{T}_{L_{12}}\to\mathcal{O}_{L_{12}}[-1]$$

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

What is a self-homotopy h of the zero form?

It is a map

$$h: \wedge^2 \mathbb{T}_{L_{12}} \to \mathcal{O}_{L_{12}}[-1]$$

of complexes (since hd - dh = 0 - 0 = 0)

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

What is a self-homotopy h of the zero form?

It is a map

$$h:\wedge^2\mathbb{T}_{L_{12}}\to\mathcal{O}_{L_{12}}[-1]$$

of complexes (since hd - dh = 0 - 0 = 0): so h is a (-1)-shifted 2-form on L_{12} .

 (M, ω) smooth symplectic (usual sense); two smooth lagrangians:

$$L_1 \hookrightarrow (M, \omega) \hookleftarrow L_2$$

By definition of derived intersection:

$$L_1 \leftarrow L_1 \times^h_M L_2 \rightarrow L_2$$

 \exists canonical homotopy $\omega_1 \sim \omega_2$ between the two pullbacks of ω to $L_{12} := L_1 \times^h_M L_2$. But L_1, L_2 are lagrangians, so we have an induced self-homotopy $0 \sim 0$ of the zero form on L_{12} .

What is a self-homotopy h of the zero form?

It is a map

$$h:\wedge^2\mathbb{T}_{L_{12}}\to\mathcal{O}_{L_{12}}[-1]$$

of complexes (since hd - dh = 0 - 0 = 0): so h is a (-1)-shifted 2-form on L_{12} .

Then one checks that such an *h* actually comes from a closed (-1)-shifted symplectic form on L_{12} . \Box

Derived symplectic structure on \mathbb{R} Perf

Recall the derived stack

$$\mathbb{R}$$
Perf : cdga_k ^{≤ 0} \rightarrow **SSets** : $A \mapsto Nerve(Perf(A)^{cof})$.

Existence theorem 3 - \mathbb{R} **Perf** is 2-shifted symplectic

The derived stack \mathbb{R} **Perf** is 2-shifted symplectic.

Idea of proof – By definition, there is a universal perfect complex \mathcal{P} on \mathbb{R} **Perf**, and it is easy to prove that

$$\mathbb{T}_{\mathbb{R}\mathsf{Perf}} \simeq \mathbb{R}\mathcal{E}\mathsf{nd}(\mathcal{P})[1]$$

Use the Chern character for derived stacks ([Toën -V, 2011]) to put

$$\omega^{Perf} := Ch(\mathcal{P})^{(2)}$$

(weight 2 part). Using Atiyah classes, the underlying 2-form is non-degenerate. □

Some corollaries of Thms. 1 (MAP) and 3 (RPerf)

- Betti If $X = M^d$ compact, connected, topological manifold. The choice of fundamental class [X] yields a canonical (2 d)-shifted sympl structure on $MAP(M, \mathbb{R}Perf) = \mathbb{R}Perf(M)$.
- Calabi-Yau X Calabi-Yau smooth and proper k-scheme (or k-DM stack), with geometrically connected fibres of dim d. The choice of a trivialization of the canonical sheaf ω_X yields a canonical (2 d)-shifted sympl structure on MAP(X, ℝPerf) = ℝPerf(X).
- de Rham Y smooth proper DM stack with geometrically connected fibres of dim d. The choice of a fundamental class $[Y] \in H^{2d}_{DR}(Y, \mathcal{O})$ yields a canonical (2 2d)-shifted sympl structure on $MAP(Y_{DR}, \mathbb{R}\mathbf{Perf}) =: \mathbb{R}\mathbf{Perf}_{DR}(Y)$.

From derived to underived symplectic structures

Using Theorems 1 (MAP) and 3 (\mathbb{R} **Perf**) we may recover some (underived) symplectic structures on smooth moduli spaces. E.g. :

• Simple local systems on curves – C a smooth, proper, geom connected curve over k, G simple algebraic group over k. Consider the underived stacks $Loc_{DR}(C; G)^s$, $Loc(C^{top}; G)^s$ of simple de Rham and simple topological G-local systems on C. By using

$$\mathsf{Loc}_{DR}(C;G)^{s} \xrightarrow{} \mathbb{R}\mathsf{Loc}_{DR}(C;G) \qquad \mathsf{Loc}(C^{top};G)^{s} \xrightarrow{} \mathbb{R}\mathsf{Loc}(C^{top};G)$$

we recover, with a uniform proof, the symplectic structures of **Goldman**, **Weinstein-Jeffreys**, **Inaba-Iwasaki-Saito** (the original proofs are very different from each other).

• Perfect complexes on CY surfaces – S a CY surface over k (i.e. K3 or abelian), fix $K_S \simeq \mathcal{O}_S$. Let \mathbb{R} **Perf** $(S)^s \hookrightarrow \mathbb{R}$ **Perf**(S) the open derived substack cassifying simple complexes (i.e. $Ext_S^i(E, E) = 0$ for i < 0, $Ext_S^0(E, E) \simeq k$). Consider $t_0(\mathbb{R}$ **Perf** $(S)^s) :=$ **Perf** $(S)^s$ and its coarse moduli space $Perf(S)^s$. We recover the results of **Mukai** and **Inaba** (2011) that $Perf(S)^s$ is a smooth and symplectic algebraic space.

X derived stack (locally finitely presented), $j: t_0(X) \hookrightarrow X \Rightarrow$

$$j^* \mathbb{L}_X \to \mathbb{L}_{\mathrm{t}_0(X)}$$

is a perfect obstruction theory in the sense of Behrend-Fantechi (a [-1, 0]-perfect obstruction theory, if X is *quasi-smooth*). So if \mathcal{X} is a given stack ther is a map

 $\{ \text{lfp dstacks with truncation } \simeq \mathcal{X} \} \rightarrow \{ \text{perfect obstruction theories on } \mathcal{X} \}$

What do we gain if X is moreover (-1)-shifted symplectic? ω : (-1)-shifted symplectic form on $X \Rightarrow$ underlying 2- form

$$\omega: \mathbb{T}_X \wedge \mathbb{T}_X \to \mathcal{O}_X[-1]$$

and its adjoint $\Theta_{\omega} : \mathbb{T}_X \xrightarrow{\sim} \mathbb{L}_X[-1]$.

34 / 39

So, via the isomorphism $\Theta_{\omega} : \mathbb{T}_X \xrightarrow{\sim} \mathbb{L}_X[-1]$, the underlying 2-form $\omega : \mathbb{T}_X \wedge \mathbb{T}_X \to \mathcal{O}_X[-1]$, gives

$$(Sym^2\mathbb{L}_X)[-2] \simeq \mathbb{L}_X[-1] \wedge \mathbb{L}_X[-1] \to \mathcal{O}_X[-1].$$

Therefore (by shifting by [2], and restricting along $j : t_0(X) \hookrightarrow X$) we find that the obstruction theory

$$j^* \mathbb{L}_X \to \mathbb{L}_{\mathrm{t}_0(X)}$$

is a symmetric obstruction theory in the sense of Behrend-Fantechi. So we have a map

 $\{(-1)\text{-sympl dstacks } X \text{ s.t. } t_0(X) \simeq \mathcal{X}\} \to \{\text{symm perfect obstr theories on } \mathcal{X}\}$

All known examples of symmetric obstruction theories actually come from (-1)-derived symplectic structures.

Some examples :

- Any derived intersections of two smooth lagrangians L_1 and L_2 inside a smooth symplectic variety M is (-1)-shifted symplectic $\Rightarrow L_1 \cap L_2$ has a canonical [-1, 0]-perfect symmetric obstruction theory.
- Y elliptic curve; M smooth symplectic variety ⇒ MAP(Y, M) is canonically (0 1 = -1)-shifted symplectic ⇒ the stack of maps Y → M has a canonical [-1,0]-perfect symmetric obstruction theory.

 Y 3-dim CY smooth algebraic variety, choose K_Y ≃ O_Y ⇒ ℝPerf(Y) := MAP(Y, ℝPerf) is canonically (2 - 3 = -1)-shifted symplectic ⇒ the stack of perfect complexes Perf(Y) has a canonical symmetric obstruction theory. Same for ℝPerf(Y)^{si}_L (classifying simple objects with fixed determinant L) ⇒ the stack of simple perfect complexes Perf(Y)^s_L has a canonical [-1,0]-perfect symmetric obstruction theory (indeed, ℝPerf(Y)^{si}_L is quasi-smooth).

In the comparison symm obstr theories/(-1)-shifted symplectic forms, note that: - obstruction theories induced by derived stacks are fully functorial, therefore functoriality of (-1)-shifted symplectic forms gives full functoriality on induced symmetric obstruction theories.

- symmetric obstruction theories induced by (-1)-shifted sympletic structures are better behaved than others (note that the closure data are forgotten by symmetric obstruction theories), e.g. they give a solution to a longstanding problem in Donaldson-Thomas theory:

Corollary (Brav-Bussi-Joyce, 2013)

The Donaldson-Thomas moduli space of simple perfect complexes (with fixed determinant) on a Calabi-Yau 3-fold is locally for the Zariski topology the critical locus of a function, the *DT-potential* on a smooth complex manifold). Locally the obstruction theory on the DT moduli space is given by the (-1)-symplectic form on the derived critical locus of the potential.

Rmk. False for general symmetric obstruction theories (Pandharipande-Thomas,
April 2012)April 2012)

Thank you!