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Horizon symmetry enhancement

I Conjecture 1: The number of Killing (parallel) spinors N of
smooth horizons is

N = 2N− + Index(DE)

where N− ≥ 0, DE is a Dirac operator twisted by E defined on the
horizon sections S. E depends on the gauge symmetries of
supergravity.

I Conjecture 2: Smooth horizons with non-trivial fluxes and
N− 6= 0 admit a sl(2, R) symmetry subalgebra

The conjectures have been proved in the following cases.

I D=5 minimal gauged, D=11, IIB, heterotic and IIA (in progress)
supergravities.
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Remarks

I If the index vanishes, which is the case for non-chiral theories,
then N is even. In particular for all odd dimensional horizons, N
is even.

I The horizons of all non-chiral theories have a sl(2, R) symmetry
subalgebra

I If N− = 0, then N = index(DE) and so the number of Killing
spinors is determined by the topology of horizons.
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Symmetry enhancement: Examples and puzzles

Extreme black holes and branes may exhibit symmetry enhancement
near the horizons [Gibbons, Townsend]. For example

I RN black hole has symmetry R⊕ so(3) which near the horizon
enhances to sl(2, R)⊕ so(3) , [Carter]

I M2-brane: Symmetry enhances from so(2, 1)⊕s R3 ⊕ so(8) to
so(3, 2)⊕ so(8) , [Duff, Stelle]

I M5-brane: Symmetry enhances from so(5, 1)⊕s R6 ⊕ so(5) to
so(6, 2)⊕ so(5) , [Güven]

I Similarly for three or more intersecting M-branes [Townsend, GP].
I NS5-brane: Symmetry does NOT enhance

So why does symmetry enhance in some backgrounds?

I Claim: For black holes (super)symmetry enhancement near a
horizon is a consequence of smoothness
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Consequences and Applications

These results can be applied in a variety of problems

I The existence of higher dimensional black holes with exotic
topologies and geometries
Asymptotically AdS5 rings in minimal 5d gauged supergravity
have been ruled out! [Grover, Gutowski, GP, Sabra; Grover, Gutowski, Sabra]

I Microscopic counting of entropy for black holes
The presence of sl(2, R) justifies the use of conformal mechanics
in entropy counting.

I AdS/CFT: Provides a new method to classify all AdS
backgrounds in supergravity.

I Geometry: A generalization of Lichnerowicz theorem for
connections with GL holonomy.
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Parallel spinors and topology

The number of parallel spinors Np of 8-d manifolds with holonomy strictly Spin(7),
SU(4), Sp(2) and ×2Sp(1) is

Np = index(D) =
1

5760
(−4p2 + 7p2

1)

for Np = 1, 2, 3, 4, respectively.
Proof: Use the identity D2 = ∇2 − 1

4 R to establish the Lichnerowicz formula∫
‖ Dε ‖2=

∫
‖ ∇ε ‖2 +

1
4

∫
R ‖ ε ‖2

Since for Spin(7), SU(4), Sp(2) and ×2Sp(1) manifolds, R = 0, and ker D† = {0},
then all zero modes of the Dirac operator D are∇-parallel and

Np = dim Ker(D)− 0 = dim Ker(D)− dim Ker(D†) = index(D)

I it is possible to test whether manifolds with given Pontryagin classes admit a
given number of parallel (Killing) spinors!
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Horizon metric

Near a smooth Killing horizon a coordinate system can be adapted
such that the metric is [Isenberg, Moncrief; Friedrich, et al]

ds2 = 2du[dr + r hI(r, y)dyI + r f (r, y)du] + γIJ(y, r)dyIdyJ

Assuming analyticity in r, and for an extreme black hole,

f (0, y) = 0

a near horizon limit can be defined leading to a near horizon metric

ds2 = 2du[dr + r hIdyI + r2 ∆du] + γIJdyIdyJ

where

hI = hI(0, y) , ∆ = ∂rf |r=0 , γIJ = γIJ(0, y)
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I The near horizon metric has two isometries generated by
translations in u and the scale transformation

u→ `−1u , r → `r

I The two Killing vectors

∂u , −u∂u + r∂r

do not commute. The algebra of isometries is NOT sl(2, R)

I The Gaussian null coordinate system can be adapted in the
presence of other fields like Maxwell and k-form gauge potentials

I The co-dimension 2 space given by u = r = 0 is the horizon
section, S, and it is required to be compact without boundary.



Horizons M-horizons IIB-horizons Summary

M-horizons

The near horizon fields of D=11 supergravity are

ds2 = 2e+e− + δijeiej = 2du(dr + rh− 1
2

r2∆du) + ds̃2(S) ,

F = e+ ∧ e− ∧ Y + re+ ∧ dhY + X , dhY = dY − h ∧ Y ,

where

e+ = du , e− = dr + rh− 1
2

r2∆du , ei = ei
JdyJ

The steps in the proof are as follows.
I Integration of KSEs along the lightcone directions r, u
I Independent KSEs on S
I Horizon Dirac equations
I Two Lichnerowicz type of theorems
I Index and number of Killing spinors
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Integrability of KSEs along the lightcone

The KSEs are

DMε = ∇Mε−
( 1

288
ΓM

L1L2L3L4FL1L2L3L4 −
1

36
FML1L2L3Γ

L1L2L3
)
ε = 0

These can be integrated along to lightcone directions to give

ε = ε+ + ε− , Γ±ε± = 0 ,

with

ε+ = η+, ε− = η− + rΓ−Θ+η+ ,

and

η+ = φ+ + uΓ+Θ−φ−, η− = φ− ,

where

Θ± =

(
1
4

hiΓ
i +

1
288

X`1`2`3`4Γ
`1`2`3`4 ± 1

12
Y`1`2Γ

`1`2

)
,

and φ± = φ±(y) do not depend on r or u.
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Independent KSEs

The integration along the lightcone directions has two consequences.
First after using the field equations and Bianchi identities, the
remaining independent KSEs are

∇(±)
i φ± ≡ ∇̃iφ± + Ψ

(±)
i φ± = 0 ,

where

Ψ
(±)
i = ∓1

4
hi −

1
288

Γi
`1`2`3`4X`1`2`3`4 +

1
36

Xi`1`2`3Γ
`1`2`3

± 1
24

Γi
`1`2Y`1`2 ∓

1
6

YijΓ
j ,

and ∇̃ the Levi-Civita connection of S.

Second, if φ− is a solution,∇(−)
i φ− = 0, then

∇(+)
i φ′+ = 0 , φ′+ = Γ+Θ−φ−
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Horizon Dirac operators

The associated horizon Dirac operators are

D(±)φ± = Γi∇̃iφ± + Ψ(±)φ± = 0 ,

where

Ψ(±) = ΓiΨ
(±)
i = ∓1

4
h`Γ` +

1
96

X`1`2`3`4Γ
`1`2`3`4 ± 1

8
Y`1`2Γ

`1`2 .

Clearly,

∇(±)
i φ± = 0 =⇒ D(±)φ± = 0

The converse is also true, ie

∇(±)
i φ± ⇐⇒ D(±)φ± = 0
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A maximum principle

The proof of converse for the D(+) operator relies on the formula that
if D(+)φ+ = 0, then

∇̃i∇̃i ‖ φ+ ‖2 −hi∇̃i ‖ φ+ ‖2= 2〈∇̃(+)iφ+, ∇̃(+)
i φ+〉 .

Using the maximum principle for the function ‖ φ+ ‖2 based on the
compactness of S, one concludes that

∇̃(+)
i φ+ = 0 , ‖ φ+ ‖2= const .

which gives the proof of a Lichnerowicz type of theorem for D(+)
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A Lichnerowicz Theorem for D(−)

This is based on a partial integration formula,∫
S
‖ D(−)φ− ‖2 =

∫
S
‖ ∇̃(−)φ− ‖2 +

∫
S
〈Bφ−,D(−)φ−〉

+ FEs, BI, surf. terms

where B depends on the fluxes and one of the FEs is

R̃ij + ∇̃(ihj) −
1
2

hihj = −1
2

Yi`Yj
` +

1
12

Xi`1`2`3 Xj
`1`2`3

+ δij

(
1

12
Y`1`2 Y`1`2 − 1

144
X`1`2`3`4 X`1`2`3`4

)
,

The surface terms vanish because S is compact without boundary. So if the
field equations and Bianchi identities are satisfied, then all zero modes of
D(−) are ∇̃(−)-parallel.



Horizons M-horizons IIB-horizons Summary

Index and supersymmetry

The spin bundle splits S = S+ ⊕ S− on S with respect to Γ±, and
D(+) : Γ(S+)→ Γ(S+) and its adjoint (D(+))† : Γ(S+)→ Γ(S+).
D(+) has the same principal symbol as the Dirac operator and Index(D(+)) = 0 as
dimS = 9. Thus

dim kerD(+) = dim ker(D(+))† .

Then (D(+))†Γ+ = Γ+D(−) and so

dim ker(D(+))† = dim kerD(−)

Thus

dim kerD(+) = dim kerD(−) .

The number of supersymmetries of a near horizon geometry is the number of parallel
spinors of∇(±) and so from the Lichnerowicz theorems and the index

N = dim kerD(+) + dim kerD(−) = 2 dim kerD(−) = 2N−.

This proves that the number of supersymmetries preserved by M-horizon geometries
is even.
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Construction of φ+ spinors from φ− spinors

Recall that if∇(−)φ− = 0, then

∇(+)φ+ = 0 , φ+ = Γ+Θ−φ− .

To find a second supersymmetry, φ+ 6= 0. Indeed after a partial
integration argument and some use of the maximum principle

Ker Θ− 6= {0} ⇐⇒ F = 0, h = ∆ = 0

So if Ker Θ− 6= {0}, the near horizon geometries have vanishing
fluxes and are products R1,1 × S1 × X8, where X8 has holonomy
contained in Spin(7).

I For horizons with non-trivial fluxes if φ− 6= 0, then
φ+ = Γ+Θ−φ− 6= 0
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sl(2, R) symmetry

Every near horizon geometry with non-trivial fluxes admits at least two Killing
spinors given by

ε1 = ε(φ−, 0) , ε2 = ε(φ−, φ+) , φ+ = Γ+Θ−φ−

These give rise to 3 Killing vector bi-linears given by

K1 = −2u ‖ φ+ ‖2 ∂u + 2r ‖ φ+ ‖2 ∂r + V i∂̃i ,
K2 = −2 ‖ φ+ ‖2 ∂u ,
K3 = −2u2 ‖ φ+ ‖2 ∂u + (2 ‖ φ− ‖2 +4ru ‖ φ+ ‖2)∂r + 2uV i∂̃i ,

where V is a Killing vector on S which leaves all the data invariant.
They satisfy the sl(2,R) Lie algebra

[K1,K2] = 2 ‖ φ+ ‖2 K2 , [K2,K3] = −4 ‖ φ+ ‖2 K1 , [K3,K1] = 2 ‖ φ+ ‖2 K3 .

I If V = 0, the near horizon geometries of M-theory are AdS2 ×w S
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IIB horizons

There are two significant differences in the investigation of
M-horizons and IIB horizons

I The IIB supergravity has an algebraic KSE, the dilatino KSE
I The index of the Dirac operator on even-dimensional manifolds

may not vanish

Nevertheless, the proof of the conjecture for IIB horizons proceeds
along similar lines to that of M-horizons. In particular,

I the KSEs can be integrated along the lightcone by writing
ε = ε− + ε+, Γ±ε± = 0

I the independent KSEs are those which arise from the naive
restrictions of the KSEs of IIB supergravity on S

I there are Lichnerowicz type of theorems for the horizon Dirac
operators

I the number of supersymmetries is given by an index formula
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Independent KSEs

After integration along the lightcone, the independent KSEs are

∇(±)
i φ± = ∇̃iφ± + Ψ

(±)
i φ± = 0 , A(±)φ± = 0

where

Ψ
(±)
i = − i

2
Λi ∓

1
4

hi ∓
i
4

Yi`1`2 Γ
`1`2 ∓ i

12
Γi

`1`2`3 Y`1`2`3

+

(
± 1

16
Γi

jΦj ∓
3

16
Φi −

1
96

Γi
`1`2`3 H`1`2`3 +

3
32

Hi`1`2 Γ
`1`2

)
C∗ ,

and

A(±) = ∓1
4

ΦiΓ
i +

1
24

H`1`2`3 Γ
`1`2`3 + ξiΓ

iC ∗ .

One can also define the horizon Dirac operators

D(±) = Γi∇(±)
i
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A maximum principle

One can show

∇(+)
i φ+ = 0 , A(+)φ+ = 0⇐⇒ D(+)φ+ = 0

Assuming D(+)φ+ = 0, one has

∇̃i∇̃i ‖ φ+ ‖2 −hi∇̃i ‖ φ+ ‖2= 2 ‖ ∇(+)φ+ ‖2 + ‖ A(+)φ+ ‖2 .

Then the maximum principle implies that φ+ is Killing and

‖ φ+ ‖2= const



Horizons M-horizons IIB-horizons Summary

A Lichnerowicz Theorem

Similarly,

∇(−)
i φ− = 0 , A(−)φ− = 0⇐⇒ D(−)φ− = 0

Based on the formula∫
S
‖ D(−)φ− ‖2 =

∫
S
‖ ∇̃(−)φ− ‖2 +

1
2

∫
S
‖ A(−)φ− ‖2

+

∫
S
〈Bφ−,D(−)φ−〉+ FEs, BI, ST

where B depends on the fluxes.
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Index and supersymmetry

Therefore the number of supersymmetries of a IIB horizon is

N = dim Ker(D(+)) + dim Ker(D(−))

On the other hand, it can be shown that

dim Ker(D(+))− dim Ker(D(−)) = 2Index(Dλ) ,

where Dλ is the Dirac operator twisted with λ the line bundle of IIB
scalars.
Thus

N = 2Ker(D(−)) + 2Index(Dλ) = 2 N− + 2 Index(Dλ)

I All IIB horizons admit even number of supersymmetries
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sl(2, R) symmetry

If N− 6= 0 for every zero mode of D(−) there is a zero mode of D(+)

given by

φ+ = Γ+Θ−φ−

and φ+ 6= 0 if the background has non-trivial fluxes.

This gives rise to two linearly independent Killing spinors on IIB
horizons determined by the pairs (φ−, 0) and (φ−, φ+)

In turn, the two Killing spinors give rise to 3 vectors K1,K2 and K3
which leave invariant all fields and satisfy a sl(2, R) algebra

I All IIB horizons with non-trivial fluxes and N− 6= 0 admit a
sl(2, R) symmetry
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Summary

I Black hole horizons of non-chiral supergravity theories with non-trivial
fluxes exhibit an sl(2,R) symmetry and preserve even number
supersymmetries. This is a consequence of smoothness of black hole
horizons

I For chiral supergravity theories, the number of supersymmetries of
horizons can be expressed in terms of the index of a Dirac operator. For
horizons with non-trivial fluxes and N− 6= 0 also admit a sl(2,R)
symmetry subalgebra. Again this is a consequence of smoothness of
horizons.

I Applications to geometry include the proof of new Lichnerowicz type
of theorems for GL connections.
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