Harmonic Vibrations

® Random Phase Approximation
® Linear Response Theory

® Beyond the Mean-Field Approximation



NUCLEAR VIBRATIONAL MODES:
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1. DENSITY VIBRATIONS

A=0 the volume of the nucleus changes, but not its shape. Nuclear
matter has a high compression modulus K=250 MeV, and the

excitation energies of this mode of vibrations are relatively high
=80 A1/3,

Monopole

2. SHAPE VIBRATIONS ...if there are no changes in density, the excitation
energies can be much lower.

A=1 T=0isoscalar dipole mode: oscillations around a fixed point in the laboratory
system. All nucleons move together and there are no
changes in the internal structure of the nucleus:
center of mass oscillations.

A=1 T=1 isovector dipole mode: protons and neutrons
oscillate with opposite phases =
GIANT DIPOLE RESONANCE




GIANT DIPOLE RESONANCE
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Fig. 8.10 Giant resonance of photodisintegration in **’ Au. The yield of neutrons is
shown as a function of the energy of the monochromatic photons used to produce the

Quadrupole reaction (Fultz, S. C. et al., Phys. Rev., 127, 1273, 1963).

QUADRUPOLE OSCILLATIONS (A = 2):
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Microscopic picture:

HF ground state 1p-1h excitations
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m,n: states above the Fermi level
I,j: states below the Fermi level
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Vibrations in QM: U (t) ) + Z co|v) o 1Bt/

excited states

— the corresponding density (to first order inc,, ):

A
p(r,t) = (¥(1)] Z 6(r — ;)| W(t)) = ' (r) + dp(r, 1)

with:
A
op(r,t) = Z ¢, (0] Z 5(r —1;)|v) e B e
v 1=1

A Fourier transform of this density gives the contribution of the different excited states:

1
( )’/ O‘ E 5 I‘—I‘z V Transition density

Transition density matrix: (1)v
(in a shell model basis) Ppq

= (Olag ap|v)



1. RPA: particle-hole theory wit -state correlations

A. Derivation of the RPA equations

—> set of exact eigenstates of the hamiltonian H: H‘V> — E,/’V>

— define the operators Q in such a way that:

v) =@, 0) Qv|0) =0

= equation of motion: [H’ Qi‘] ’()> - (E,/ — EO) Q,_H(D

- by multiplying from the left with an arbitrary state <0|5Q:

(0] [6Q, [H,QF]]10) = (B, — Ep) (0] [6Q, Q5] |0)
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Tamm-Dancoff Approximation:

1) approximate the exact ground state |0> with the Hartree-Fock state |HF>
2) approximate the operator Qy by the collective ph-operator:

+ _E ( vt
QV _ Cmiama’&
ma

— the vector space is restricted to 1p-1h excitations.

ma

Z(HF\ a; am, [H,ata;]| |HF ), = EIPAcy

nj

Correlations are only taken into account for the excited states, the ground state remains a
HF Slater determinant.



RPA equations:

If we assume that the ground-state contains 2p-2h correlations, then a ph pair can be not
only created but also destroyed = more general operator Q:

QF =D  (Xniahai —Yyafan)

mai

The RPA ground state |RPA> is defined by:

Qu|RPA) =0

— two type of variations: 5Q’O> — a;:az- ‘O> 5Q‘O> — a:ram ‘O>
= from the equation of motion:

(RPA|[aF a, [H,Q]] IRPA) = 19, (RPA|[afan. Q)] |RPA)
(RPA|[aas, [H,Q]] [RPA) = 19, (RPA|[aha;, Q] |RPA)

9



Quasi-boson approximation: assume that |RPA> does not differ much from |HF>
(RPA| |a;] am,afa;| |RPA) =~ (HF||af an,a}a;] |[HF) = 6;j0mn

— this relation would be exact if the ph operators obeyed the commutation relations for
boson field operators (violates the Pauli principle!).

RPA equations:

(5 o) ()= (o 5) ()

Amz’nj — <HF’ [ajam, [H, G;L_CLJ'H HF> - (Em — ei)dijémn "I_Emjin

Binj = —(HF| |a] am, |H,al ap|| |HF) = Tpnij

antisymmetrized two-body residual interaction 10




...ph and hp matrix elements of the transition density:

Pri = (Ola anlv) = (HF| |af am, Q)] |HF) = X},
Pim = (Olajpaslv) = (HF|[aya;, Q)] |HF) =Y,

— the quasi-boson approximation is valid for very collective states: many
transition amplitudes X of the same order of magnitude. Each single ph-
component has only a small probability of being excited and the violation
the Pauli principle can be neglected.

— the amplitudes Y should be small compared to the coefficients X because
they describe ground-state correlations. If the Y’s are too large, the
replacement of the correlated state | RPA> by |HF> is not justified.

...matrix elements for a Hermitian one-body operator in the RPA approx.

(O|F|v) = Z Fyk/ P = Z (FimX i + FmiYp)

kk’
11



B. Normalization and closure relations

The RPA matrix is not Hermitian, and so its eigenvectors cannot be orthogonal in the usual
sense.
_ Nt
v) = Qy |[RPA)
Orthogonality condition:

(V) = 6 = (RPA[[Q,, Q) ]|RPA) = (HF|[Qu, Q]| HF)

orthogonality: . 2 : vk v vk U
57/V’ — (szsz - sz sz
me
closure: . 1% U % ERvar
5mm’5ii’ _ E :(sz m’i sz Ym’i’)
1%
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C. Representation by boson operators

—> quasiboson approximation: CLT—I;LCLZ- — B;"_u aj_am — Bmz’
+ + _ _ -+ L
[Bmz'? Bm’i’] — [Bm’w Bm’i’] =0 [Bmza Bm,i/] — 5mm’57ji’

— this is the lowest order approximation in which we retain the first term in the
expansion of the fermion pair operator a*a in a series of boson operators.

Boson representation of the hamiltonian:

1
HB — EHF + Z AminjBrr_;ian + 5 Z (Bm@nJB;;zB:j + hC)
minj minj

def. BOSON OPERATOR

O;r — Z (XferB:n o YnIanmi)

m1 13




= when expressed in terms of the boson operators, the Hamiltonian is diagonal:

Hp = Erpa+ Y S, 050,

with:

1 h
Erpa = FEgrp — §T7° A+§ZQV

Eur =) 0 Y Yyl

Hg = Hamiltonian of harmonic oscillators.

RPA - harmonic approximation, determines the uncoupled eigenmodes
of the nuclear system.
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D. Invariance and Spurious Solutions

— assume that the exact two-body Hamiltonian H is invariant under a continuous
symmetry operation generated by a one-body hermitian operator:

H,P|=0
example: space translations

— assume that the HF ground-state violates this symmetry (obvious for space translations)

O A
P\, P] # 0
|H§ P is an exact but spurious solution of the RPA equation

A B P

B*  A* _pr )=V

15



The corresponding state: ‘P> = Z (sza a; + P* i s am) ’RPA>

mi

If the RPA is calculated using self-consistent single-particle energies and wave functions, the
spurious excitations that correspond to a broken symmetry in the HF state - as, for example,
translations of the nucleus - separate out. They are orthogonal to the other excitations and

lie at zero excitation energy.
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. Linear Response Theory

... consider the response of a nuclear system to an external time-dependent field:

F(t) = Fe " + Fre!

with F a one-body operator: F(t) — Z fkl (t)af,;al
kl

— assume that the field is weak, i.e. it causes only small changes of the nuclear density,
which we can treat in linear order. The density oscillates with the external field and
resonances arise whenever the frequency w is close to an excitation energy of the system.

A. Derivation of the linear response equations

‘(I)(t» — wave function of a nucleus in an external, time-dependent field

— the one-body density: pkl(t) — <(I)(t) ]a;rak ‘(I)(t»

17



Assumptions:

(i) at any time p(t) corresponds to a Slater determinant: p2 = P

equation of motion: th — [ h[p] -+ f(?f), P ]

Time-dependent Hartree-Fock equation

(ii) the external field f(t) is wealk, i.e. it introduces only oscillations with small amplitudes
around the stationary density p(o)

p(t) = p'¥ + p(t)

5/0(t) _ p(l)e—iwt 4 p(l)—l—eiwt

In the HF basis p(o) and h[p(o)] are diagonal:

,0]({3) = 51«1,0;20) = O(particle), 1(hole)
(ho)kt = (B[p']k1 = Sriex .



pP=p = p%p+pp» =5p

=implies that the only non-vanishing matrix elements of p(l) are the ph and hp elements,
determined by the solution of the TDHF equation. Expansion in linear order in the external

field:

.y Sh
thop = [ ho,op | + { ; 5p,,0(0)}—|— [f,p@)}
0

with:

oh Oh Oh
—Op = O Prni 0Pim
0p P Z (3,0mz' g Opim g >pp<0)

linear response equation for the ph and hp matrix elements:

A B 1 0 (L)ph ph
W ) =2 (o 5)f (o ) == ()

19



0Ny Oh.,;
with: - Aping = (€m — €:)0ij0mn Bining =
a[)nj apjn

These matrices correspond exactly to the RPA matrices A and B if we use the residual
interaction:

_ Ohopg 02E
v = — = Self-consistent HF+RPA
psqr
Oprs  OpgpOprs

linear relation between the external field f and the change in the density
(the response of the system):

Rklpq Response function - depends on the frequency of
the external field; poles at the eigenfrequencies

of the system.
20




To find the resonances (w = Qv) one must consider the solutions of the homogeneous
equation with vanishing external field = RPA equation. Its solution gives the transition

densities: )
oL (0,) = (Olaf apv)

The RPA approximation is just the small amplitude limit of the time-dependent
mean-field approach!

21



B. Strength function

Vibrational states can be excited by acting on the nucleus with an external field operator F.
The imaginary part of the linear response function is related to the total transition probability.
We define:

Rp(w):=Tr <f+ (1) ) Z ququpq( w) [y’

pqp’q’

... using the spectral representation of the response function

Im Rp(w) =—m Y |(V|F|0)*6(hw — AS2,)  w >0

v>0

The strength function associated with the operator F:

S(w) = —lfm Rp(w) = 3 (] Fl0)[26(hw — 192,)

v>0

22



C. Multipole transition operators

... electromagnetic excitation of a nucleus with real photons. The transition amplitude is the
matrix element of the operator:

A
Firy(r) = Z@T;:JYJM(’F@)

1=1

Transitions induced by the strong interaction are typically studied by means of hadron inelastic
scattering. The nuclear multipole transition operators:

A

FJM (I‘) = Z T:L-]YJM (”ﬁz) isoscalar excitations
1=1
A

FJM (I‘) — Z T,Z]YJM (’FZ)TZ (Z) isovector excitations
1=1

23
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Giant isovector dipole vibration
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Giant isoscalar quadrupole vibration
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At the RPA level, nuclear collective motion is represented as a coherent superposition of 1p-1h states.
The energy and angular momentum of these vibrations can be released to other degrees of freedom,

because vibrational states are embedded in a dense background of excited states.

The width of a giant resonance originates from:

(i) When the energy of a vibrational state lies above the particle emission threshold, the state can
decay by neutron or proton emission. This damping mechanism is associated with the escape width
[+, which can be taken into account within the framework of continuum-RPA = use scattering
solutions of the s.p. HF equations in the calculation of R(w).

(ii) The spreading width ¥ arises because the energy and angular momentum of coherent vibrations
can be transferred to more complicated nuclear states, of 2p-2h (and eventually 3p-3h, ... ,np-nh)
character. In order to describe 'V a theoretical framework must include the coupling to these
complex configurations: Second RPA, particle-vibration coupling model, ETFFS, QPM, ...
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Diagrams which correspond to
the coupling of the p-h
components of a giant resonance
with phonon states.

Photoabsorbtion cross section
for 1205n, calculated with the
QRPA (bars) and QRPA-PC
(solid curve).
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Quasiparticle-Phonon Model:

Fragmentation of the low-lying electric
dipole strength in 138Ba. Calculations

are performed in the one-phonon
approximation (top panel), and taking
into account the coupling to two-phonon
configurations (middle panel), or to

two- and three-phonon configurations
(bottom panel).
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