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Introduction

In recent years, N=2 supersymmetric gauge theories and
their deformations have played an important role in

theoretical physics - very active research topic.
Examples:

2d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates 2d gauge theories with twisted masses to
integrable spin chains.

4d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates Omega-deformed 4d gauge theories to quantum
integrable systems.

AGT correspondence (Alday, Gaiotto, Tachikawa):
relates Omega-deformed super-Yang-Mills theory to
Liouville theory.
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Introduction

All these examples have two things in common:

|. A deformed supersymmetric gauge theory is linked to
an integrable system.

Relation between two very constrained and well-
behaved systems that can be studied separately with

different methods.

Transfer insights from one side to the other, cross-
fertilization between subjects!

2. The deformed gauge theories in question can be
realized in string theory via the fluxtrap background!

The string theory construction provides a unifying
framework and a different point of view on the gauge

theory problems.



N/

Introduction

Realize deformed supersymmetric gauge theories via
string theory. Gauge theories encode fluctuations on the

world-volume of D-branes. Many parameters can be tuned
by varying brane geometry.

Here: Deform the string theory background (“fluxtrap”)
into which the branes are placed (Hellerman, Orlando, S.R.)

= different brane set-ups give rise to different gauge
theories with seemingly unrelated deformations!

Use the fluxtrap construction to unify and meaningfully
relate and reinterpret a large variety of existing results.



Introduction

Our string theoretic approach enables us moreover to
generate new deformed gauge theories in a simple and
algorithmic way.

Today: panoramic overview over the many applications of
the fluxtrap background:

- 2d effective gauge theories with deformations

- 4d effective gauge theories with deformations

Fluxtrap background as toolbox to generate deformed
gauge theories and analyze them via string theoretic
methods.
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The same string theory background can give rise to many
different deformations depending on how we place branes in it!
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The Fluxtrap Background
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The Fluxtrap Background

Geometrical realization of Nekrasov's construction of the
equivariant gauge theory.

Start with metric with 2 periodic directions and at least a
U()xU(l) symmetry, no B-field, constant dilaton.

Fluxbrane background with 3 independent deformation
parameters: T2

5 S B MR B I L
(plael) (p2792) (p37(93) (p47(94) v ~Q Lo —

fluxbrane €1 €9 €3 €4 alle

Impose identifications: fluxbrane parameters

8 ~ 8+ QWEE;}%,/ T° ~ 3 +\§E9n9

0, ~ 0 + 27T€kR ]N8 0, ~ 0 + 27T€£§9n9
This corresponds to the well-known Melvin or fluxbrane
background.




The Fluxtrap Background

Introduce new angular variables with disentangled

periodicities: ¢ = 0 — £ 2° — €,7° = 6 — Re(e0)

1

y 22 P A B 5 L
€ = €, T 1€ v::v8—|—1:v9

Fluxbrane metric (T°-fibration over ()-deformed R®):

VEVEAr de!  VEVEdz'dad
dsti=idzan e e
GHAEE SR VARSI TE 1+ VE.VE
i V;Rdajz 2
1+ VE.VE
- V'Zldxz
14+ VI.VI

e e [(dm8)2

2
+(14+vHvh {(dmg)Q ] + 2V 7. V! dz® da’

Generator of rotations:

Vi= VR == IVI —€1 (SCl 80—x0 (91) —+ €9 (5133 82—ZC2 83)
+ €3 (x5 04—z 85) + €4 (x7 Og—x° 87)



The Fluxtrap Background

The general case breaks all supersymmetries.

Impose condition

N
Zek =10
k=1

Find preserved Killing spinor

K = Hexp {¢k ’ngek,} ngxn
k

with projector i = Dl =xrern e

Each projector breaks half of the supersymmetries:

26~ susys are preserved



The Fluxtrap Background

T-dualize along torus directions and take
decompactification limit to discard torus momenta:

Fluxtrap background

Before T-duality, locally, the metric was still flat, but some
of the rotation symmetries were broken globally.

Bulk fields after T-duality (case vZ. v/ =0, ¢ €R, e €iR, eg =€, =0):

not anymore flat

S ey 7

2d¢? + dx3 p3 dos + dxs
ds? = dp? + £ RSN 8 4 qp2 4 P29 9 1+ ¥ " (d2")2,
HUREr Tt T
> > B-field has appeared
3= d¢1 N d doa Adzg,
17 252 ¢1 A dzg + €2 1+ 202 P2 N dxg
ey aleTE? creates a potential that

€

2.0 2.9 : -
R \/<1 +e1pi) (1 +€503) localizes instantons



The Fluxtrap Background

Study resulting geometry.

Space splits into
M10 — M3(€1) X M3(€2) X R4

/

]R<x8> o g M3(€1)
‘ R-foliation over the cigar

cigar (o1, ¢1)

Rz/ o (114 .
.

\

r

R x S1

The generator of rotations is bounded (by asymptotic radius).
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The Fluxtrap Background

Now we want to lift to M-theory:

ds? =

3

oF;

2 19 d D 2 19 d 2
ENpResae [dp%+ A eamn e A nan ey g R LD ad?

1+ €1p7 1 +e€7p1 L+ €303 1+ €503
+ dps + p5 dyp® + dxg + dl’ﬂ + (A1A9) ™ dady |

€3 p7 €505
do1 A dxs A dx doo A dxzo A d
T+ e%p% 01 8 10 + T+ e%p% 09 L9 10

¢

I A7 =1+¢€p; Ti0= 710+ 2T R0

Consider only linear order in ¢:

gun = oun + O(€),
G4 = (dz+dz) A (ds+ds) Aw

. 6l L 110
2= s S=T T1Z

w=€1dz’ Adzt + eo dz? Adx® + e3da* A dx®



Deformed gauge theories

The type of deformation resulting from the fluxbrane
background depends on how D-branes are placed into
the fluxtrap with respect to the monodromies:

Deformation not on brane world-volume:
mass deformation

fluxtrap

€; €4
D—brane S S 0

Deformation on brane world-volume: Q-type
deformation, Lorentz invariance broken

fluxtrap €; €;
D—-brane e I




Examples: 2d gauge
theory w. twisted mass



2d gauge theory w. twisted masses
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2d Gauge Theories

We can construct N=2 gauge theories in 2d by studying
the low energy theory on the world-volume of D2-branes
suspended between NS5-branes.

xs, CCQI

55 8 0 5 4 Y 6 O ¢
fluxtrap €1 €9 €3 o1 lo
D2-brane XTIX 0) X o

INShEhranel T B T ST

Separation of NS5s in 6-direction:1/y?
Separation of NS5s in 7-direction: Fl-term
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2d Gauge Theories

Why is the fluxtrap called a fluxtrap!?

In the static embedding, «°=¢° ! =¢!, 2% =¢3, the e.o.m.

are solved for the D2-branes sitting in

=3 =xt=2"=2"=0

The D2s are trapped at the origin.

Special case e; = —e; =m preserves |6 supercharges.
Adding only D2-branes to the fluxtrap preserves 8
supercharges (static embedding).

Adding also NS5-branes preserves 4 supercharges, N=(2,2)

Preserved Killing spinors:

€, = 6-(1)/8 (]1 -+ Fll) HZ_VS5H‘£ZWUF1608 exp[% (¢1 —+ ¢2) F23]€,
€ER = 6_(1)/8 (]1 - Fll) FUH_|]\_]S5H]:Zux exp[% (le 4= qbz) F23]€ >

Y% = L (1 & Tys67)



2d Gauge Theories

The fluxtrap deformation gives rise to the twisted masses!

Start with (kappa fixed) DBI action (democratic
formulation):

PaaaRays /d3< L~ \/_ det(gus + Bag) [1 - %QE ((g + B)*PT4D,, + A(l)) @D]

1
P =10.1X" (Vu S gHumnan) ]

1 1
RS R R RS |
2 i DA

After expanding to quadratic order in the fields, we get

dilaton B-field
1 o < / D : m —
5 = _87T2g§(a’)2 /dBC [—X o D e §¢ I'y51s w} T ...

i SEeeeaatiia

twisted mass terms!
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2d Gauge Theories

An important ingredient of the Gauge/Bethe
correspondence is the symmetry group of the integrable
system, which also relates gauge theories with different
gauge groups.

The example with two NS5-branes treated so far
corresponds to the simplest case with symmetry group
su(2).

Spin chains can have any Lie group as symmetry, even

supergroups. Can we realize all those via a brane
construction?

So far, we are able to reproduce the A and D-series.



2 2d Gauge Theories

An SU(r) quiver gauge theory corresponds to a spin chain
with SU(r) symmetry. Can be constructed by varying the
brane set-up: r+1 NS5s with stacks of D2s suspended in

bifundamental fields
between. gauge groupw(Nl) / i Ha
1 r;\l r | i Ve and anti-
Z)EnERmm © O Pl ] 1 fundamentals
@ flavor groups~” u(L,) U(Ly) U(Ly)
®) fundamientals and
i / tifundamentals
Ly Dy -
Dy D2 A D2
/ /,adjoint fields
/ ——___

N,
bifundamem

NS5 NS5 NS5 (1)

b
\
Z
| 1
/ﬁ\
\Q—”



Examples: N=2* theory
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N=2* theory
N=2* theory is obtained from N=4 SYM (4d) by giving

equal masses to two of the scalar fields.

It is obtained from a D3-brane in the fluxtrap background
with deformation parameters (8 conserved supercharges)

€1 =€ =20 €3 = €4 = €
T Ottt 2t 3 A 5659
fluxtrap €1 €9 €3 €4 SImNe

B3 hrane HodHod e o1 0 O3

Za

A : i iy 1 i 1 "
e i 1; (0" bx) (Didw) + 5 e]* 11 + 5 €] pabo

Flows to N=2 in the IR (masses become infinite).
Different from Witten'’s construction (global BC).



Examples: Polchinski/
Strassler type solution



Polchinski/Sfrassler-fype solution

We have a string realization of a deformation of N = 4
SYM based on the dynamics of a D3—brane =

What is the gravity dual of the ()—deformed theory?

Gravity duals of massive deformations = Polchinski/
Strasser

Gravity dual of the {)-deformed N=4 SYM is given by the
full backreaction of the D3—brane in the fluxtrap, which
interpolates between the solution of Polchinski and
Strassler in the near-horizon limit and the flat-space
fluxtrap at infinity.

Example: Polchinski/Strassler-type solution for N=2*
theory



& Polchinski/strassler-type solution

: distance from
Start from standard D3-brane solution: Gentencithelb o

ds?\ = H(r) /2 dzy 5+ H{r)'/? (dr? |+ 2 dOE)
dH(r) ' Adz® A... Adz® + 4Q wgs
H(r)=a+Q/r* \

=
||

D-brane charge
a=0 at horizon

Lowest order deformation in €: Polehineki/Strasslar

| st order expansion of solution

FT result B =aV Adx® + % (V A dax® + a:Sw) ;

C51= V A dx® —I—:Izw)

Metric undeformed at Ist order.
Conformal invariance is broken = non-trivial dilaton and
Cofield in the near-horizon. (g_ _avv _ Qe s3-a2

{Co = Qe* 2




Examples: Omega-
deformed N=2 SYM



Omega-deformed N=2 SYM
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Omega-deformed N=2 SYM

Original theory where the ()-deformation was first
introduced by Nekrasov.

7 {3 0 S )
fluxtrap €1 €9 €3 OO
D4—brane XX T IXTIX > )

INSBHBEameH - SX-F¢

1 I

(P AT I B . HISIE) Wkl IR T St o
Fy; F9 + > (' +VFF,") (0i9p + ViFL) — (V' 0,0 — V' 0,0 + V’fvleZf

i 49\2(1\/[ \ /'
\ ;i .
B-field dilaton+metric

20

09

Interesting limits are
e1 =—€2, e3=0 reproduces top. string partition
function, more supersymmetry

e = —e5, e =0 Nekrasov/Shatashvili limit
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Omega-deformed N=| SYM
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Omega-deformed N=| SYM

N=I SYM in 4d requires a brane placement different from
the previous examples.

T ) 3 5 9 O )
fluxtrap €1 €9 €3 o116
D4-brane XTI X X XITTX
INSHLbrame i[> s T I T <A 3¢
NSHb=brane 2 ++x—+x YT1X 1K

NS5-branes not parallel, only 3 deformation parameters
possible, D4 extended in dual Melvin directions.
N=1| has no scalar fields, preserves 2 real supercharges.

1 5 5 2
Lo =-—=FF9+V"FYe’ +V/'FYe]

- e

unit vectors



Examples: Omega-
deformed SW action
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Application: derive Omega-deformed Seiberg-Witten
Lagrangian (eff. low energy action)
Use M-theory lift of fluxtrap BG.

Classical computation yields quantum result.

Embed M5-brane into fluxtrap BG.
Self-dual three-form on the brane.

Still wrapped on a Riemann surface at linear order.

Take vector and scalar equations of motion in 6d (not
from an action!).

Integrate equations over Riemann surface.

4d equations of motion are Euler-Lagrange equations of an
action.

This action reduces to the Seiberg-Witten action in the
undeformed case.

Captures all orders of the 4D gauge theory.



Omega-deformed SW

Start with type lIA set-up of D4- and NS5-branes:

O 23 e T s 9

fluxtrap €1 €9 €3 V20 I 0
NS5 XA TP XX
Dy P SR R G X

Non-abelian generalization of bosonic world-volume
action for D4-branes suspended between NS5-branes
in fluxtrap BG:

S i | 1 EREaE Sy T
2Dy = 72 I [ZFMVFW/ T §(DM P+ §Fu/\U ) (D, @+ iFupU )

1 —12 1 L3 —\)2

— 2le, @) + 3 (0" Dule - 2))?]

Lifts to single M5 extended in 2, ..., z° and wrapping a 2-

cycle in =% 2%, 27, x'".

Choose embedding preserving same susy as in type llA.



&) Omega-deformed SW

Want to describe the low energy dynamics of the
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a

Riemann surface over R*
- for each point in R* we have the same Riemann

surface as above, but with a different value of the
modulus u.
The modulus u of the Riemann surface is a function of the
worldvolume coordinates and the embedding is still
formally defined by the same equation:
0s

s =s(zlu(z"))  0us(zlu(z")) = 0 u—

ou

: 6 11110
z =2 +ix” S=IT +1Z



o) Omega-deformed SV

selfdual 3-form, encodes pull-back of bulk 3Tform,
fluctuations of 4d gauge ﬁeld\d‘q) T id*Gég/source for fluctuations

Want to relate @ to 4d gauge field: only components
(M?V7Z)7 (M7V7Z)

Ansatz: I
o = g]-“,“, dz” A dz” Adz + gﬁ,w dzt A da” A dz
1 1 =) oy T — g 1%
A ERERE S!GWW (8 SO05kFysr —0"50s ﬁzfm) dax Adz” A dz?f.

antiselfdual 2-form

*4f723—]?, *4ﬁi:.f
scalar field

= a dap O\ sw
a= o Asw, ap = ¢ Asw , URwaRr pa; A=
A B a /' Ou

holomorphic |-form on Riemann surface

holomorphic fn

ai|
i
ﬁ;’/ds<d“) A, VBRSNS a—]{x
A

T da v dda du



&) Omega-deformed SW

Integration over the Riemann surface of the 6d e.o.m.
results in the 4d e.o.m. for the Omega-deformed SW

theory: The 3-form on the brane is the (generalized)

Vector equation: pullback of the 3-form in the bulk.

A

\Cm e [aqu/ un % Opla+ a)wu + % Opla — a)*djw}
o @ e [Flﬂ/_l_ % (a_a)*djw} =Olo ) [* pv T+ % (a_a)@ﬂl/} =0
Scalar equations: The M5 brane is a (generalized) minimal surface.

dr
(r—7)0,0,0+ 0,a0,T + 2£ CE A e PR )
dn LU T
—|—4£ (a—a)w, Fu —4(71—T)w,, Fu =0,
+ - Y B EPS 5
G SO O RATA =S (RN G e= 2@ Wan gy s dEall sl
dr LT B
+4@ (a—a)w, Fu, —4(t—T)w,;, Fu =0.

Consistent result justifies earlier assumptions about foliation
structure, form of fluctuations and integration measure.



&) Omega-deformed SW

The vector and scalar e.o.m. are the Euler-Lagrange
equations of the following Lagrangian:

generalized covariant derivative for the scalar a,
non minimal coupling to the gauge field.

\
% = — (1 — Tyj) |3 (Oue’ +2 (ﬁ)k ‘FE U, ) (aﬂaﬂ =8 (#)ﬂ *FL,,*U,,)
+ (i, + 5 (o' — @) *ow) (F, + 3 (7 — @) wm
+ (1 + 1) (Fhu 4 3 (0 = @) "0) (Fla + (00 - ) 6,0)

shift in the gauge field strength aeaty

For ¢ =0, this reproduces the Seiberg-Witten Lagrangian.

Independent of compactification radius to A, which is

related to gauge coupling in 4d — quantum result (all
orders). True for any Riemann surface.






@)

it Summary

Constructed the fluxtrap background in string theory.
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it Summary
Can be lifted to M-theory: M-theory Fluxtrap
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Summary

The fluxtrap construction has a variety of uses/applications.
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It captures the gauge theories with twisted masses of the
2d gauge/Bethe correspondence. arXiv:1106.0279
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We can construct the N=2* theory.
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Construct gravity duals of deformed N=4 SYM



Summary

It captures the Omega-deformed gauge theories of the 4d
gauge/Bethe correspondence. arXiv:1204.4192
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Summary

Can also construct Omega-deformed N=1| gauge theory.
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Summary

Derive Omega-deformed Seiberg-Witten Lagrangian and
its S-dual arXiv:1304.3488
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il Summary

Use M-theory lift of fluxtrap BG, embed M5-brane, reduce
6d e.o.m. on Riemann surface.

The resulting 4d e.o.m. for the scalar and vector fields are
Euler-Lagrange equations for a 4d action: Omega-deformed
Seiberg-Witten Lagrangian!

Classical M-theory calculation yields quantum result,
captures all orders of 4d gauge theory.
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Summary

Starting point for understanding string theory formulation
of AGT correspondence. arXiv:1210.7805

Reduce

string theory

FT Reduce
+T

Reduce

topological Reduce

string theory

gayge theory N w

N=2*

\real masses | N‘=11dse\f(-M i f_!-def.
N=(8,8) w. ! ! S-dual of DasiSie
tw. masses Q-def. reciproc. Q-def. SW
N=(2,2) w. ! N=2 SYM gauge th.
tw. masses ' Q-def.
i 'N=4 SYM !
2d ! 3d 4d ! 5d


http://arXiv.org/abs/arXiv:1210.7805
http://arXiv.org/abs/arXiv:1210.7805

Summary

Connection to topological string theory.
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Summary

The fluxtrap construction allows us to study different
gauge theories of interest via string theoretic methods.

Omega deformation and (twisted) mass deformations
have same origin in string theory.

The construction gives a geometrical interpretation for
the Omega BG and its properties, such as localization etc.

Understanding of relation between deformation
parameters and quantization of spectral curve.



Outlook

The area of N = 2 supersymmetric gauge theories and
their connections to integrable models is a powerful

laboratory to understand more realistic theories and holds
great potential.

Use string theoretic fluxtrap construction of deformed
supersymmetric gauge theory as a unifying paradigm.

Open questions:

- string-theoretical realization of the AGT correspondence
- identify BPS states in the AGT correspondence and in
the Nekrasov/Shatashvili limit

- Topological string theory from the fluxtrap BG

- Geometric representation theory and gauge theories

- construct gravity duals to deformed gauge theories



Thank you for your
attention!



