
Chapter 1

The renormalization of the
NN potential

1.1 Introduction

First of all, it is worth to recall some of the basic features of the nucleon-nucleon
(NN) potential VNN , which can be inferred from the experimental data of the
atomic nuclei:

• the VNN is a short range potential. We can consider two major empirical
observations.

First, there is no need to consider the nuclear forces to describe atomic and
molecular physics. Secondly, from the mass number A = 4 on the binding
energy (BE) per nucleon of the atomic nuclei is nearly constant (about
8 MeV/nucleon), and the same feature holds for the nuclear density. A
long-range force would originate a BE per nucleon that increase with A,
as happens for nuclei with A ≤ 4.

• The VNN is attractive in its intermediate range. In fact, the data of the
electron scattering on heavy nuclei are consistent with a nuclear density
about 0.17 fm−3, that is equivalent to a cube about 1.8 fm long.

• The VNN presents a relevant tensor component, that it is needed to explain
the quadrupole and magnetic moment of the deuteron, and providing the
mixing of the S state with the D state.

• The NN potential owns a spin-orbit component, that has no relativistic
origin. This spin-orbit force is responsible of the correct reproduction of
the observed “magic numbers” in the many-nucleon systems.

• The VNN exhibits a strong repulsive behavior in its short range, that
in the momentum-space representation means that its matrix elements
are strogly repulsive in the high-momentum regime. A clear sign of this
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2 CHAPTER 1. THE RENORMALIZATION OF THE NN POTENTIAL

repulsive behavior is the experimental behavior of the 1S0 phase-shifts of
the NN scattering that turn to be negative around Elab = 250 MeV.

It is worth to note that all these feature have been confirmed in some recent
pioneering lattice QCD calculations, where the NN scattering is described in
terms of quark and gluon degrees of freedom.

The main trouble is represented by the strong short-range repulsion, since
it prevents to employ directly realistic NN potentials - able to reproduce the
NN scattering data and describe the deuteron properties -within a many-body
perturbative approach.

As a matter of fact, if we consider the eigenfunction Φ0 of the unperturbed
many-body hamiltonian H0 = T + U , where U is a well-behaved auxiliary
potential, then in the r space should be regular for r → 0 and leading to a
representation like the one in Fig. 1.1.

r0

Φ0

Figure 1.1: The unperturbed wave function Φ0.

If we overlap the Φ0 wave function with the behavior of an hard-core poten-
tial we have a picture like that in Fig. 1.2.

This would mean that the matrix element
∫

Φ∗0VNNΦ0dr diverges, giving
hard time when employing many-body perturbation theory to describe the
physics of the atomic nuclei.

1.2 The Brueckner theory

The short-range repulsion of phenomenological VNN makes highly desirable to
built up an effective potential, whose action on an uncorrelated wave function
Φ0 is equal to the one of the original VNN on the correlated wave function Ψ:

GΦ0 = VNNΨ .

A well-known approach to this problem is the calculation of the Brueckner
reaction matrix G starting from a realistic VNN .
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r0
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VNN

Figure 1.2: The overlap of the hard-core potential VNN and the unperturbed
wave function Φ0.

Let’s give a look how this idea comes out. We would like to calculate the
ground-state energy Egs of a nucleus using the perturbation theory. The hamil-
tonian H of the system may divided in an unperturbed term H0 and an inter-
action term H1 introducing an auxiliary potential U

H = H0 +H1 = (T + U) + (V − U) .

The unperturbed eigenfunctions |Φi0〉 are solutions of the equation

H0|Φi0〉 = Ei0|Φi0〉 .

The lowest unperturbed eigenvalue Egs0 corresponds to a configuration, iden-
tified by the eigenfunction Φgs0 , where all the nucleons fill completely the orbitals
below the Fermi surface. The orbitals are determined by the choice of U , for
example the orbitals of a harmonic-oscillator well.

We want to calculate the ground state energy of the nucleus under consid-
eration using the perturbation theory:

Egs = Egs0 + 〈Φgs0 |H1|Φgs0 〉+ 〈Φgs0 |H1
Q

Egs0 −H0
H1|Φgs0 〉+

+ 〈Φgs0 |H1
Q

Egs0 −H0
H1

Q

Egs0 −H0
H1|Φgs0 〉+ ...

The Pauli projection operator Q =
∑
i 6=gs |Φi0〉〈Φi0| prevents that |Φgs0 〉 be-

longs to the possible intermediate states. The diagrammatic picture of Egs−Egs0

Goldstone expansion is reported in Fig. 1.3, the dashed lines resembling the in-
teraction vertices of VNN and cross sign the insertion of the −U potential.
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Figure 1.3: Goldstone expansion of the ground-state energy of a nucleus, latin
letters indicate hole state below the Fermi surface, the greek ones particle states
above the Fermi surface (see text for details).

From the sum of diagrams in Fig. 1.3 we consider the collection of the
so-called ladder diagrams, as reported in Fig. 1.4.

Figure 1.4: Sum of the Goldstone ladder diagrams.

The sum of the diagrams in Fig. 1.4 is equal to:

1

2

∑
ij

VNN (ij, ij) +
1

4

∑
ij,αβ

|VNN (ij, αβ)|2

εi + εj − εα − εβ
+ (1.1)

+
1

8

∑
ij,αβγδ

VNN (ij, γδ)
1

εi + εj − εγ − εδ
VNN (γδ, αβ)

1

εi + εj − εα − εβ
VNN (αβ, ij) + ... ,

where we have denoted with latin letters the hole states belonging to the set
of those orbitals below the Fermi surface, the greek letters indicate the particle
ones above the Fermi surface.

The expression 1.2 suggests to introduce the so-called reaction matrix G via
the following integral equation

G(ab, cd) = VNN (ab, cd) +
1

2

∑
αβ

VNN (ab, αβ)G(αβ, cd)

εc + εd − εα − εβ
,

that can be also written in an operatorial form as

G(ω) = VNN + VNN
Q2p

ω −H0
G(ω) .
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Finally we can re-write the diagrammatic expression of the Goldstone ex-
pansion in Fig. 1.3 in terms of the G-matrix vertices, as reported in Fig. 1.5

Figure 1.5: Goldstone expansion of the ground-state energy of a nucleus in terms
of G-matrix vertices, reported now as wavy lines.

Now, some considerations are in order. We define the correlated wave func-
tion Ψ(ω) as

|Ψ(ω)〉 = |Φ0〉+
Q2p

ω −H0
VNN |Ψ(ω)〉 ,

where the uncorrelated wave function Φ0 is the solution of the Schrödinger
equation for the unperturbed hamiltonian H0. If we iterate the expression
defining the correlated wave function Ψ(ω), we can re-write the latter in terms
of the reaction matrix G:

|Ψ(ω)〉 = |Φ0〉+
Q2p

ω −H0
G(ω)|Φ0〉 .

So it holds the following identity

G(ω)|Φ0〉 = VNN |Ψ(ω)〉 ,

which evidences that the G-matrix is an effective interaction whose action on the
uncorrelated wave function - that is the one used in the perturbative expansion
- is equal to the action of VNN on the correlated one.

r0

Φ0

VNN

Ψ



6 CHAPTER 1. THE RENORMALIZATION OF THE NN POTENTIAL

It is worth now to consider an example to show how the G-matrix is able
to “heal’ ’ the divergencies of the NN potential. Let’s consider a separable
realistic potential

VNN (ij, kl) = λu(ij)v(kl) .

We construct its reaction matrix G by assuming that it can be written in a
separable form too:

G(ij, kl) = ηklu(ij)v(kl) ,

the matrix elements of G will be then univocously determined by the ηkl coef-
ficient. The integral equation of the G matrix of our VNN is:

ηklu(ij)v(kl) = λu(ij)v(kl) +
1

2

∑
αβ

λu(ij)v(αβ)

× 1

εi + εj − εα − εβ
ηklu(αβ)v(kl) ,

ηkl

u(ij)v(kl)− λ

2

∑
αβ

u(ij)v(αβ)u(αβ)v(kl)

εi + εj − εα − εβ

 = λu(ij)v(kl) .

Finally, we have

ηkl =
λu(ij)v(kl)[

u(ij)v(kl)− λ
2

∑
αβ

u(ij)v(αβ)u(αβ)v(kl)
εi+εj−εα−εβ

] =

=
u(ij)v(kl)[

u(ij)v(kl)
λ − 1

2

∑
αβ

u(ij)v(αβ)u(αβ)v(kl)
εi+εj−εα−εβ

] .

The above expression of ηkl is finite when λ → ∞ and the VNN diverges,
showing that G is regular in the poles of its original potential.

However, nothwistanding this feature, there is a major shortcoming when
employing a G matrix as vertex of the perturbation expansion. The G matrix is
energy-dependent, more precisely it depends by definition on the unperturbed
energy of the system of the two incoming nucleons, and consequentely it depends
on the choice of the auxiliary potential U

1.3 The Vlow−k approach

Nowadays, there are alternative approaches to the renormalization of the NN
potential, which have been inspired by the effective field theory (EFT) and the
renormalization group (RG) techniques.
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From the EFT perspective, that is the one inspiring the construction of
chiral potentials as have been introduced in his lectures by Michele Viviani, the
NN potential is not an observable to be determined on experimental data, but
there is an infinite class of NN potentials capable to reproduce accurately the
low-energy physics.

It is worth to note that chiral potentials have a sort of free parameter, that
is the momentum cutoff appearing in.

Two different cutoffs correspond to different chiral potentials, but the op-
portune renormalization of the LECs belonging to the two-body, three-body,
four-body ... N -body terms will provide the preservation of the same observ-
ables by the two different chiral potentials.

Now, starting from these basic concepts, one may think to derive an infinite
class of phase-equivalent potentials, that, via a RG process, decouple the low-
momentum subspace from the high-momentum one.

The RG approach to a two-nucleon system requires that the solutions of the
half-on-shell Lippmann-Schwinger equation has to be preserved

T (k, k′, k′2) = V (k, k′) +
2

π
P
∫ ∞

0

q2dq
V (k, q)T (q, k′, k′2)

k2 − q2
.

The solution of this equation, the so-called T -matrix, provides all the physi-
cal observables of the two-nucleon system. Diagonal matrix elements are equal,
apart from a factor, to the phase-shifts of the NN scattering, and it can be
shown that they provide also the bound eigenvalue of the deuteron hamilto-
nian.

Preserving the T -matrix means that for our decoupled potential

Tlow−k(k, k′, k′2) = Vlow−k(k, k′) +
2

π
P
∫ Λ

0

q2dq
Vlow−k(k, q)Tlow−k(q, k′, k′2)

k2 − q2

for any k, k′ ≤ Λ ,

Thigh−k(k, k′, k′2) = Vhigh−k(k, k′)+
2

π
P
∫ ∞

Λ

q2dq
Vhigh−k(k, q)Thigh−k(q, k′, k′2)

k2 − q2

for any k, k′ > Λ .
To solve this problem we can follow three ways, that give the same solutions:

1. to solve the integral equation by matrix inversion (it is complicated by
solving numerically the principal value integration very accurately);

2. to integrate the RG equation

d

dΛ
Vlow−k(k′, k) =

2

π

Vlow−k(k′,Λ)Tlow−k(Λ, k,Λ2)

1−
(
k
Λ

)2 ;

3. employing the Lee-Suzuki similarity transformation.

Let’s now consider the latter approach.
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1.3.1 The Lee-Suzuki transformation

The starting point is the two-nucleon hamiltonian and its eigenvalue problem
in the momentum space∫ ∞

0

[H0(k, k′) + VNN (k, k′)]〈k|Ψν〉k2dk = Eν〈k′|Ψν〉 .

Our goal is to construct an effective hamiltonian that is defined in a subspace
P of the Hilbert space spanned by all relative momenta smaller than a chosen
cutoff Λ

P =

∫ Λ

0

|k〉〈k|k2dk

This effective hamiltonian has to be obtained with a similarity transforma-
tion Ω

H = Ω−1HΩ

The decoupling condition between the P -space and its complementary space
Q = 1− P =

∫∞
Λ
|k〉〈k|k2dk is

QHP = 0 .

Obviously, this decoupling equation is not able itself to identify the operator Ω,
the so-called wave operator, and Lee and Suzuki have suggested that a conve-
nient form could be like this

PΩP = 1 PΩQ = 0

QΩP = ω QΩQ = 0 .

This form of Ω will make H to satisfy the following identities in the P and
Q subspaces

PHP = PHP + PHQω ,

PHQ = PHQ ,

QHQ = QHQ− ωPHQ ,

and finally

QHP = QHP +QHQω − ωPHP − ωPHQω .

Since it holds the decoupling condition between P and Q spaces, we obtain
the following matrix equation for ω

QHP = QHP +QHQω − ωPHP − ωPHQω = 0 .
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This non-linear matrix equation for ω is amenable of numerical solution via
iterative procedures, and one of them will be presented in the following.

Let us consider,

p(ω) = PHP + PHQω ,

q(ω) = QHQ− ωPHQ .

Now if we construct

x0 = −(QHQ)−1QHP ,

x1 = q−1(x0)x0p(x0) ,

...

xn = q−1(x0 + x1 + ...+ xn−1)xn−1p(x0 + x1 + ...+ xn−1) .

Then when xn → 0

ω = ωn =

n∑
i=0

xi ,

the following condition has to be verified

p(ωn) = p(ωn−1) .

Finally, it is worth to evaluate the action of the Vlow−k approach on a realistic
potential. In Fig. 1.6 they are reported the diagonal matrix elements of many
different high-precision NN potentials, that fit equally well the two-nucleon
data up to the inhelastic treshold at Elab = 350 MeV.
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Figure 1.6: Diagonal matrix elements of the 1S0 partial wave for many different
modern realistic potentials.

As can be seen, the different VNN s exhibit a repulsive behavior when in-
creasing the k, k′ momenta, and their matrix elements are very different each
other.
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The Vlow−k diagonal matrix elements calculated from the potentials consid-
ered in Fig. 1.6 with a cutoff momentum Λ = 2.1 fm−1 are reported in Fig.
1.7.
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Figure 1.7: Diagonal matrix elements of the 1S0 partial wave of Vlow−ks cal-
culated from the same potentials reported in Fig. 1.6 for a cutoff Λ = 2.1
fm−1.

From the inspection of Fig. 1.7, it can be seen that the Vlow−k matrix
elements are always attractive and goes to zero at k, k′ = Λ. Moreover, now all
Vlow−k have substantially identical matrix elements.

1.4 The SRG approach

An evolution of the Vlow−k renormalization procedure is the so-called similarity
renormalization-group (SRG) approach. The SRG renormalization procedure
provides a more flexible choice of the decoupling between the low- and high-
momentum regime. As a matter of fact, using this approach one decouples the
two subspaces via a continuous sequence of unitary transformations that sup-
presses gradually the off-diagonal matrix elements of the effective two-nucleon
hamiltonian. What we will get at the end of this flow of unitary transformations
is a band-diagonal potential that preserves the physics of the original potential,
but a weak coupling between low- and high-momentum regimes.

Let’s now sketch briefly the procedures to reach this.
The full hamiltonian H is, as usual,

H = Trel + V .

We will transform the hamiltonian H into another one Hs, where s is the
so-called flow parameter, by way of a unitary transformation:

Hs = UsHU
†
s = Trel + Vs ,
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this means that the kinetic energy operator Trel is independent of s, UsTrelU
†
s =

Trel.
This evolution happens according to the flow equation

dHs

ds
= [ηs, Hs] ,

where

ηs =
dUs
ds

U†s = −η†s .

The choice of ηs will specify the characteristics of our unitary transformation.
This can be stressed writing ηs as a commutator of a generator operator Gs:

ηs = [Gs, Hs] ,

so we obtain
dHs

ds
= [[Gs, Hs] , Hs] .

A possible choice of the generator Gs that drives Hs towards a band-diagonal
form is:

Gs ≡ Trel ,

so
dHs

ds
= [[Trel, Hs] , Hs] .

Since it holds that
dHs

ds
=

d

ds
(Trel + Vs) =

dVs
ds

,

we can derive a differential equation for Vs

dVs(k, k
′)

ds
= −(k2 − k′2)2Vs(k, k

′) +

+
2

π

∫ ∞
0

q2dq(k2 + k′2 − 2q2)Vs(k, q)Vs(q, k
′) . (1.2)
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Exercise: Please, write all expressions needed to derive Eq. 1.2

Hint: remember that explicitly

ηs(k, k
′) = k2Hs(k, k

′)−Hs(k, k
′)k′2 ,

[ηs, Hs] =
2

π

∫ ∞
0

q2dq [ηs(k, q)Hs(q, k
′)−Hs(k, q)ηs(q, k

′)] .

Observe that for off-diagonal matrix elements (|k − k′|) very large, the first
term on the right side of Eq. 1.2 prevails, and we can approximate the differential
equation for Vs with

dVs(k, k
′)

ds
≈ −(k2 − k′2)2Vs(k, k

′) ,

and its solution would be

Vs(k, k
′) = Vs=0(k, k′)e−s(k

2−k′2)2 = V (k, k′)e−s(k
2−k′2)2 .

!0 !1 !2

k’

k

Figure 1.8: Evolution of the matrix elements of Vs as a function of the parameter
λ = s−1/4.

This leads to solutions whose matrix elements evolves as in Fig. 1.8.

It is worth pointing out that the sharp cutoff Vlow−k can be obtained by
choosing as the generator function Gs a block-diagonal operator such as:

Gs =

(
PHsP 0

0 QHsQ

)
In such a case the Vs matrix elements will evolve as in Fig. 1.9.
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Figure 1.9: Evolution of the matrix elements of the Vs = Vlow−k as a function
of the sharp cutoff Λ.
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Chapter 2

The nuclear shell model

2.1 Introduction

The nuclear shell model is still one of the most powerful tools to study an
extensive number of nuclear properties along the whole nuclide chart. The
concept is analogous to the atomic shell model and is rooted in the observation
of regularities in the nuclei when evolving the number of protons and neutrons.
In particular, the observation that are peak of abundance of tightly bound nuclei
with a number of protons and neutrons equal to 2, 8, 20, 28, 50, 82, ... with
respect to nuclei with higher or lower N,Z, induces that an independent-particle
model, with a single-particle hamiltonian h0(r) = p2/2M + u(r), may describe
reasonably well the properties of atomic nuclei.

So the correlated many-body wave function of an A-nucleon system is well
approximated by a Slater determinant of single-particle eigenfunctions of h0:

17
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Φ(A) =

∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) ... φ1(rA)
φ2(r1) φ2(r2) ... φ2(rA)
... ... ... ...

φA(r1) φA(r2) ... φA(rA)

∣∣∣∣∣∣∣∣
With the opportune auxiliary potential u(r) the above wave function may be

able to predict the correct ground-state total angular momenta of most existing
even-even and odd-even mass nuclei.

The role of the choice of the potential u(r) is crucial. For example, if we
deal with a simple harmonic-oscillator potentials it can be observed that the
sequence of its eigenvalues would lead to shell closures in correspondance of a
number of protons or netutrons equal to 2, 8, 20, 40, 70, ..., that resembles the
observed “magic numbers”, but after Z,N = 20 is completely wrong.

The sole u(r) = 1/2Mω2r2 is not satisfacory , unless a spin-orbit is taken into
account in order to remove the degeneracy of the harmonic-oscillator potential.

It is worth to note that in atomic physics is a relativistic correction to the
atomic hamiltonian. Actually, the spin-orbit force in nuclear physics is more
consistent, about a few MeV contribution, and originates from the basic com-
ponents of the free nucleon-nucleon potential.

However, the independent-particle hamiltonian H0 =
∑A
i=1 h

i
0 is not able to

describe alone satisfactorily the large amount of experimental data. We need to
provide a mixing of the single-particle configurations, that is brovided by the
inclusion in the shell-model hamiltonian of the residual two-body interaction
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V res, which will break the degeneracy of states with different total angular
momenta but the same single-particle configuration.

The shell-model hamiltonian is then

H = H0 +H1 =

A∑
i=1

(
p2
i

2M
+ ui

)
+
∑
i<j

V resij . (2.1)

2.1.1 The configuration mixing

As a matter of fact the hamiltonian in Eq. 2.1 is impossible to be diagonalized,
except for light systems. We need then to reduce the degrees of freedom of the
eigenvalue problem.

First of all, a reasonable truncation could be to freeze all the degrees of
freedom of a number of nucleons that is equal to a magic number.

For example, 18F is built up by 9 protons and 9 neutrons, and 9 is very close
to the magic number 8. This would correspond to the filling of the 0s1/2, 0p3/2,
and 0p1/2 orbitals of the doubly magic 16O

0s1/2

0p3/2
0p1/2

0d5/2
0d3/2
1s1/2

0f7/2
0f5/2
1p3/2
1p1/2

π ν

F
18

Freezing the 16 nucleons below the Fermi surface of 16O reduces the problem
to 1 proton and 1 neutron interacting in all the major shells that are placed in
energy above the ones blonging to the core. This is, however, still a problem
that, when the interacting particles start to increase, is very difficult to be solved
computationally.

It should be noted that, since the unperturbed hamiltonian provides that
the major shells are well-separated in energy, we may reduce the active orbitals
to those belonging to one major shell just above the Fermi surface. So, the
eigenvalue problem becomes much simpler and feasible. For the 18F system this
means 1 proton and 1 neutron interacting in the 1s0d proton-neutron shells,
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Jπ dimension
0+ 3× 3
1+ 7× 7
2+ 8× 8
3+ 6× 6
4+ 3× 3
5+ 1× 1

and, for example, the eigenvalue problem of the Jπ = 0+ states is to diagonalize
a 3× 3 matrix.

Let’s write down the shell-model hamiltonian in the second-quantization
form

H =

n∑
i=1

εia
†
iai +

∑
ijkl

V resijkla
†
ia
†
jalak .

Its eigenfunctions |Ψα〉 will be linear combinations of antisymmetrized products
of single-particle wave functions.

|Ψα〉 =
∑
β

cβα|Φβα〉 ,

where
|Φβα〉 =

[
(a†1)k1(a†2)k2 ...(a†n)kn

]
αβ
|Ψc〉 ,

and ∑
i

ki = Aval = total number of valence nucleons .

2.2 The parameters of the shell-model hamilto-
nian

Now, to solve the shell-model eigenvalue problem we need to know the pa-
rameters of the shell-model hamiltonian, the single-particle energies εj and the
two-body matrix elements (TBME) of the residual potential V res.

The εj may be taken from the experiment: in terms of the Koopmans’
theorem the shell-model εjs correspond to the experimental energy spectrum
of the single-particle states of the nuclei with only one-valence nucleon with
respect to the closed core.

The TBME can be determined following three major approaches:

• empirical V res with a simple analytical expression;

• empirical TBME fitted on experimental data;

• realistic effective V res derived microscopically from the free NN potential.
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2.2.1 Schematic shell-model interactions

A way to derive the TBME of the residual potential is to resort to the so-called
schematic interactions.

They are interactions with a simple analytical expression, and very few pa-
rameters to be fitted to the experimental data. They ususally contain only some
relevant component of the NN potential, and can be expressed as gaussian or
yukawian radial functions coupled to exchange operators consistent with the
free NN potential:

V res = V0(r)+Vσσ1·σ2+Vττ1·τ2+Vστ (σ1·σ2)(τ1·τ2)+VT
(σ1 · r)(σ2 · r)− (σ1 · σ2)

r2

Other schematic interactions may have an even simpler form, containg only
one or two relevant components of VNN and a very small number of free param-
eters:

• the pairing or pairing plus quadrupole interactions;

• the surface delta interaction (SDI);

• the spin and isospin dependent Migdal interaction.

The schematic interactions may be very useful in order to understand what is
the relevant physics underlying the spectroscopic structure of the nuclei. How-
ever, they provide a low resolution in the reproduction of the experimental data,
and nowadays they are considered out-of-date.

2.2.2 Empirical effective interactions

The most successful approach to the derivation of the shell-model TBME may
be considered the one that provides the residual interactions fitting the TBME
so to reproduce a set of experimental data of the nuclei with a few valence
particles.

Let us consider a very simple case: nuclei with valence particle outside 40Ca.
As the model space, we can use a very small one spanned by the sole 0f7/2 orbital
for both protons and neutrons.

The single-particle energies εj can be obtained from the experimental ground-
state energies of 41Sc and 41Ca with respect to 40Ca (experimental data may be
found at the web page http://amdc.impcas.ac.cn/evaluation/data2012/data/mass.mas12):

επ0f7/2 = −1.09 MeV

εν0f7/2 = −8.36 MeV .

The TBME can be derived from the experimental spectra and ground-state
energies of 42Ti, 42Ca, and 42Sc.
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For example, for 42Ca we have that

Egs = E(Jπ = 0+;Tz = −1) = εν7/2〈(0f7/2)2|a†0f7/2a0f7/2 |(0f7/2)2〉+

+ 〈(0f7/2)2; J = 0+;Tz = −1|V res|(0f7/2)2; J = 0+;Tz = −1〉 =

= 2εν7/2 + 〈(0f7/2)2; J = 0+;Tz = −1|V res|(0f7/2)2; J = 0+;Tz = −1〉 .

Since, experimentally, the ground-state energy of 42Ca with respect to 40Ca
is Eexptgs = −19.84 MeV, we have that

〈(0f7/2)2; J = 0+;Tz = −1|V res|(0f7/2)2; J = 0+;Tz = −1〉 = Eexptgs −2εν7/2 = −3.12 MeV .

Experimentally, in the 42Ca the energy relative to the ground state of the first
excited Jπ = 2+ is Eexpt2+ = 1.53 MeV (visit the website http://www.nndc.bnl.gov/ensdf/),
then

E(Jπ = 0+;Tz = −1) = Eexpt2+ + Eexptgs = εν7/2〈(0f7/2)2|a†0f7/2a0f7/2 |(0f7/2)2〉+

+ 〈(0f7/2)2; J = 2+;Tz = −1|V res|(0f7/2)2; J = 2+;Tz = −1〉 .

Finally

〈(0f7/2)2; J = 2+;Tz = −1|V res|(0f7/2)2; J = 2+;Tz = −1〉 = Eexpt2+ +Eexptgs −2εν7/2 = −1.59 MeV .

Exercise: Please, following the above procedure for 42Ca, 42Ti, and 42Sc,
derive all TBME needed for the shell-model hamiltonian:

configuration Jπ Tz TBME (in MeV)
(0f7/2)2 0+ -1 -3.12
(0f7/2)2 2+ -1 -1.59
(0f7/2)2 4+ -1 ?
(0f7/2)2 6+ -1 ?
(0f7/2)2 0+ +1 ?
(0f7/2)2 2+ +1 ?
(0f7/2)2 4+ +1 ?
(0f7/2)2 6+ +1 ?
(0f7/2)2 0+ 0 ?
(0f7/2)2 1+ 0 ?
(0f7/2)2 2+ 0 ?
(0f7/2)2 3+ 0 ?
(0f7/2)2 4+ 0 ?
(0f7/2)2 5+ 0 ?
(0f7/2)2 6+ 0 ?
(0f7/2)2 7+ 0 ?
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2.2.3 Realistic effective shell-model interaction

There is a third possibility: to derive the residual two-body shell-model in-
teraction V res from a realistic free NN potential. This would mean that no
parameters are involved, except for those fixed to reproduce the NN scattering
data and deuteron binding energy, but the theory is a bit complicated and now
let’s outline it briefly.

The Schrödinger equation for a A-nucleon system is:

H|Ψν〉 = Eν |Ψν〉 .

Let us consider a unitary transformation Ω that defines an effective hamiltonian
Heff that is defined only for a few valence nucleons in a reduced model space

Heff = Ω−1HΩ ,

and,
Heff |φν〉 = Eν |φν〉 ,
|φν〉Ω−1|Ψν〉 .

We use the Lee-Suzuki approach to derive Ω in terms of ω operator, as intro-
duced in section 1.3.1. First of all, we rewrite H in terms of an unperturbed
degenerate hamiltonian H0

H = H0 +H1 ,

where
PH0P = ε0P .

Using the decoupling condition as in Eq. 1.3.1, we can write Heff
1 in terms of

ω:
Heff

1 = Heff − PH0P = PH1P + PH1Qω .

Let us calculate ω as a function of Heff
1

ω = Q
1

ε0 −QHQ
QH1P −Q

1

ε0 −QHQ
ωHeff

1 .

The latter is used to obtain a recursive equation for Heff
1

Heff
1 (ω) = PH1P + PH1Q

1

ε0 −QHQ
QH1P − PH1Q

1

ε0 −QHQ
ωHeff

1 (ω) .

We call Q̂-box the operator

Q̂(ε) = PH1P + PH1Q
1

ε0 −QHQ
QH1P ,

and rewrite Heff
1 in terms of the Q̂-box

Heff
1 (ω) = Q̂(ε0)− PH1Q

1

ε0 −QHQ
ωHeff

1 (ω) .
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The above recursive equation may be solved using iterative solutions. Lee
and Suzuki provided also a solution for the equation in terms of the derivatives
with respect to ε of the Q̂-box

Heff
1 (ωn) = [1− Q̂1 −

n−1∑
m=2

n−1∏
k=n−m+1

Heff
1 (ωk)]−1Q̂ ,

where the iteration starts with

Heff
1 (ω1) = Q̂(ε0) ,

and

Q̂m =
1

m!

[
dmQ̂(ε)

dεm

]
ε=ε0

.

The knot to be solved is the calculation of the Q̂-box.
An exact one is impossible to be calculated, it is better to resort to a per-

turbative expansion. The analytic form of the Q̂-box induces that the diagram-
matic expansion of the Q̂-box includes only valence linked (the incoming and
outcoming lines should belong to the model space P ) and irreducible diagrams.

NO!

 

YES

a b

c d

a b

c d

p

h
p

h

h

p
2

1

1

2

Figure 2.1: An example of a linked second-order Goldstone diagram (left) and
non-linked one (right)

Without including phenomenological parameters, if:

• the realistic potential is reliable;

• the model space is large enough to contain the needed degrees of freedom;

• the perturbative properties of the expansion of Heff are satisfactory;

then the predictive power of the shell-model calculation is enhanced.
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Chapter 3

The coupled-cluster
approach

There are some considerations that make the coupled-cluster (CC) approach a
profitable way to microscopic nuclear structure calculations.

CC is fully microscopic and capable of systematic and hyerarchical improve-
ments of the unavoidable truncations needed to make the calculations feasible.

In fact, when expanding the cluster operator to all A nucleons belonging to
a nucleus, one obtains the exact correlated wave function of the nucleus.

The CC method is size extensive, which means that only linked diagrams
appear in the calculation of the energy, and this implies that the nuclear separa-
tion energy tends to a constant in the infinite system size, and the total energy
is proportional to the number of the nucleons.

The CC method is size consistent, this means that if the system presents
two well-separated non-interacting subsystems, the total energy of the system
is equal to the sum of the energy of the two subsystems.

If we deal with a two-body potential only, then the CC equations need only
two-body formalism to be written down.

Let’s consider first the A-body product state |Φ〉

|Φ〉 =

A∏
α=1

a†α|0〉 ,

that will be our reference state.

This reference state could be either the result of a Hartree-Fock calculation
or simply obtained filling the harmonic-oscillator orbitals. From now on greek
letters will refer to occupied states below the Fermi surface, latin ones to any
orbital.

In order to easily derive the CC equations, it is useful to normal order the

27
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two-body hamiltonian in second quantization

H =
∑
ij

εija
†
iaj +

1

4

∑
ijkl

〈ij|V |jk〉a†ia
†
jalak ,

with respect to the reference state |Φ〉 .
The normal ordered hamiltonian HN is then definied as

H = HN + E0 = HN +
∑
α

εα +
1

2

∑
αβ

〈αβ|V |αβ〉 .

It can be easily seen that HN can be written as

HN =
∑
ij

(
εij +

1

2

∑
α

〈αi|V |αj〉

)
: a†iaj : +

1

2

∑
ijkl

〈ij|V |jk〉 : a†ia
†
jalak :

=
∑
ij

fij : a†iaj : +
1

2

∑
ijkl

〈ij|V |jk〉 : a†ia
†
jalak : .

Please note that this formalism can be easily extended to the case of an
hamiltonian including also a three-body potential.

Note that, by construction

〈Φ|HN |Φ〉 = 0 .

The core of the CC method is to build up a similarity transformed hamiltonian
HCC

HCC = e−THeT ,

where T will be the cluster operator that is definied with respect to the refernce
state in the following way

T = T1 + T2 + ...+ TA ,

and

T1 =
∑
aα

tαaa
†
aaα

T2 =
1

4

∑
aαbβ

tabαβa
†
aa
†
baβaα

...

It is evident that the generic Tn operator generates n-particle n-hole excitations
with respect to the reference state |Φ〉. The truncation of the number of the Tn
operators to 1 defines the CC approximation with singles

CCS → T1

CCSD → T1 + T2

CCSDT → T1 + T2 + T3
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and so on.
The Baker-Hausdorff relation allows to write HCC as

HCC = e−THNe
T = HN + [HN , T ] +

1

2
[[HN , T ] , T ] +

+
1

3!
[[[HN , T ] , T ] , T ] + +

1

4!
[[[[HN , T ] , T ] , T ] , T ] + ...

If we deal only with a two-body potential we have only four-fold nested commu-
tators, if we include a three-body potential, up to six-fold nested commutators
are needed.

The eigenvalue problem of the gorund-state energy would be

E = 〈Φ|HCC |Φ〉 ,

and to calculate E we need to derive the n-particle n-hole amplitudes t. This
can be done observing that

〈Φ|aaa†αHCC |Φ〉 = 0

〈Φ|aaaba†βa
†
αHCC |Φ〉 = 0

...

Using the above set of equations and the Wick’s theorem to contract all a and
a† operators, one obtains the equations for the amplitudes t. For simplicity we
consider only CCS approximation (coupled-cluster with singles)

fαα +
∑
b

fabt
b
α −

∑
beta

fβαt
a
β +

∑
βb

〈βa|V |bα〉tbβ +

−1

2

∑
βb

fβbt
b
αt
a
β −

∑
βγb

〈βγ|V |bα〉tbβtaγ +

+
∑
βbc

〈βa|V |bc〉taβtcα −
∑
βγbc

〈βγ|V |bc〉tbβtcαtaγ = 0

This system of equations can be easily solved with iterative techniques.
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