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Motivation : quantizing moduli spaces

X - derived stack, Dqcoh(X ) - dg-category of quasi-coherent complexes on
X .
Dqcoh(X ) is a symmetric monoidal i.e. E∞ −⊗-dg-category ⇒ in
particular: a dg-category (≡ E0 −⊗-dg-cat), a monoidal dg-category (≡
E1 −⊗-dg-cat), a braided monoidal dg-category (≡ E2 −⊗-dg-cat), ...
En −⊗-dg-cat (for any n ≥ 0).
(Rmk - For ordinary categories En −⊗ ≡ E3 −⊗, for any n ≥ 3; for
∞-categories, like dg-categories, all different, a priori !)

n-quantization of a derived moduli space

An n-quantization of a derived moduli space X is a (formal)
deformation of Dqcoh(X ) as an En −⊗-dg-category.

Main Theorem - An n-shifted syplectic form on X determines an
n-quantization of X .
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Motivation : quantizing moduli spaces

– Main line of the proof –

Step 1. Show that an n-shifted symplectic form on X induces a
n-shifted Poisson structure on X .

Step 2. A derived extension of Kontsevich formality (plus a fully
developed deformation theory for En −⊗-dg-category) gives a map

{n-shifted Poisson structures on X} → {n-quantizations of X}.

2

We aren’t there yet ! We have established Step 2 for all n (using also a
recent result by N. Rozenblyum), and Step 1 for X a derived DM stack
(all n) ; the Artin case is harder...
Perspective applications - quantum geometric Langlands, higher
categorical TQFT’s, higher representation theory, non-abelian Hodge
theory, Poisson and symplectic structures on classical moduli spaces, etc.
In this talk I will concentrate on derived a.k.a shifted symplectic
structures.

4 / 39



Derived Algebraic Geometry (DAG)

Derived Algebraic Geometry (say over a base commutative Q-algebra k) is
a kind of algebraic geometry whose affine objects are k-cdga’s i.e.
commutative differential nonpositively graded algebras

. . .
d // A−2 d // A−1 d // A0

The functor of points point of view is

left deriv.

��

CommAlgk

1-stacks

))

∞-stacks

$$

schemes // Ens

right deriv.

��

Grpds

π0

OO

cdgak derived ∞-stacks
//

π0

OO

SimplSets

Π1

OO

Both source and target categories are homotopy theories ⇒ derived spaces
are obtained by gluing cdga’s up to homotopy (roughly).
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Derived stacks

This gives us a category dStk of derived stacks over k , which admits, in
particular

RSpec(A) as affine objects (A being a cdga)
fiber products (up to homotopy)
internal HOM’s (up to homotopy)

an adjunction dStk

t0 //
Stk

j
oo , where

The truncation functor t0 is right adjoint, and
t0(RSpec(A)) ' Spec(H0A)
j is fully faithful (up to homotopy) but does not preserve fiber
products nor internal HOM’s ; tgt space of a scheme Y is different
from tgt space of j(Y ) !
(and, in fact, the derived tangent stack

RTX := HOMdStk
(Spec k[ε],X ) ' SpecX (SymX (LX ))

for any X ).

deformation theory (e.g. the cotangent complex) is natural in DAG
(i.e. satisfies universal properties in dStk ).
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Some examples of derived stacks

[Derived affines] A ∈ cdga≤0
k RSpec A : cdga≤0

k → SSets
B 7→ Map

cdga≤0
k

(A,B) = (Hom
cdga≤0

k
(QA,B ⊗k Ωn))n≥0 where Ωn is

the cdga of differential forms on the algebraic n-simplex
Spec(k[t0, ..., tn]/(

∑
i t1 − 1))

[Local systems] M topological space of the homotopy type of a
CW-complex, Sing(M) singular simplicial set of M. Denote as
Sing(M) the constant functor cdga≤0

k → SSets : A 7→ Sing(M). G
group scheme over k ⇒ RLoc(M;G ) := MAPdStk

(Sing(M),BG ) -
derived stack of G -local systems on M. Its truncation is the classical
stack Loc(M;G ). Note that RLoc(M;G ) might be nontrivial even if
M is simply connected (e.g. TERLoc(M;GLn) ' RΓ(X ,E ⊗ E∨)[1]).

[Derived tangent stack] X scheme ⇒ TX := MAPdStk
(Spec k[ε],X )

derived tangent stack of X . TX ' RSpec(SymOX
(LX )), LX

cotangent complex of X/k .
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Some examples of derived stacks

[Derived loop stack] X derived stack, S1 := BZ ⇒
LX : MAPdStk

(S1,X ) - derived (free) loop stack of X . Its truncation
is the inertia stack of t0(X ) (i.e. X itself, if X is a scheme).
Functions on LX give the Hochschild homology of X . S1-invariant
functions on LX give negative cyclic homology of X .

[Perfect complexes]
RPerf : cdga≤0

k → SSets : A 7→ Nerve(Perf (A)cof , q − iso)
where Perf (A) is the subcategory of all A-dg-modules consisting of
dualizable (= homotopically finitely presented) A-dg-modules. Its
truncation is the stack Perf. The tangent complex at E ∈ RPerf(k)
is TERPerf ' REnd(E )[1]. RPerf is locally Artin of finite
presentation. Note also that for any derived stack X , we define the
derived stack of perfect complexes on X as
RPerf(X ) := MAPdStk

(X ,RPerf). Its truncation is the classical
stack Perf(X ). The tangent complex, at E perfect over X , is
RΓ(X ,End(E))[1].
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Derived symplectic structures I - Definition

To generalize the notion of symplectic form in the derived world, we need
to generalize the notion of 2-form, of closedness , and of nondegeneracy.
In the derived setting, it is closedness the trickier one: it is no more a
property but a list of coherent data on the underlying 2-form !

Why? Let A be a (cofibrant) cdga, then Ω•A/k is a bicomplex : vertical d
coming from the differential on A, horizontal d is de Rham differential dDR .
So you don’t really want dDRω = 0 but dDRω ∼ 0 with a specified
’homotopy’; but such a homotopy is still a form ω1

dDRω = ±dω1

And we further require that dDRω1 ∼ 0 with a specified homotopy

dDRω1 = ±d(ω2),

and so on.

This (ω, ω1, ω2, · · · ) is an infinite set of higher coherencies data not
properties!
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Derived symplectic structures I - Definition

More precisely: the guiding paradigm comes from negative cyclic
homology: if X = Spec R is smooth over k (char(k) = 0) then the HKR
theorem tells us that

HC−p (X/k) = Ωp,cl
X/k ⊕

∏
i≥0

Hp+2i
DR (X/k)

and the summand Ωp,cl
X/k is the weight (grading) p part.

So, a fancy (but homotopy invariant) way of defining classical closed
p-forms on X is to say that they are elements in HC−p (X/k)(p) (weight p
part).

How do we see the weights appearing geometrically?

Through derived loop stacks.
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Derived symplectic structures I - Definition

Derived loop stacks

X derived Artin stack locally of finite presentation
• LX := MAPdStk

(S1 := BZ,X ) - derived free loop stack of X

• L̂X - formal derived free loop stack of X (formal completion of LX along
constant loops X → LX )

• H := Gm n BGa acts on L̂X

Rmk - If X is a derived scheme, the canonical map L̂X → LX is an
equivalence.

- H-action on L̂X : L̂X ' L̂aff X , where Laff X := MAPdStk
(BGa,X ), and

the obvious action of Gm n BGa on Laff X descends to the formal
completion. The S1-action factors through this H-action:

Gm � S1 → BGa 	 Gm.
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Derived symplectic structures I - Definition

[L̂X/Gm] //

π
((

[L̂X/H] = [L̂X/S1]

q

��
BGm

q∗O[L̂X/H]
=: NCw (X/k) : (weighted) negative cyclic homology of X/k

(Gm-equivariance ; grading by weights);
π∗O[L̂X/Gm]

=: DR(X/k) ' RΓ(X , Sym•X (LX [1]) ' RΓ(X ,⊕p(∧pLX )[p]) :

(weighted) derived de Rham complex (Hochschild homology) of X/k
((∧pLX )[p] : weight-p part)
So, the diagram above gives a weight-preserving map

NCw (X/k) −→ DR(X/k)

(classically: HC− → HH : negative-cyclic to Hochschild)
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Derived symplectic structures I - Definition

We use the map NCw (X/k) −→ DR(X/k) to define

n-shifted (closed) p-forms

X derived Artin stack locally of finite presentation (; LX is perfect).

The space of n-shifted p-forms on X/k is
Ap(X ; n) := |DR(X/k)[n − p](p)| ' |RΓ(X , (∧pLX )[n])|
The space of closed n-shifted p-forms on X/k is
Ap,cl (X ; n) := |NCw (X/k)[n − p](p)|
The homotopy fiber of the map Ap,cl (X ; n)→ Ap(X ; n) is the space
of keys of a given n-shifted p-form on X/k.

Rmks - | − | is the geometric realization; for an n-shifted p-form, being
closed is not a condition; any n-shifted closed p-form has an underlying
n-shifted p-form (via the map above); for n = 0, and X a smooth
underived scheme, we recover the usual notions.
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Derived symplectic structures I - Definition

n-shifted symplectic forms

X derived Artin stack locally of finite presentation (so that LX is perfect).

A n-shifted 2-form ω : OX → LX ∧ LX [n] - i.e. ω ∈ π0(A2(X ; n)) - is
nondegenerate if its adjoint ω[ : TX → LX [n] is an isomorphism (in
Dqcoh(X )). The subspace of A2(X , n) of connected components of
nondegenerate 2-forms is denoted by A2(X , n)nd .

The space of n-shifted symplectic forms Sympl(X ; n) on X/k is the
subspace of A2,cl (X ; n) of closed 2-forms whose underlying 2-forms
are nondegenerate i.e. we have a homotopy cartesian diagram of
spaces

Sympl(X , n) //

��

A2,cl (X , n)

��
A2(X , n)nd // A2(X , n)
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Derived symplectic structures I - Definition

Nondegeneracy involves a kind of duality between the stacky (positive
degrees) and the derived (negative degrees) parts of LX

In particular: X smooth underived scheme ; may only admit 0-shifted
symplectic structures, and these are then just usual symplectic structures.

G = GLn ; BG has a canonical 2-shifted symplectic form whose underlying
2-shifted 2-form is

k → (LBG ∧ LBG )[2] ' (g∨[−1] ∧ g∨[−1])[2] = Sym2g∨

given by the dual of the trace map (A,B) 7→ tr(AB).

Same as above (with a choice of G -invariant symm bil form on g) for G
reductive over k . Rmk - The induced quantization is the “quantum group”
(i.e. quantization is the C[[t]]-braided mon cat given by completion at q = 1
of Rep(G (g)) C[q, q−1]-braided mon cat).

The n-shifted cotangent bundle T ∗X [n] := SpecX (Sym(TX [−n])) has a
canonical n-shifted symplectic form.
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Derived symplectic structures on mapping stacks

Derived version of a result by Alexandrov-Kontsevich-Schwarz-Zaboronsky:

Existence Theorem 1 - Derived mapping stacks

Let F be a derived Artin stack equipped with an n-shifted symplectic form
ω ∈ Symp(F , n). Let X be an O-compact derived stack equipped with an
O-orientation [X ] : REnd(OX ) −→ k[−d ] of degree d . If the derived
mapping stack MAP(X ,F ) is a derived Artin stack locally of finite
presentation over k , then, MAP(X ,F ) carries a canonical (n − d)-shifted
symplectic structure.

Important Rmk - A degree d O-orientation on X is a kind of Calabi-Yau
structure of dimension d , in particular any smooth and proper Calabi-Yau
scheme (or Deligne-Mumford stack) f : X → Spec k of dim d admits a
degree d O-orientation. Indeed, any ωX = ∧d Ω1

X ' OX gives
RHom(OX ,OX ) ' RHom(OX , ωX ) ' Rf∗ωX ' Rf∗f !k[−d ]→ k[−d ]
(where last map is trace map in coherent duality).
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Derived symplectic structures on mapping stacks

Idea of the proof of Theorem 1 – We can mimick the following well-known
construction (hat-product) in differential geometry.
Let Mm compact C∞, N C∞

M ×MapC∞(M,N)

ev
ww

prM

''
N M

Ωp
M × Ωq

N → Ωp+q−m
Map(M,N) : (α, β) 7→

∫
M
pr∗Mα ∧ ev∗β := α̂β

(
∫

M : integration along the fiber).
If (N, ω) is symplectic, η volume form on M, then η̂ω ∈ Ω2

Map(M,N) is
symplectic.
Note that in this case there is no shift (n = 0). 2
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Derived symplectic structures on mapping stacks

Some Corollaries of Theorem 1

Let (F , ω) be n-shifted symplectic derived Artin stack.

Betti - If X = Md compact, connected, topological manifold. The
choice of fund class [X ] yields a canonical (n − d)-shifted sympl
structure on MAP(X ,F ).

Calabi-Yau - X Calabi-Yau smooth and proper k-scheme (or k-DM
stack), with geometrically connected fibres of dim d . The choice of a
trivialization of the canonical sheaf ωX yields a canonical
(n − d)-shifted sympl structure on MAP(X ,F ).

de Rham - Y smooth proper DM stack with geometrically connected
fibres of dim d . The choice of a fundamental class [Y ] ∈ H2d

DR(Y ,O)
yields a canonical (n − 2d)-shifted symplectic structure on
MAP(X := YDR ,F ).

Example of Betti: X n-symplectic ⇒ its derived loop space LX is
(n − 1)-symplectic.
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Derived symplectic structures on mapping stacks

Corollaries of the previous corollaries - E.g. one could take F = BG , G
reductive affine group scheme, with a chosen G -invariant symm bil form
on Lie(G ). The corollaries give (2− d)-shifted (resp. (2− 2d)-shifted)
symplectic structures on the derived stack of G -local systems and
G -bundles (resp. of de Rham G -local systems = flat G -bundles on Y ) on
Y .
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Derived symplectic structures on lagrangian intersections

Existence Theorem 2 - Derived lagrangian intersections

Let (F , ω) be n-shifted symplectic derived Artin stack, and Li → F a map
of derived stacks equipped with a Lagrangian structure, i = 1, 2. Then the
homotopy fiber product L1 ×F L2 is canonically a (n − 1)-shifted derived
Artin stack.
In particular, if F = Y is a smooth symplectic Deligne-Mumford stack
(e.g. a smooth symplectic variety), and Li ↪→ Y is a smooth closed
lagrangian substack, i = 1, 2, then the derived intersection L1 ×F L2 is
canonically (−1)-shifted symplectic.

Rmk - An interesting case is the derived critical locus RCrit(f ) for f a
global function on a smooth symplectic Deligne-Mumford stack Y . Here

RCrit(f ) //

��

Y

df
��

Y
0

// T ∗Y
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Lagrangian intersections: idea of the Proof

(M, ω) smooth symplectic (usual sense);

two smooth lagrangians:

L1 ↪→ (M, ω)←↩ L2

By definition of derived intersection:

L1 ← L1 ×h
M L2 → L2

∃ canonical homotopy ω1 ∼ ω2 between the two pullbacks of ω to
L12 := L1 ×h

M L2.
But L1, L2 are lagrangians, so we have an induced self-homotopy 0 ∼ 0 of
the zero form on L12.
What is a self-homotopy h of the zero form?
It is a map

h : ∧2TL12 → OL12 [−1]

of complexes (since hd − dh = 0− 0 = 0): so h is a (−1)-shifted 2-form
on L12.
Then one checks that such an h actually comes from a closed (−1)-shifted
symplectic form on L12. 2
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Derived symplectic structure on RPerf

Recall the derived stack

RPerf : cdga≤0
k → SSets : A 7→ Nerve(Perf (A)cof ).

Existence theorem 3 - RPerf is 2-shifted symplectic

The derived stack RPerf is 2-shifted symplectic.

Idea of proof – By definition, there is a universal perfect complex P on
RPerf, and it is easy to prove that

TRPerf ' REnd(P)[1]

Use the Chern character for derived stacks ([ Toën -V, 2011]) to put

ωPerf := Ch(P)(2)

(weight 2 part). Using Atiyah classes, the underlying 2-form is
non-degenerate. 2
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Derived symplectic structure on RPerf

Some corollaries of Thms. 1 (MAP) and 3 (RPerf)

Betti - If X = Md compact, connected, topological manifold. The
choice of fundamental class [X ] yields a canonical (2− d)-shifted
sympl structure on MAP(M,RPerf) = RPerf(M).

Calabi-Yau - X Calabi-Yau smooth and proper k-scheme (or k-DM
stack), with geometrically connected fibres of dim d . The choice of a
trivialization of the canonical sheaf ωX yields a canonical
(2− d)-shifted sympl structure on MAP(X ,RPerf) = RPerf(X ).

de Rham - Y smooth proper DM stack with geometrically connected
fibres of dim d . The choice of a fundamental class [Y ] ∈ H2d

DR(Y ,O)
yields a canonical (2− 2d)-shifted sympl structure on
MAP(YDR ,RPerf) =: RPerfDR(Y ).
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From derived to underived symplectic structures

Using Theorems 1 (MAP) and 3 (RPerf) we may recover some (underived)
symplectic structures on smooth moduli spaces. E.g. :
• Simple local systems on curves – C a smooth, proper, geom connected curve
over k, G simple algebraic group over k . Consider the underived stacks
LocDR (C ;G )s , Loc(C top;G )s of simple de Rham and simple topological G -local
systems on C . By using

LocDR (C ;G )s �
�

j
// RLocDR (C ;G ) Loc(C top;G )s �

�

j
// RLoc(C top;G )

we recover, with a uniform proof, the symplectic structures of Goldman,
Weinstein-Jeffreys, Inaba-Iwasaki-Saito (the original proofs are very different
from each other).
• Perfect complexes on CY surfaces – S a CY surface over k (i.e. K3 or abelian),
fix KS ' OS . Let RPerf(S)s ↪→ RPerf(S) the open derived substack cassifying
simple complexes (i.e. Ext i

S (E ,E ) = 0 for i < 0, Ext0
S (E ,E ) ' k). Consider

t0(RPerf(S)s) := Perf(S)s and its coarse moduli space Perf (S)s . We recover
the results of Mukai and Inaba (2011) that Perf (S)s is a smooth and symplectic
algebraic space.
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(−1)-shifted symplectic structures and symmetric
obstruction theories

X derived stack (locally finitely presented), j : t0(X ) ↪→ X ⇒

j∗LX → Lt0(X )

is a perfect obstruction theory in the sense of Behrend-Fantechi (a
[−1, 0]-perfect obstruction theory, if X is quasi-smooth).
So if X is a given stack ther is a map

{lfp dstacks with truncation ' X} → {perfect obstruction theories on X}

What do we gain if X is moreover (−1)-shifted symplectic?
ω: (−1)-shifted symplectic form on X ⇒ underlying 2- form

ω : TX ∧ TX → OX [−1]

and its adjoint Θω : TX
∼ // LX [−1] .
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(−1)-shifted symplectic structures and symmetric
obstruction theories

So, via the isomorphism Θω : TX
∼ // LX [−1] , the underlying 2-form

ω : TX ∧ TX → OX [−1], gives

(Sym2LX )[−2] ' LX [−1] ∧ LX [−1]→ OX [−1].

Therefore (by shifting by [2], and restricting along j : t0(X ) ↪→ X ) we find
that the obstruction theory

j∗LX → Lt0(X )

is a symmetric obstruction theory in the sense of Behrend-Fantechi. So we
have a map

{(-1)-sympl dstacks X s.t. t0(X ) ' X} → {symm perfect obstr theories on X}
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(−1)-shifted symplectic structures and symmetric
obstruction theories

All known examples of symmetric obstruction theories actually come from
(−1)-derived symplectic structures.

Some examples :

Any derived intersections of two smooth lagrangians L1 and L2 inside
a smooth symplectic variety M is (−1)-shifted symplectic ⇒ L1 ∩ L2

has a canonical [−1, 0]-perfect symmetric obstruction theory.

Y - elliptic curve; M - smooth symplectic variety ⇒ MAP(Y ,M) is
canonically (0− 1 = −1)-shifted symplectic ⇒ the stack of maps
Y → M has a canonical [−1, 0]-perfect symmetric obstruction theory.
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(−1)-shifted symplectic structures and symmetric
obstruction theories

Y 3-dim CY smooth algebraic variety, choose KY ' OY ⇒
RPerf(Y ) := MAP(Y ,RPerf) is canonically (2− 3 = −1)-shifted
symplectic ⇒ the stack of perfect complexes Perf(Y ) has a canonical
symmetric obstruction theory. Same for RPerf(Y )si

L (classifying
simple objects with fixed determinant L) ⇒ the stack of simple
perfect complexes Perf(Y )s

L has a canonical [−1, 0]-perfect
symmetric obstruction theory (indeed, RPerf(Y )si

L is quasi-smooth).
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(−1)-shifted symplectic structures and symmetric
obstruction theories

In the comparison symm obstr theories/(−1)-shifted symplectic forms, note that:
– obstruction theories induced by derived stacks are fully functorial, therefore
functoriality of (−1)-shifted symplectic forms gives full functoriality on induced
symmetric obstruction theories.
– symmetric obstruction theories induced by (−1)-shifted sympletic structures are
better behaved than others (note that the closure data are forgotten by
symmetric obstruction theories), e.g. they give a solution to a longstanding
problem in Donaldson-Thomas theory:

Corollary (Brav-Bussi-Joyce, 2013)

The Donaldson-Thomas moduli space of simple perfect complexes (with fixed
determinant) on a Calabi-Yau 3-fold is locally for the Zariski topology the critical
locus of a function, the DT-potential on a smooth complex manifold). Locally the
obstruction theory on the DT moduli space is given by the (−1)-symplectic form
on the derived critical locus of the potential.

Rmk. False for general symmetric obstruction theories (Pandharipande-Thomas,
April 2012)
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Thank you!
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