Nuclear Energy Density Functionals

From Stable to Weakly-Bound Nuclei




Elements of Density Functional Theory

DFT is the most popular method for electronic structure calculations of many-electron
systems. No other method achieves comparable accuracy at the same computational
cost.

A. The Hohenberg-Kohn Theorem

In ground-state DFT one is interested in systems of N interacting electrons described by the
Hamiltonian:

H = T+V+ Vee
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The Hohenberg-Kohn theorem:

1. The ground state density n(r) of a bound system of interacting electrons uniquely
determines the external potential v(r) in which the electrons move and thus all physical
properties of the system.

2. The ground-state energy Eo and the ground-state density no(r) of a system characterized
by the potential vo(r) can be obtained from a variational principle which involves only the
density:

by = E’Uo [TL()] < E’Uo [n]

— the energy can be written as a functional of the density, Evo[n], which gives the ground-
state energy Eo if and only if the true ground-state density no(r) is inserted.



3. There exists a functional F[n] such that the energy functional can be written as:

E,, |n] = F[n] + /dgr vo(r)n(r)

The functional F[n] is universal in the sense that, for a given particle-particle interaction
(the Coulomb interaction in this case), it is independent of the potential vo(r) of the

particular system under consideration, i.e., it has the same functional form for all
systems.

— formal definition of the Hohenberg-Kohn functional F [n]:
Fln] = Tn| + Vee[n| = (¥[n]|T¥[n]) + (¥[n]|Vee[¥[n])

However, the explicit density dependence of F[n] remains unknown!



B. Kohn-Sham DFT

Consider an auxiliary system of N non-interacting particles described by the Hamiltonian:

HS:T_I_‘/;

HK theorem = there exists a unique energy functional:
E,[n] = Ty[n] + /dgr vs(r)n(r)

for which the variational equation yields the exact ground-state density ns(r) that
corresponds to Hs. Ts[n] - universal kinetic energy functional of non-interacting particles.

For any interacting system, there exists a local single-particle (Kohn-Sham) potential vq(r),
such that the exact ground-state density of the interacting system equals the ground-state
density of the auxiliary problem:

n(r) = n,(r) = Z i (1)



The single-particle orbitals are solutions of the Kohn-Sham equations:
—V?/2+ v,(r)] ¢i(r) = eis(r)

The Hohenberg-Kohn functional is partitioned in the following way:

Fln|=Tsn| 4+ Uln|+ E..|n]

Kinetic energy of the / Hartree term \

non-interacting system Exchange-correlation energy
which, by definition, includes
everything else!

Uln] = % / 37 / 37 ”’(rr)”(r/)
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—> classical electrostatic energy of the charge distribution n(r).



The Kohn-Sham potential:

vs[n(r)] = v(r) + / dr

n(r’)

v — 1’|

- Ve[ (T)]

where the exchange-correlation potential is defined by:

Vge [n(r)] — 555(01[,?]

self-consistent Kohn-Sham DFT: includes correlations and therefore goes
beyond the HF. It has the advantage of being a local scheme.

The practical usefulness of the Kohn-Sham
scheme depends entirely on whether accurate
approximations for E,. can be found!



C. Approximations for Exc

The true Exc is a universal functional of the density, i.e. it has the same functional form for all
systems.

(i) local density approximation (LDA):

ELPA[) = / & n(r)en (n(r))

where ey (n) is the exchange-correlation energy per particle of the homogeneous electron

gas with spatially uniform density n.

(ii) generalized gradient approximations (GGASs):
ESSA ) = [ drf(nlx), Vn(r)

— the function f in GGA is not unique and many different forms have been considered.
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Nuclear Energy Density Functionals

Nuclear Energy Density Functionals: the many-body problem is mapped onto
a one body problem without explicitly involving inter-nucleon interactions!

The self-consistent mean-field approach to nuclear many-body problem is
analogous to Kohn-Sham DFT, and provides a unified microscopic description
of the structure of stable nuclei and systems far from stability.

The exact universal energy density functional is approximated with powers
and gradients of ground-state nucleon densities and currents.



Local densities and currents

The full density matrix can be decomposed into four separate spin-isospin terms:

p(ror,rv’'c’7")

where:

1
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For pure proton and neutron states only the a = 0 components of the isovector densities contribute.

There are six local densities and currents that can be derived from the full density matrix. We omit
the second index in the densities, and with T=0 or 1:



Local densities and currents:

T=0 density: po(r) = polr,T) = Z plroT;roT)

T=1 density: p1(r) = pi(r,r) = Z p(roT;roT) T

T=0 spin density: S0 (r) - So(r’ r) - Z 'O(PUT; rJ/T) To'o
T=1 spin density: si(r) = si(r,r)= Z p(roT;vo'T)0gis T
Current: jr(r) = %(V’ — V) pr(r,r) ‘r:r’
Spin-current tensor: Jr(r) = %(V’ — V) ® sp(r, r’) ’r:r/

Kinetic density: mr(r) = V-Vipp(rr)| _,

Kinetic spin-density:
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The Skyrme energy density functional

In the Skyrme KS approach, the total binding energy is given by the sum of the kinetic energy, the
Skyrme energy functional that models the effective interaction between nucleons, the Coulomb

energy, the pair energy, and corrections for spurious motions:

b= Ekin + dST gSk + ECoul + Epair — Ecorr

The Skyrme energy functional: gSk — E (geven 5Odd)
T:o,l/ /
Density-dependent Contains only Dependence on
time-even dens. time-odd currents

coefficients
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Single-particle hamiltonian:

The contribution from the Skyrme interaction to the single-particle Hamiltonian:

hg=U, —V-B,V — {W,,Vo} +8,6 —V-(6-C,)V — 1{A,, V}

where: {Wq, VO'} — Z{Wija vza-j} (C] =D, TL)

Y]

—>the local potentials are calculated from:

oF oL oF
ime-even: _ 2= p o= _ &
time-even Uq 5,0q : q 57'q : Wq 5jq
oF oL o5
ime-odd: A = — —
time-o q 5jq : Sq 5Sq : Cq 5Tq

The time-odd fields A, C, and S contribute to the single-particle Hamiltonian only in situations where the
intrinsic time-reversal symmetry is broken and the Kramers degeneracy of single-particle levels is
removed.



Gogny interaction: sum of two Gaussians with space, spin and isospin exchange mixtures. In
addition, a density-dependent interaction plus a spin-orbit term.

@Gogny(rlg) — 2521 6_(r12/“j)2 (Wj - ijo' — Hj T Mij'PT)
—I—tg(l i $0P0)5(r12) pa (1‘1—51'2)
X

+in8(&1 -+ 6’2) . lA{T 5(1‘12) IA{
Exchange operators: pa = %(1 + 0o - 5’2) pT — %(1 + 71 722)
I'no =11 —I9 R:—%(Vl—Vﬁ

The Gogny interaction is used both in the mean-field and pairing channels.



PAIRING CORRELATIONS

B
|4 r .
The pairing-energy functional: Epair = E Zq /dST 1 — <&> pg(r)

q=p,n _

Pc

corresponds to the density-dependent two-body zero-range local pairing force:

Pe

N

[ G
Upair — %(1_Pa) 1 — (p(rl)

5(1‘1 — I'Q)

Volume pairing Surface pairing
pC 9 > pC = pnm

The pairing strengths V, | are adjusted phenomenologically to reproduce the odd-even staggering of

energies in selected chains of nuclei.



Applications: ground-state properties

Binding Energies

Microscopic Gogny and Skyrme Hartree-Fock-Bogoliubov mass tables:
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Differences between experimental and calculated masses as a function of neutron number.

Root Mean Square Deviation with respect to the 2149 measured masses of nuclei with N
and Z > 8. S. Goriely et al., Phys. Rev. C 88, 024308 (2013); C 88, 061302 (2013).



Observables of the Density Distribution
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HFB-24 charge radii versus experimental values. Comparison of the measured charge density
with the HFB-24 estimate for 298pb.

S. GORIELY, N. CHAMEL, AND J. M. PEARSON
PHYSICAL REVIEW C 88, 024308 (2013)



T. NIKSIC, D. VRETENAR, AND P. RING Charge radii and deformations PHYSICAL REVIEW C 78, 034318 (2008)
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FIG. 15. (Color online) DD-PC1 and DD-ME2 predictions for
the ground-state quadrupole deformations B, of the Nd, Sm, Gd, Dy,
Er, and Yb isotopes, in comparison with empirical values [48].

FIG. 14. (Color online) Charge radii of Nd, Sm, Gd, Dy, Er, and
Yb isotopic chains. The results of the RMF + BCS calculation with
the DD-PC1 and DD-ME2 interactions are compared with data [46].
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2’9Ds a-decay chain
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Fission barriers

20

O

Axial constraint

Axial quadrupole +
Octupole constraints

)
. —
1\
.
1
[y

Relaxing symmetries often

O

Triaxial quadrupole

constraint
| L | L | |

decreases the barriers !

A3
)
8 |
]

A
I 3 1

-0 0.0 0.5 1.0 1.5 20 25 3.0

D
0o

Paths in the deformation energy surface of 2*%Pu calculated with the Ski4 force. The solid line
corresponds to axial quadrupole and octupole (reflexion asymmetric) constraints, the dashed
line to triaxial quadrupole constraints, the dotted line to axial quadrupole constraint only.



Self-consistent mean-field models

Strong points:

(i) an intuitive interpretation of mean-field results in terms of intrinsic shapes and shells
with single-particle states.

(ii) the full model space of occupied states can be used; no distinction between core and
valence particles, and no need for effective charges.

(iii) the use of universal effective interactions; universal in the sense that they can be
applied to all nuclei throughout the periodic chart.

Problems:

(i) an independent particle-description establishes a body-fixed intrinsic frame of the
nucleus. The relation of mean-field results to spectroscopic observables in the laboratory

frame depends on additional assumptions.
(ii) by construction, a mean-field state breaks necessarily several symmetries of the

nuclear Hamiltonian (translational, rotational).
(iii) the mean-field approach becomes ill-defined when the binding energy changes slowly

with a collective degree of freedom ( transitional nuclei).
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