Symmetries of black holes and index theory

George Papadopoulos

King's College London

Geometry of Strings and Fields Conference

GGI, 8-13 September 2013

Based on J. Grover, J. B. Gutowski, GP, and W. A. Sabra arXiv:1303.0853; J. B. Gutowski, GP, arXiv:1303.0869; U. Gran, J. B. Gutowski, GP, arXiv:1306.5765

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	000000	0

Horizon symmetry enhancement

 Conjecture 1: The number of Killing (parallel) spinors N of smooth horizons is

 $N = 2N_{-} + \operatorname{Index}(D_E)$

where $N_{-} \ge 0$, D_E is a Dirac operator twisted by *E* defined on the horizon sections *S*. *E* depends on the gauge symmetries of supergravity.

► Conjecture 2: Smooth horizons with non-trivial fluxes and $N_{-} \neq 0$ admit a $\mathfrak{sl}(2, \mathbb{R})$ symmetry subalgebra

The conjectures have been proved in the following cases.

 D=5 minimal gauged, D=11, IIB, heterotic and IIA (in progress) supergravities.

Horizons	M-horizons	IIB-horizons	Summary
O●OOOOO	000000000	000000	O
Remarks			

- ► If the index vanishes, which is the case for non-chiral theories, then *N* is even. In particular for all odd dimensional horizons, *N* is even.
- \blacktriangleright The horizons of all non-chiral theories have a $\mathfrak{sl}(2,\mathbb{R})$ symmetry subalgebra
- ► If N₋ = 0, then N = index(D_E) and so the number of Killing spinors is determined by the topology of horizons.

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	000000	0

Symmetry enhancement: Examples and puzzles

Extreme black holes and branes may exhibit symmetry enhancement near the horizons [Gibbons, Townsend]. For example

- ▶ RN black hole has symmetry $\mathbb{R} \oplus \mathfrak{so}(3)$ which near the horizon enhances to $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{so}(3)$, [Carter]
- ▶ M2-brane: Symmetry enhances from $\mathfrak{so}(2,1) \oplus_s \mathbb{R}^3 \oplus \mathfrak{so}(8)$ to $\mathfrak{so}(3,2) \oplus \mathfrak{so}(8)$, [Duff, Stelle]
- ▶ M5-brane: Symmetry enhances from $\mathfrak{so}(5,1) \oplus_s \mathbb{R}^6 \oplus \mathfrak{so}(5)$ to $\mathfrak{so}(6,2) \oplus \mathfrak{so}(5)$, [Güven]
- ► Similarly for three or more intersecting M-branes [Townsend, GP].
- ► NS5-brane: Symmetry does NOT enhance

So why does symmetry enhance in some backgrounds?

Claim: For black holes (super)symmetry enhancement near a horizon is a consequence of smoothness

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	000000	0

Symmetry enhancement: Examples and puzzles

Extreme black holes and branes may exhibit symmetry enhancement near the horizons [Gibbons, Townsend]. For example

- ▶ RN black hole has symmetry $\mathbb{R} \oplus \mathfrak{so}(3)$ which near the horizon enhances to $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{so}(3)$, [Carter]
- ▶ M2-brane: Symmetry enhances from $\mathfrak{so}(2,1) \oplus_s \mathbb{R}^3 \oplus \mathfrak{so}(8)$ to $\mathfrak{so}(3,2) \oplus \mathfrak{so}(8)$, [Duff, Stelle]
- ▶ M5-brane: Symmetry enhances from $\mathfrak{so}(5,1) \oplus_s \mathbb{R}^6 \oplus \mathfrak{so}(5)$ to $\mathfrak{so}(6,2) \oplus \mathfrak{so}(5)$, [Güven]
- ► Similarly for three or more intersecting M-branes [Townsend, GP].
- ► NS5-brane: Symmetry does NOT enhance

So why does symmetry enhance in some backgrounds?

Claim: For black holes (super)symmetry enhancement near a horizon is a consequence of smoothness

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	000000	0

Symmetry enhancement: Examples and puzzles

Extreme black holes and branes may exhibit symmetry enhancement near the horizons [Gibbons, Townsend]. For example

- ▶ RN black hole has symmetry $\mathbb{R} \oplus \mathfrak{so}(3)$ which near the horizon enhances to $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{so}(3)$, [Carter]
- ▶ M2-brane: Symmetry enhances from $\mathfrak{so}(2,1) \oplus_s \mathbb{R}^3 \oplus \mathfrak{so}(8)$ to $\mathfrak{so}(3,2) \oplus \mathfrak{so}(8)$, [Duff, Stelle]
- ▶ M5-brane: Symmetry enhances from $\mathfrak{so}(5,1) \oplus_s \mathbb{R}^6 \oplus \mathfrak{so}(5)$ to $\mathfrak{so}(6,2) \oplus \mathfrak{so}(5)$, [Güven]
- ► Similarly for three or more intersecting M-branes [Townsend, GP].
- ► NS5-brane: Symmetry does NOT enhance

So why does symmetry enhance in some backgrounds?

 Claim: For black holes (super)symmetry enhancement near a horizon is a consequence of smoothness

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	0

Consequences and Applications

- The existence of higher dimensional black holes with exotic topologies and geometries Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, R) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	000000	O
Consequences and A	oplications		

 The existence of higher dimensional black holes with exotic topologies and geometries

Asymptotically *AdS*₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]

- ► Microscopic counting of entropy for black holes The presence of sl(2, R) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	O
Consequences an	d Applications		

- ► The existence of higher dimensional black holes with exotic topologies and geometries Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, R) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
000●000	00000000	000000	O
Consequences and	Applications		

- The existence of higher dimensional black holes with exotic topologies and geometries
 Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, R) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
000●000	00000000	000000	O
Consequences and	Applications		

- ► The existence of higher dimensional black holes with exotic topologies and geometries Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, ℝ) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
000●000	00000000	000000	O
Consequences and	Applications		

- ► The existence of higher dimensional black holes with exotic topologies and geometries Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, ℝ) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
000●000	00000000	000000	O
Consequences and	Applications		

- ► The existence of higher dimensional black holes with exotic topologies and geometries Asymptotically AdS₅ rings in minimal 5d gauged supergravity have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]
- ► Microscopic counting of entropy for black holes The presence of sl(2, ℝ) justifies the use of conformal mechanics in entropy counting.
- ► AdS/CFT: Provides a new method to classify all *AdS* backgrounds in supergravity.
- Geometry: A generalization of Lichnerowicz theorem for connections with GL holonomy.

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	0

Parallel spinors and topology

The number of parallel spinors N_p of 8-d manifolds with holonomy strictly Spin(7), SU(4), Sp(2) and $\times^2 Sp(1)$ is

$$N_p = \operatorname{index}(D) = \frac{1}{5760}(-4p_2 + 7p_1^2)$$

for $N_p = 1, 2, 3, 4$, respectively. Proof: Use the identity $D^2 = \nabla^2 - \frac{1}{4}R$ to establish the Lichnerowicz formula

$$\int \parallel D\epsilon \parallel^2 = \int \parallel \nabla\epsilon \parallel^2 + \frac{1}{4} \int R \parallel \epsilon \parallel^2$$

Since for *Spin*(7), *SU*(4), *Sp*(2) and $\times^2 Sp(1)$ manifolds, R = 0, and ker $D^{\dagger} = \{0\}$, then all zero modes of the Dirac operator *D* are ∇ -parallel and

 $N_p = \dim \operatorname{Ker}(D) - 0 = \dim \operatorname{Ker}(D) - \dim \operatorname{Ker}(D^{\dagger}) = \operatorname{index}(D)$

it is possible to test whether manifolds with given Pontryagin classes admit a given number of parallel (Killing) spinors!

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	0

Parallel spinors and topology

The number of parallel spinors N_p of 8-d manifolds with holonomy strictly Spin(7), SU(4), Sp(2) and $\times^2 Sp(1)$ is

$$N_p = \operatorname{index}(D) = \frac{1}{5760}(-4p_2 + 7p_1^2)$$

for $N_p = 1, 2, 3, 4$, respectively. Proof: Use the identity $D^2 = \nabla^2 - \frac{1}{4}R$ to establish the Lichnerowicz formula

$$\int \parallel D\epsilon \parallel^2 = \int \parallel \nabla\epsilon \parallel^2 + \frac{1}{4} \int R \parallel \epsilon \parallel^2$$

Since for *Spin*(7), *SU*(4), *Sp*(2) and $\times^2 Sp(1)$ manifolds, R = 0, and ker $D^{\dagger} = \{0\}$, then all zero modes of the Dirac operator *D* are ∇ -parallel and

 $N_p = \dim \operatorname{Ker}(D) - 0 = \dim \operatorname{Ker}(D) - \dim \operatorname{Ker}(D^{\dagger}) = \operatorname{index}(D)$

it is possible to test whether manifolds with given Pontryagin classes admit a given number of parallel (Killing) spinors!

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	0

Parallel spinors and topology

The number of parallel spinors N_p of 8-d manifolds with holonomy strictly Spin(7), SU(4), Sp(2) and $\times^2 Sp(1)$ is

$$N_p = \operatorname{index}(D) = \frac{1}{5760}(-4p_2 + 7p_1^2)$$

for $N_p = 1, 2, 3, 4$, respectively. Proof: Use the identity $D^2 = \nabla^2 - \frac{1}{4}R$ to establish the Lichnerowicz formula

$$\int \parallel D\epsilon \parallel^2 = \int \parallel \nabla\epsilon \parallel^2 + \frac{1}{4} \int R \parallel \epsilon \parallel^2$$

Since for *Spin*(7), *SU*(4), *Sp*(2) and $\times^2 Sp(1)$ manifolds, R = 0, and ker $D^{\dagger} = \{0\}$, then all zero modes of the Dirac operator *D* are ∇ -parallel and

 $N_p = \dim \operatorname{Ker}(D) - 0 = \dim \operatorname{Ker}(D) - \dim \operatorname{Ker}(D^{\dagger}) = \operatorname{index}(D)$

it is possible to test whether manifolds with given Pontryagin classes admit a given number of parallel (Killing) spinors!

Horizons	M-horizons	IIB-horizons	Summary O

Horizon metric

Near a smooth Killing horizon a coordinate system can be adapted such that the metric is [Isenberg, Moncrief; Friedrich, et al]

 $ds^{2} = 2du[dr + rh_{I}(r, y)dy^{I} + rf(r, y)du] + \gamma_{IJ}(y, r)dy^{I}dy^{J}$

Assuming analyticity in r, and for an extreme black hole,

f(0, y) = 0

a near horizon limit can be defined leading to a near horizon metric

$$ds^{2} = 2du[dr + r h_{I}dy^{I} + r^{2} \Delta du] + \gamma_{IJ}dy^{I}dy^{J}$$

where

$$h_I = h_I(0, y)$$
, $\Delta = \partial_r f|_{r=0}$, $\gamma_{IJ} = \gamma_{IJ}(0, y)$

	ary
000000● 00000000 000000 0	

► The near horizon metric has two isometries generated by translations in *u* and the scale transformation

 $u \to \ell^{-1} u$, $r \to \ell r$

The two Killing vectors

 ∂_u , $-u\partial_u + r\partial_r$

do not commute. The algebra of isometries is **NOT** $\mathfrak{sl}(2,\mathbb{R})$

- The Gaussian null coordinate system can be adapted in the presence of other fields like Maxwell and k-form gauge potentials
- The co-dimension 2 space given by u = r = 0 is the horizon section, S, and it is required to be compact without boundary.

Horizons	M-horizons	IIB-horizons	Summary
0000000	●00000000	000000	0

M-horizons

The near horizon fields of D=11 supergravity are

$$ds^{2} = 2\mathbf{e}^{+}\mathbf{e}^{-} + \delta_{ij}\mathbf{e}^{i}\mathbf{e}^{j} = 2du(dr + rh - \frac{1}{2}r^{2}\Delta du) + d\tilde{s}^{2}(S) ,$$

$$F = \mathbf{e}^{+} \wedge \mathbf{e}^{-} \wedge Y + r\mathbf{e}^{+} \wedge d_{h}Y + X , \quad d_{h}Y = dY - h \wedge Y ,$$

where

$$\mathbf{e}^+ = du$$
, $\mathbf{e}^- = dr + rh - \frac{1}{2}r^2\Delta du$, $\mathbf{e}^i = e^i{}_J dy^J$

The steps in the proof are as follows.

- Integration of KSEs along the lightcone directions r, u
- Independent KSEs on \mathcal{S}
- Horizon Dirac equations
- Two Lichnerowicz type of theorems
- Index and number of Killing spinors

Horizons	M-horizons	IIB-horizons	Summary
000000	0000000	000000	0

Integrability of KSEs along the lightcone

The KSEs are

$$\mathcal{D}_{M}\epsilon = \nabla_{M}\epsilon - \left(\frac{1}{288}\Gamma_{M}^{L_{1}L_{2}L_{3}L_{4}}F_{L_{1}L_{2}L_{3}L_{4}} - \frac{1}{36}F_{ML_{1}L_{2}L_{3}}\Gamma^{L_{1}L_{2}L_{3}}\right)\epsilon = 0$$

These can be integrated along to lightcone directions to give

 $\epsilon = \epsilon_+ + \epsilon_- , \quad \Gamma_\pm \epsilon_\pm = 0 ,$

with

$$\epsilon_+ = \eta_+, \qquad \epsilon_- = \eta_- + r\Gamma_-\Theta_+\eta_+,$$

and

$$\eta_+ = \phi_+ + u\Gamma_+\Theta_-\phi_-, \qquad \eta_- = \phi_- ,$$

where

$$\Theta_{\pm} = \left(rac{1}{4}h_i\Gamma^i + rac{1}{288}X_{\ell_1\ell_2\ell_3\ell_4}\Gamma^{\ell_1\ell_2\ell_3\ell_4} \pm rac{1}{12}Y_{\ell_1\ell_2}\Gamma^{\ell_1\ell_2}
ight),$$

and $\phi_{\pm} = \phi_{\pm}(y)$ do not depend on *r* or *u*.

Horizons	M-horizons	IIB-horizons	Summary
000000	0000000	000000	0

Independent KSEs

The integration along the lightcone directions has two consequences. First after using the field equations and Bianchi identities, the remaining independent KSEs are

$$\nabla_i^{(\pm)}\phi_{\pm} \equiv \tilde{\nabla}_i\phi_{\pm} + \Psi_i^{(\pm)}\phi_{\pm} = 0 ,$$

where

$$\begin{split} \Psi_i^{(\pm)} &= \mp \frac{1}{4} h_i - \frac{1}{288} \Gamma_i^{\ell_1 \ell_2 \ell_3 \ell_4} X_{\ell_1 \ell_2 \ell_3 \ell_4} + \frac{1}{36} X_{i \ell_1 \ell_2 \ell_3} \Gamma^{\ell_1 \ell_2 \ell_3} \\ &\pm \frac{1}{24} \Gamma_i^{\ell_1 \ell_2} Y_{\ell_1 \ell_2} \mp \frac{1}{6} Y_{ij} \Gamma^j \,, \end{split}$$

and $\tilde{\nabla}$ the Levi-Civita connection of S.

Second, if ϕ_{-} is a solution, $\nabla_{i}^{(-)}\phi_{-}=0$, then

$$abla_i^{(+)} \phi'_+ = 0 , \quad \phi'_+ = \Gamma_+ \Theta_- \phi_-$$

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	000000	0

Horizon Dirac operators

The associated horizon Dirac operators are

$$\mathcal{D}^{(\pm)}\phi_{\pm} = \Gamma^i \tilde{\nabla}_i \phi_{\pm} + \Psi^{(\pm)} \phi_{\pm} = 0 ,$$

where

$$\Psi^{(\pm)} = \Gamma^i \Psi_i^{(\pm)} = \mp \frac{1}{4} h_\ell \Gamma^\ell + \frac{1}{96} X_{\ell_1 \ell_2 \ell_3 \ell_4} \Gamma^{\ell_1 \ell_2 \ell_3 \ell_4} \pm \frac{1}{8} Y_{\ell_1 \ell_2} \Gamma^{\ell_1 \ell_2} .$$

Clearly,

$$abla_i^{(\pm)}\phi_{\pm} = 0 \Longrightarrow \mathcal{D}^{(\pm)}\phi_{\pm} = 0$$

The converse is also true, ie

$$\nabla_i^{(\pm)}\phi_{\pm} \Longleftrightarrow \mathcal{D}^{(\pm)}\phi_{\pm} = 0$$

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	000000	0
A maximum principl	e		

The proof of converse for the $\mathcal{D}^{(+)}$ operator relies on the formula that if $\mathcal{D}^{(+)}\phi_+=0$, then

$$\tilde{\nabla}^i \tilde{\nabla}_i \parallel \phi_+ \parallel^2 - h^i \tilde{\nabla}_i \parallel \phi_+ \parallel^2 = 2 \langle \tilde{\nabla}^{(+)i} \phi_+, \tilde{\nabla}^{(+)}_i \phi_+ \rangle .$$

Using the maximum principle for the function $\| \phi_+ \|^2$ based on the compactness of S, one concludes that

$$ilde{
abla}_{i}^{(+)}\phi_{+} = 0 \;, \;\; \parallel \phi_{+} \parallel^{2} = {
m const} \;.$$

which gives the proof of a Lichnerowicz type of theorem for $\mathcal{D}^{(+)}$

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000●000	000000	O
	 $\mathbf{r} = \mathbf{r}(\mathbf{r})$		

A Lichnerowicz Theorem for $\mathcal{D}^{(-)}$

This is based on a partial integration formula,

$$\int_{\mathcal{S}} \| \mathcal{D}^{(-)}\phi_{-} \|^{2} = \int_{\mathcal{S}} \| \tilde{\nabla}^{(-)}\phi_{-} \|^{2} + \int_{\mathcal{S}} \langle \mathcal{B}\phi_{-}, \mathcal{D}^{(-)}\phi_{-} \rangle$$

+ FEs, BI, surf. terms

where \mathcal{B} depends on the fluxes and one of the FEs is

$$\begin{split} \tilde{R}_{ij} + \tilde{\nabla}_{(i}h_{j)} - \frac{1}{2}h_{i}h_{j} &= -\frac{1}{2}Y_{i\ell}Y_{j}^{\ell} + \frac{1}{12}X_{i\ell_{1}\ell_{2}\ell_{3}}X_{j}^{\ell_{1}\ell_{2}\ell_{3}} \\ &+ \delta_{ij}\bigg(\frac{1}{12}Y_{\ell_{1}\ell_{2}}Y^{\ell_{1}\ell_{2}} - \frac{1}{144}X_{\ell_{1}\ell_{2}\ell_{3}\ell_{4}}X^{\ell_{1}\ell_{2}\ell_{3}\ell_{4}}\bigg) \,, \end{split}$$

The surface terms vanish because S is compact without boundary. So if the field equations and Bianchi identities are satisfied, then all zero modes of $\mathcal{D}^{(-)}$ are $\tilde{\nabla}^{(-)}$ -parallel.

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	000000	0

Index and supersymmetry

The spin bundle splits $S = S_+ \oplus S_-$ on S with respect to Γ_{\pm} , and $\mathcal{D}^{(+)}$: $\Gamma(S_+) \to \Gamma(S_+)$ and its adjoint $(\mathcal{D}^{(+)})^{\dagger}$: $\Gamma(S_+) \to \Gamma(S_+)$. $\mathcal{D}^{(+)}$ has the same principal symbol as the Dirac operator and $\operatorname{Index}(\mathcal{D}^{(+)}) = 0$ as $\dim S = 9$. Thus

 $\dim \ker \mathcal{D}^{(+)} = \dim \ker (\mathcal{D}^{(+)})^{\dagger} .$

Then
$$(\mathcal{D}^{(+)})^{\dagger}\Gamma_{+} = \Gamma_{+}\mathcal{D}^{(-)}$$
 and so
$$\dim \ker(\mathcal{D}^{(+)})^{\dagger} = \dim \ker \mathcal{D}^{(-)}$$

Thus

$$\dim \ker \mathcal{D}^{(+)} = \dim \ker \mathcal{D}^{(-)} .$$

The number of supersymmetries of a near horizon geometry is the number of parallel spinors of $\nabla^{(\pm)}$ and so from the Lichnerowicz theorems and the index

$$N = \dim \ker \mathcal{D}^{(+)} + \dim \ker \mathcal{D}^{(-)} = 2 \dim \ker \mathcal{D}^{(-)} = 2N_{-}.$$

This proves that the number of supersymmetries preserved by M-horizon geometries is even.

Horizons	M-horizons	IIB-horizons	Summary
000000	000000000	000000	0

Construction of ϕ_+ spinors from ϕ_- spinors

Recall that if $\nabla^{(-)}\phi_{-} = 0$, then

$$abla^{(+)}\phi_+ = 0 \ , \ \ \phi_+ = \Gamma_+\Theta_-\phi_- \ .$$

To find a second supersymmetry, $\phi_+ \neq 0$. Indeed after a partial integration argument and some use of the maximum principle

 $\operatorname{Ker} \Theta_{-} \neq \{0\} \Longleftrightarrow F = 0, h = \Delta = 0$

So if Ker $\Theta_{-} \neq \{0\}$, the near horizon geometries have vanishing fluxes and are products $\mathbb{R}^{1,1} \times S^1 \times X^8$, where X^8 has holonomy contained in *Spin*(7).

► For horizons with non-trivial fluxes if $\phi_{-} \neq 0$, then $\phi_{+} = \Gamma_{+}\Theta_{-}\phi_{-} \neq 0$

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000●	000000	O

$\mathfrak{sl}(2,\mathbb{R})$ symmetry

Every near horizon geometry with non-trivial fluxes admits at least two Killing spinors given by

 $\epsilon_1 = \epsilon(\phi_-, 0) , \quad \epsilon_2 = \epsilon(\phi_-, \phi_+) , \quad \phi_+ = \Gamma_+ \Theta_- \phi_-$

These give rise to 3 Killing vector bi-linears given by

$$\begin{split} K_1 &= -2u \| \phi_+ \|^2 \partial_u + 2r \| \phi_+ \|^2 \partial_r + V^i \tilde{\partial}_i , \\ K_2 &= -2 \| \phi_+ \|^2 \partial_u , \\ K_3 &= -2u^2 \| \phi_+ \|^2 \partial_u + (2 \| \phi_- \|^2 + 4ru \| \phi_+ \|^2) \partial_r + 2u V^i \tilde{\partial}_i , \end{split}$$

where V is a Killing vector on S which leaves all the data invariant. They satisfy the $\mathfrak{sl}(2,\mathbb{R})$ Lie algebra

 $[K_1, K_2] = 2 \parallel \phi_+ \parallel^2 K_2, \quad [K_2, K_3] = -4 \parallel \phi_+ \parallel^2 K_1, \quad [K_3, K_1] = 2 \parallel \phi_+ \parallel^2 K_3.$

• If V = 0, the near horizon geometries of M-theory are $AdS_2 \times_w S$

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	••••••	O

IIB horizons

There are two significant differences in the investigation of M-horizons and IIB horizons

- ► The IIB supergravity has an algebraic KSE, the dilatino KSE
- The index of the Dirac operator on even-dimensional manifolds may not vanish

Nevertheless, the proof of the conjecture for IIB horizons proceeds along similar lines to that of M-horizons. In particular,

- the KSEs can be integrated along the lightcone by writing $\epsilon = \epsilon_{-} + \epsilon_{+}, \Gamma_{\pm}\epsilon_{\pm} = 0$
- ► the independent KSEs are those which arise from the naive restrictions of the KSEs of IIB supergravity on S
- there are Lichnerowicz type of theorems for the horizon Dirac operators
- ▶ the number of supersymmetries is given by an index formula

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	00000	0

Independent KSEs

After integration along the lightcone, the independent KSEs are

$$abla_i^{(\pm)} \phi_{\pm} = ilde{
abla}_i \phi_{\pm} + \Psi_i^{(\pm)} \phi_{\pm} = 0 \ , \ \ \mathcal{A}^{(\pm)} \phi_{\pm} = 0$$

where

$$\begin{split} \Psi_i^{(\pm)} &= -\frac{i}{2}\Lambda_i \mp \frac{1}{4}h_i \mp \frac{i}{4}Y_{i\ell_1\ell_2}\Gamma^{\ell_1\ell_2} \mp \frac{i}{12}\Gamma_i^{\ell_1\ell_2\ell_3}Y_{\ell_1\ell_2\ell_3} \\ &+ \bigg(\pm \frac{1}{16}\Gamma_i^{j}\Phi_j \mp \frac{3}{16}\Phi_i - \frac{1}{96}\Gamma_i^{\ell_1\ell_2\ell_3}H_{\ell_1\ell_2\ell_3} + \frac{3}{32}H_{i\ell_1\ell_2}\Gamma^{\ell_1\ell_2}\bigg)C^* \,, \end{split}$$

and

$${\cal A}^{(\pm)} = \mp {1\over 4} \Phi_i \Gamma^i + {1\over 24} H_{\ell_1 \ell_2 \ell_3} \Gamma^{\ell_1 \ell_2 \ell_3} + \xi_i \Gamma^i C * \; .$$

One can also define the horizon Dirac operators

$$\mathcal{D}^{(\pm)} = \Gamma^i \nabla_i^{(\pm)}$$

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	00000	0

A maximum principle

One can show

 $abla_i^{(+)}\phi_+=0\,,\quad \mathcal{A}^{(+)}\phi_+=0 \Longleftrightarrow \mathcal{D}^{(+)}\phi_+=0$

Assuming $\mathcal{D}^{(+)}\phi_+ = 0$, one has

 $\tilde{\nabla}^{i}\tilde{\nabla}_{i} \parallel \phi_{+} \parallel^{2} -h^{i}\tilde{\nabla}_{i} \parallel \phi_{+} \parallel^{2} = 2 \parallel \nabla^{(+)}\phi_{+} \parallel^{2} + \parallel \mathcal{A}^{(+)}\phi_{+} \parallel^{2} .$

Then the maximum principle implies that ϕ_+ is Killing and

 $\| \phi_+ \|^2 = \text{const}$

Horizons	M-horizons	IIB-horizons	Summary
000000	00000000	000000	0

A Lichnerowicz Theorem

Similarly,

$$abla_i^{(-)}\phi_-=0\ ,\quad {\cal A}^{(-)}\phi_-=0 \Longleftrightarrow {\cal D}^{(-)}\phi_-=0$$

Based on the formula

$$\int_{\mathcal{S}} \| \mathcal{D}^{(-)}\phi_{-} \|^{2} = \int_{\mathcal{S}} \| \tilde{\nabla}^{(-)}\phi_{-} \|^{2} + \frac{1}{2} \int_{\mathcal{S}} \| \mathcal{A}^{(-)}\phi_{-} \|^{2} + \int_{\mathcal{S}} \langle \mathcal{B}\phi_{-}, \mathcal{D}^{(-)}\phi_{-} \rangle + \text{FEs, BI, ST}$$

where \mathcal{B} depends on the fluxes.

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	○○○○●○	O

Index and supersymmetry

Therefore the number of supersymmetries of a IIB horizon is

 $N = \dim \operatorname{Ker}(\mathcal{D}^{(+)}) + \dim \operatorname{Ker}(\mathcal{D}^{(-)})$

On the other hand, it can be shown that

$$\dim \operatorname{Ker}(\mathcal{D}^{(+)}) - \dim \operatorname{Ker}(\mathcal{D}^{(-)}) = 2\operatorname{Index}(D_{\lambda}) ,$$

where D_{λ} is the Dirac operator twisted with λ the line bundle of IIB scalars.

Thus

 $N = 2\operatorname{Ker}(\mathcal{D}^{(-)}) + 2\operatorname{Index}(D_{\lambda}) = 2N_{-} + 2\operatorname{Index}(D_{\lambda})$

> All IIB horizons admit even number of supersymmetries

Horizons	M-horizons	IIB-horizons	Summary
0000000	00000000	00000●	O
$\mathfrak{sl}(2,\mathbb{R})$ symmetry			

If $N_{-} \neq 0$ for every zero mode of $\mathcal{D}^{(-)}$ there is a zero mode of $\mathcal{D}^{(+)}$ given by

$$\phi_+ = \Gamma_+ \Theta_- \phi_-$$

and $\phi_+ \neq 0$ if the background has non-trivial fluxes.

This gives rise to two linearly independent Killing spinors on IIB horizons determined by the pairs $(\phi_-, 0)$ and (ϕ_-, ϕ_+)

In turn, the two Killing spinors give rise to 3 vectors K_1, K_2 and K_3 which leave invariant all fields and satisfy a $\mathfrak{sl}(2, \mathbb{R})$ algebra

► All IIB horizons with non-trivial fluxes and $N_{-} \neq 0$ admit a $\mathfrak{sl}(2, \mathbb{R})$ symmetry

Horizons	M-horizons	IIB-horizons	Summary
0000000	000000000	000000	•
Summary			

- ► Black hole horizons of non-chiral supergravity theories with non-trivial fluxes exhibit an sl(2, R) symmetry and preserve even number supersymmetries. This is a consequence of smoothness of black hole horizons
- For chiral supergravity theories, the number of supersymmetries of horizons can be expressed in terms of the index of a Dirac operator. For horizons with non-trivial fluxes and N_− ≠ 0 also admit a sl(2, ℝ) symmetry subalgebra. Again this is a consequence of smoothness of horizons.
- Applications to geometry include the proof of new Lichnerowicz type of theorems for GL connections.