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In recent years many exact results for gauge theories on compact
manifolds have been obtained by the method of SUSY localisation
initiated by Pestun.

The idea is that by adding a Q-exact term to the action it is possible to
reduce the path integral to a finite dimensional integral:

Localisation:  Zpyg = [ Dype™M = [ DWoe=SMVol Zy 1,0, [Wo]
Wy field configurations satisfying localising (saddle point) equations

with a clever localisation scheme, Wy is a finite dimensional set

Z1-100p|Wo] is due to the quadratic fluctuation around Wy

= useful to study holography

= connect to exactly solvable models such as 2d CFTs and TQFTs



The AGT correspondence [Alday-Gaiotto-Tachikawa],[Wyllard] maps S*
partition functions of 4d N = 2 theories 7, , obtained wrapping M5
branes on ¥, , (class S-theories [Gaiotto]) to Liouville correlators:
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generalised N' = 2 S-duality & CFT modular invariance

Associativity of the operator algebra requires crossing symmetry
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Partition functions are invariant under generalised AV = 2 S-dualities
(different pant-decompositions of ¥z )




Simple surface operators<>degenerate primaries (L_ 4+ %L2;) V_p;, =0
[Alday-Gaiotto-Gukov-Tachikawa-Verlinde]
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Several results: degenerate conformal blocks <+ vortex counting
[Dimofte-Gukov-Hollands],[Kozcaz-Pasquetti-Wyllard],[Bonelli-Tanzini-Zhao].

Recent proposal [Droud-Gomis-LeFloch-Lee] (see also [l3enini-Crem()nesi])

[( Vg Vas (1) V_p2(2) Vay ) = SSZQEDJ

flop symmetry < crossing symmetry



Liouville theory can be completely solved by the conformal bootstrap
approach which only uses Virasoro symmetry & crossing symmetry.
Now considering that:

> there is an action of the W-algebra on the equivariant cohomology of
the moduli space of instantons, [Maulik-Okounkov],[Schiffmann-Vasserot]

» N =2 S-duality, flop symmetry are gauge theory avatars of crossing
symmetry,

we could say that 5% and S* gauge theory partition functions and CFT
correlators are constrained by the same bootstrap equations!
Today | will argue that a similar story holds in 3d and 5d:

» 3d partition functions < degenerate g-CFT correlators

» bd partition functions < non-degenerate g-CFT correlators.



Block-factorisation of 3d & 5d partition functions
g-CFT correlators via the bootstrap approach
3d and 5d partition functions as g-CFT correlators

Conclusions and open issues
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Coulomb branch localization scheme [Hama-Hosomichi-Lee].

U(1) gauge group, Ny chirals m;, N¢ anti-chirals iy, with FI &.

+m; +iQ/2)
7SQED :/d G- G :/d 2mix¢ sp(x + m;
S3 X Gl - Gl-loop X € Hsbx+mk71Q/2)

The 1-loop contribution of a chiral multiplet is:
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Higgs-branch-like factorized form: [s.p.]
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o+ Gl1o0p €valuated on the i-th SUSY vacuum of the effective
(2,2) theory

G(’) _ e—27ri§m,- G()

cd ’ 1-loop —

B 1’1[ sp(mj — m; +iQ/2)
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Vortices on R? x S? satisfy basic hypergeometric equations:
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Classical (mixed Chern-Simons) terms can be factorized:

, N
Gc(/) - ‘ QE,) ‘s
using that:
o, x2 og q 7\'2 2
e vt e = |loxiq)|| L 069) = (—gPx)e (ot N
to obtain
N
LZSQED Z ' Gl loop gEl) SJ

Finally we can factorize the 1-loop part too using that

%(IQ/2+Z) Sb(’Q/2 —I—Z _ H 27rz/w1,

and obtain the block factorized form:

SQED N
LZSS = Z/ '

2 . . .
[ gﬁﬁgi.%oopzv]

Blocks are expressed in terms of periodic variables e272/«1 | g2mz/w2,

(invariant under shift z — z + kw;).



In the semiclassical limit, g = ePe, e — 0, finite 3, we find:

B 20 exp {W
€

where W si)(x) IS the twisted superpotential evaluated on the i-th
SUSY vacuum.

Blocks form a basis of solutions to a system of difference equations,
in this case basic hypergeometric operator.

The factorization is not unique, blocks are defined up to g-constants
c(x; q) satisfying:

2
c(gx; q) = c(x; q), HC(X: q)HS =1

Notice that multiplication by c(x; g) does not change the
semiclassical limit (asymptotics of solutions).



Computes the (generalised) super-conformal-index
[Imamura-Yokoyama],[Kapustin-Willet], [Dimofte-Gukov-Gaiotto].

with fugacities:
(i, i), i=1,--- N, (+) flavor U(1)M7 |
(& 1), i=1,---Ne, (=) flavor UQ)M,
(w, n), topological U(1),
(t,s), gauged U(1).

Nf Nf
n —1¢0—1
Zsz><51 = /ﬁt wsl—[lx(t¢j,5+q)HX(t gk 7—5—//().
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The 1-loop contribution of a chiral multiplet is:

1 _ ql+1C lq—m/2)
_ (Al/2,— m/2




Higgs—branch—like factorized form [Beem-Dimofte-S.P.],[Dimofte-Gaiotto-Gukov]

Nr
SQED ()
252X51 Z Gc/ 1 Ioop HZV
i=1

G( )G1( |)oop are evaluated on the j-th SUSY vacuum.

= f(x; q)f(%; §) with:
Xi :¢iqri/2, ¢) ! r,/2 gl

Z=wq/, Z—wlq"/2 §= q_1

51//2
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As before we can factorize the classical and 1-loop term and obtain:
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to summarize:

N S
6PzP|[ = > IBI

N¢
S3.(i
253 = Z Gl—logg

) (1)

$2x st
ZSZXSI § : Gl loop V

2 M
|, = 2Bl

Same blocks with different pairing gives Zgs, Zs2y g1 “like” S3, 5% x St
are obtained by gluing solid tori with S, id € SL(2,7).
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Holomorphic blocks B3¢ are Melvin cigar D x, S! partition functions.
[Beem-Dimofte-S.P.]



Observe the following flop symmetry of SQED partition functions:

+m; +iQ/2)
7SQED _ / dx 2mxE So(x + m;
s? e Hsb (x + M —iQ/2)

is invariant under : m; <> —my, and £ < —¢£
exchanges phase | and phase //

Nf Nf
Zs2ys1 = Z/ 57 t"w® Hx(thJ-, s+ rj) H x(t7ret —s — 1)
j=1 k=1

1

is invariant under : w <> w ", n<> —n, ¢; < 5]1, < —1;

exchanges phase / and phase //



FLOP SYMMETRY is rather trivial on the Coulomb branch; but on the
Higgs branch it implies non-trivial relations between blocks
(analytic continuation z — z~* from phases / to phase //):

/ i, WG
Z_é2xsl Z G]F I)oop \(/) H/d =
1 1
= Z Gl( I)oop ( & d .él2><51
o~ (| g0 0|2
I Nl (i),
2.43 = ZGl loop gc/ ZV HS:
), 1l II
_ZGlloop ) H = £I3

this structure is reminiscent of crossing symmetry in 2d CFT correlators.



N =1 theories on S°
Localisation on w?|z1|? 4+ w3|z|* + w3|z3|> = 1 yields:

3
ZS5 = /dO’ ch(avT) Zl—loop(aa rﬁ) “ZiZt

[Kallen-Zabzine],[Kallen-Qui-Zabzine|,[Hosomichi-Seong-Terashima],[Imamura],

5L(3,2)

[Lockhart-Vafal],[Kim-Kim-Kim],[Haghighat-Igbal-Kozcaz-Lockhart-Vafa)

» R* x St instantons 229, (e?77/® e27M/es; g t) are localized at fixed
points of the Hopf fibration and are paired as:

w

Hf—(e27rz/53’ q, t)H H 27rz/e3; q, t)k . q= e27rie1/e3’ t— e27rie2/e3
SL(3,Z)

k= 1:(er,e, &)= (w3, w2,w1), 2: (e, e, e3)=(w1,ws,w2),

3: (e1, &2, e3) = (w1,w2,w3)

» 1-loop contributions are:

—1
Zi%hy(0) = [] SitiatoNSi(-ia(e)  ZRZ5(a.m) = T 55 ((tote) + m)+ 3 )

a>0 PER

S3(x) = | [ (iwr +jwaz + kws +x) (iws +jwa + kws + E —x) , E=w+wrtws
iJjk



We factorize the classical part (Yang-Mills and Chern-Simons terms):

Zel(o,m) = HZC’ ZL(3,Z)
using that [Felder-Varchenkol:
O Y
and obtain:
(1w tictom 7L, 7 -zemm)




we can factorize the 1-loop part as well:

3
Zytoop (0, M) = HZ””" ‘SL(&Z)
using that:
. . s 3
Sy(iz) = o~ 3t Bas(iz) ‘(efz?sz; q, t)H
SL(3,2)

and obtain the block factorized form which respects periodicity
(invariance under shift z — z + jkw;) in each sector:

(2= 1 00 |

BSd = ch Zl—loop ZE\CS’J
SL(3, Z)

For example blocks of the SU(2), N¢ = 4 theory are:

+io4+1/g°-3, imf/2+n) 2mif 4y
B5d _ rq7t ( €3 . ( [ lU]v q7 ) Z5d
- . 2mi inst
Mgt (ilgjﬁ) [T;(es Ftml g, 1)

where x keeps track of the ambiguity of the factorization.



N =1 theories on S* x St

Coulomb branch localization yields: [Kim-Kim-Lee],[Terashimal, [Igbal-Vafa]

5d
ZS4><51 /da Zl Ioop a, m HZ,M

» R* x S' instantons Z29,(e?77/% 2™/, g t) are localized at N
and S poles and are paired as:

Hf 271'2/63 . q, t H Hf(ebrz/e;; q, t) q= eZm’el/e37t: eZﬂ'ie2/e3
k= 1:(e,ee3)=(1/bo,bo,2mi/B), 2:(e1,e2,e3)=(1/bo,bo,—2mi/B)

» 1-loop contributions can be re-written as:

zie, = 177 (o) T8 (—ia(o)) , Z0per = T 7 (f<p<a) +m)+ @)

a>0 PER
with Qy = by +1/by and

TH(X) o [,y .y Sinh 5 (X + niby + Z—é) sinh £ (—X +(m +1)bo + %)



2 2
now since Hrq,t(z) ’

=1 we have HZC/

id

2
id
Again we can factorize the 1-loop term too and obtain:

2
id

with the same holomorphic blocks B°? appearing in Zss.

[ZS“XSl = [ da Ziie0p(a, M) H]:

where F is the same block appearing in Zss.

[25%1 = [do HBSd

=1 we can write
id



to summarize:

]
‘ ‘SL(3 2) =/ d ’ ’ 5L(3,2)

2
id

(Zss | do Z1 loop

4 el 2
[Zs4xsl =[ do Zl5|oxo§ y [ do HBSd

Respecting periodicity we find universal blocks 5°¢.

The intermediate factorization in terms of F will be more
convenient for the g-CFT interpretation.



For special values of mass parameters integrals defining partition
functions localize to discrete sums and satisfy difference equations.

. 4 1 . . .
Poles in le_foop a.nd le_lo.xog move and plln.ch the |n.tegrat|on. contOL.lr;
the (meromorphic) continuation of partition functions requires taking

residues of poles crossing the integration path.

Comments:

A similar mechanisms reduces non-degenerate Liouville correlators to
degenerate ones, which satisfy differential equations.

Analogy with the AGT set-up suggests that the degenerate sector of
the CFT corresponds to codimension two defects on the gauge
theory side. This is the case also for the superconformal 4d index.

[Gaiotto-Rastelli-Razamat)



Consider the SU(2), Ny = 4 theory on S°. The poles structure of Z1

is such that:

for my + my = —iws the integral localizes /dcr =
{o1,02}

When evaluated on o = {01, 02}, instantons degenerate to vortices:

Zoea= 2 ()= (- , 2,= > ()= ()=
0,n

Y1,Ys 0,17 Wy, Ws
Zos = D ()= > () =1
X1,X» 0,0
and:
SCQCD
z5cQco _ / do Z5n,, )| |g z

inst

‘zc,z

= G
SL(3,2) Z 1""’"

An identical degeneration works for permutations of wy,ws, ws,
corresponding to the three big S inside S°.

A similar mechanisms for m; + my, = —iby leads to

SCQCD SQED
ZS“><S1 Z52><S1

loop

SQED
=72



so far we have seen that

3d gauge theory flop symmetry < crossing symmetry of CFT
correlators.

5d — 3d degeneration < analytical continuation of momenta of
primary operators to degenerate values in CFT correlators.

5d instantons < deformed Virasoro Virg ; blocks (numerous
“5d-AGT" I’ESU|tS). [Awata-Yamadal,[many others]

We will now construct correlation functions with underlying deformed
Virasoro symmetry and try to map them to 3d&5d partition functions.



g-deformed Virasoro algebra Virg ;

Virg,+ has two complex parameters g, t and generators T, with n € Z
[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugail,[Frenkel-Reshetikhin], [Jimbo-Miwa)

400
[To. Twl = = f(Toi Torss — Tt Totr)
=1
(1-q@-t") . .,
*T((Q/f) —(q/t)"")om+no0
where f(z) = /5 fiz! = exp [ 335 LTI

2 . .
» Fort =g % and g — 1, Vir,, reduces to Virasoro.

» chiral blocks with degenerate primaries (singular states in the Verma
module) satisfy difference equations.
[Awata-Kubo-Morita-Odake-Shiraishi], [Awata-Yamadal),[Schiappa-Wyllard]



g-deformed Bootstrap Approach:

We will construct g-correlators using the conformal bootstrap approach:

3-point function is derived exploiting symmetries, without using the
Lagra ngia Nn. [Belavin-Polyakov-Zamolodchikov],[Teschner]

Consider 4-point function with a degenerate insertion
(Vay (00) Vs (1) Vo, (2, 2) Ve, (0)) ~ G(2,2)
take V,,(z, Z) to have a null state at level 2, then
D(A,B; C;q,2z)G(z,z) =0, D(A,B; C;§;,2)G(z,2) =0,
where D(A, B; C; g; z) is the g-hypergeometric operator.

G(z,Z) is a bilinear combination of solutions of the g-hypergeometric eq.



1) = ,01(A,B; C;z), I =
1 i ) 2 0(qC L q)0(az i q)

For g — 1 becomes the undeformed s-channel basis.

s-channel correlator:

o,

SN

1 i
(s) o,

% B!

K1)

n

2
=

K,-J(-s) is diagonal with elements related to 3-point functions

Ki(I'S) = C(Oé4,0[3,ﬁl§5)) C(Qofﬂ,(S), *b0/2,041)7 B/( ) = alj:

2

*

For the moment assume generic pairing H( )

b
2 )

2c—1,-1.
NaC 2774 g (gac,qBC 2C Y 2)

i=1,2



(u) 0(qgA~1z71; q) 1. ~1. 2_-1

1) = ®1(A, gAC~L; gAB~ 1 ,
1 0(A—T q)(az—11 q) 2 (A, q q g’z )
(u) 0(gB~1z71%; q) 1. 1. 2_-1

L, = d1(B,gBC™*;gBA™;

b 0(B—1;q)0(q7—1;q) ° 1(B,q q g’z )

For g — 1 limit becomes the undeformed u-channel basis.

u-channel correlator:

ihj=1
2 a, a,
_ u) || ()" _
=2 KO =2
i=1 i &
a, o,

Kiﬁ-u) is diagonal with elements related to 3-point functions

bo

K = C(an, a3, M) C(Q—B", —bo/2,as), BY = aut—=, i=1,2

2



impose crossing symmetry

o, Bl o, o, Oy
2 2 2
(0] w2 ] = w2 [+ 90 j
analytic continuation /(° ZJ 1 ,JJ i ZJ 1 ,JJ *) yields:

2 OFY u
[ k,I=1 K/E/)MkiM/j = K/J(' )]

Solving these equations we can determine 3-point functions. But we need

2
to specify the pairing H( o )H — use 3d gauge theory pairings!



id-pairing g-CFT
Now assume that chiral blocks are paired as:

Hf(x; q)HZ = f(x; q9)f(%;§) .

with:

x=eX, x=ePX G=g

The bootstrap equations are solved by:

3

Cal ) = : e
id\ 3, A2, A1) = T3(2a1 — Qo) 1 T8 (2ar — 20)

where 2a1 = a3 + az + a3, Qo = by + 1/by and

[e'e]

o) oc T sinh [g (X bt %)} o E <*X +(m + Dby + ("zbj 1))]

ny,np=0



(SQED Nf =2 on S? x S! & id-pairing 4-point degenerate correlatorj

Z_L

‘g()IZWH Z

SQED
ZSZ><51 Z Gl/oop

dictionary:
. 3
ZCFT ™~ Zgauge; 4 — ef /bo y Qo= _b0/2
—o SIS, -0 ==
a1:Q°+I 2’ a3:%_11+221 2 014:%—1122,

where ¢; = /P ®i, ¢ = eP=i
> gauge theory flop symmetry < g-CFT crossing symmetry

> [)) — 0 limit recovers [Doroud-Gomis-LeFloch-Lee]
» CFT: Virg,: — Virasoro, we recover Liouville theory results

» gauge: S% x S' partition function reduces to S partition function



S-pairing g-CFT

Now assume that chiral blocks are paired as:
2 ~ ~
’VWWWSZNKWHMW~
where

27iX Jwa

~ i ori¥l
x=e , x:e27”X/‘*’1, i

g=¢e w2, gg=e '«
The bootstrap equations are solved by:

B 1 S3(2a)
Cs(az, a0, a1) = Si(2at — E) ,1;[1 S3(2ar — 2a;)

3

where E = wy + w» + w3 and

Ss(X)oc ] (wim +wany +wsns + X) (wim + wany + winz + E — X)

n1,n2,n3=0



(SQED Nf =2 on S} < S-pairing 4-point degenerate correlator]

2

2 .
) . 2 H
SQED _ Z 1 || g 201 Z (s) E : :
Z Glloop V 5 ~ KII - H
i=1 :
Oy
dictionary:
1
Qo = 7(.4.}3/2, w1 = ba w2 = Ba ZCFT ™~ Zgauge
o = g + I'mlgmz , as = % . I.m1+m2;m17m2 , ag = g _ ji—rp ,

> gauge theory flop symmetry < g-CFT crossing symmetry
> three possibilities:

1
ap = —wi/2, b = wj, 5= i#j#k=1,2,3.

corresponding to the three big deformed S* inside a deformed S°.



so far:
3d gauge theory partition functions < g-CFT degenerate correlators

SQED
Z Q Z Gl/oop I(S)

g()lz()/H K(s)
Id 1

Let’s now consider non-degenerate correlators

Example:

a, O3

<Va1 Va2 Va3 Va4>5,id — /dOé | = /dOé CS,id C57,'d (Conf.Blocks)

a Ay

the degeneration mechanism suggests that

5d gauge theory partition functions < g-CFT non-degenerate correlators



Zsiy g1 is captured by non-degenerate correlators with Virg: @ Virg:
symmetry and id-pairing 3-point function.

Example: SCQCD, SU(2), Nf = 4 < 4-point correlator

ZS?“CSSCP = (Vi Vo, Vs Vg )ia = /da

» 5d instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal,[Mironov-Morozov-Shakirov-Smirnov|

Z§d,SCQCD — th (Z)

inst Q1O 30y

» 1-loop vs 3-point function:

4
Ziaon(0) HZ{‘.Z,‘;?(U, m;) = Cig(a1, a2, ) Cig(Qo — v, a3, (g)
=1

dictionary:

a:ia+%,a1:ta2:im172+Qo, a3:|:044:im374+Qo

— use Cjy since S? x S is a codim-2 defect in S* x St (cf.[1qbal-vata])



Zss is captured by non-degenerate correlators with Virge @ Virge @ Virg:
symmetry and S-pairing 3-point function.

Example: SCQCD, SU(2), Nf = 4 < 4-point correlator

Z259L = (Vo Vi, Vi, Viay)s = / da

o O3
a oy
» 5d instantons vs Virg: non-degenerate conformal blocks:

[Awata-Yamadal, [Mironov-Morozov-Shakirov-Smirnov|

5d,SCQCD __ gt
Zinst - Falazaa3a4
» 1-loop vs 3-point function:

4
ZileCt (0_) H Zhyper (O', m’.) = CS(O[hOQ, Oé)CS(E — Q, 0[37044)

loop 1-loop
i=1

Withdictionary:oz:ia—l-g, artar=im+E, a—ay=im
az+ag=im3+E, az3—a4=1Iimy.

— use Cs since S% is a codimension two defect in S® (cf.[Lockhart-Vafa])



3-point functions define the fusion rules of two primaries for z; — z,:
Vo(22) Vo (22) = [ d Cs(az,00,0) Va2

when we analytically continue from Re(ay1) = Re(az) = E/2 to
degenerate values:
nwi + Nowy + N3ws n-w
062 = — - —

2 2

poles in Cs(a, a1, @) pinch the integration contour and the OPE is
defined by the sum over the residues from poles located at

o =a;—s-w/2; sx=-nm+2j; j€{0,1,... nc}

for a total of (n; + 1)(n2 + 1)(n3 + 1) contributions.



Knowing the fusion rules we can evaluate the four-point correlator:

(Vs (Vo (2) Vaa (1)Va (00)) = D Res[CCIFP™F ™ Fym
{a*}€OPE

where F"" contains sums over Hook tableaux (n;, n;).

The simplest case corresponding to n = (0,0, 1) yields:

(Vs (O)V_ (2) Ve (Ve (00)) = Y Res[CCl FiOFFY =

2
a:ali%

2
= K ,-5-5)

I,'(S) _ ZSS3QED

2
S

Blocks F"", corresponding to higher degenerates, should be related to
non-elementary codimension-two defect operators
(Cf. [Dimofte-Gukov-Hollands] )



Integrability

Knowing 3-point functions we can compute reflection coefficients:

Cia(Q — a1, an, a3)
Cia(0u, a2, a3)

RS(ay) = Cs(E — o1, a2, 03)

R(a;) =
(1) Cs(a, an, a3)

and try to connect them to scattering matrices of spin-chains built from
Jost functions appearing in the plane-wave asymptotics of the scattering
wave function.

-« -our current understanding after searching the literature

Gerasimov-.Kharchev-Marshakov-Mironov-Morozov-Olshanetsky],

[

[Takhtajan-Faddeev],[Freund-Zabrodin],[Babujian-Tsvelik],[Kirillov-Reshetikhin],
[Doikou-Nepomechie], [Freund-Zabrodin],[Davies-Foda-Jimbo-Miwa-Nakayashiki],
[

Freund-Zabrodin], [Faddeev-Takhtajan],[etc.]

goes as follows —



XYZ

F,l(iu+rk)Fq(iu+rk+r+l )

) =T, TG+ rk+ 12)T (it rk+r+172)
o :ﬂ‘n't
g=e ", r —Zy
q—1,r=const T—i©
XXZ ferro XXZ anti-ferro
J(u)~T, J(u)~T,
i affinization i affinization
s 7CS(E7Q\.CL2.C‘3) id 7C,‘,(Q07(1,_(12_a3)
Rle)= Cslay oy a;) R a)= Culaa,0y)

p—0

O e[ TR
P g a,)
Tafﬁnization
Liouville mini-super-space: J(u)~T

XXX ferro



Hints of a g-CFT-like structure in 5d and 3d partition functions.

Degenerate correlators/3d partition functions are
crossing-symmetry/flop invariant; Is there crossing-symmetry for
non-degenerate correlators what is its 5d gauge theory meaning?

2
Consider other pairings H( x )H and other geometries.

Use ¢g-CFT to study gauge theory. For example construct g-CFT
Verlinde loop operators and study their gauge theory meaning.

Explore the integrable structure of g-CFT correlators.



