Hartree-Fock-Bogoliubov Theory

From Stable to Weakly-Bound Nuclei
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Self-consistent mean-field models

Mean-field approximation: the dynamics of the nuclear many-body system is represented by
independent nucleons moving in a self-consistent potential.

Self-consistent potential: = corresponds to the actual density distribution for
a given nucleus.

Advantages of the SCMF approach:

<> use of global effective nuclear interactions (used for all nuclei!)
<> can be applied to arbitrarily heavy systems, including superheavy nuclei
<> intuitive picture of intrinsic shapes



The General Variational Principle

< W ‘ H ’ U > - any state which makes the functional E[W]
E [\If] — stationary, when |W> is allowed to vary over the

< \Ij ’ \If > whole Hilbert space, is an eigenstate of the
hamiltonian H with the eigenvalue E.

- variation: < \If‘ — \IJH— < 5\11‘
SE[U] =0 = < 0U|H—E|¥ >=0
If this is satisfied for any variation = H‘\Ij >= E‘\P >

Trial wave function:

<> single Slater determinant = Hartree-Fock approximation

<> quasi-particle vacuum = Hartree-Fock-Bogoliubov approximation

<> linear combination of a finite number of Slater determinants = Shell Model
<> continuous superposition of Slater determinants = Hill-Wheeler equation



The Hartree-Fock Approximation

1. Basics of a mean-field description

The basic building block of any mean-field model is a set of single-nucleon wave functions:

{V;(Z),2=1,...,Nwt}, x=(7,0,7)
< the number of single-particle wave functions N .is larger than the number of nucleons A

- af = /d?’r;m(f) a;f\

Creation operator for a nucleon Creation operator for
in a single-particle state i eigenstates of position

HF approximation: the state of a nucleus is described by a Slater determinant:
) = det {v;(¥),1=1,..., A}

af|®)=0 1<i<A a;|®) =0 i>A



2. Single-particle density matrix
pij =< ilplj >=< ®la] a;|® >

— the density operator associated with the Slater determinant | ®> can be expressed in terms of
the single-nucleon orbitals:

A
p=D i >< vl =D milti >< i

A completely antisymmetric state |®> is a Slater determinant if and only if the corresponding
density matrix p is a projector onto the Hilbert space spanned by occupied single-particle orbitals:



3. Hartree-Fock equations

The hamiltonian of the system : sum of a kinetic energy term and a two-body potential:

H = Z <i|T|j > aa; + = Z < 13|V|kl > a+a+alak
] zykl

— the expectation value in a Slater determinant | >:

Elp] =< ®|H|® >= >  <i|T|j > pji + > Z < J|\VIkl > pripi;
] zgkl

defines the energy E as a functional of the single-particle density matrix p associated with
the state |® >.

the variational equation: 5{E[[)] — tI’A/\(,O2 — p)} =0

The Hartree-Fock hamiltonian:
OFE|p]

— hermitian operator in the h’bj =< ‘ h’] >= 0 a B
space of single-particle states IOJ@



From the variational equation: [h7 /0] — hp — ph — ()
the Hartree-Fock equation

The solution of the Hartre-Fock equation is a single-particle basis in which both h and p are diagonal.

h’)\,/ >= BV‘)\V > HF orbitals

h — h[p] the HF equation is non-linear!

Iterative solution: A

1) initial guess for the HF orbitals ‘)\V > = P = Z ’)\V > < )\V‘

v=1
2) with this density matrix p construct the HF hamiltonian h

3) Diagonalize h: new set of HF orbitals ‘)\l// >

Repeat steps 2) and 3) until two successive calculations give the same HF orbitals to a desired accuracy:
self-consistent HF hamiltonian



Empirical evidence for pairing correlations

For even-even nuclei the ground-state has always zero angular momentum, i.e. the residual
interaction lowers this particular state with respect to other ang. momentum combinations.

0Odd-even effect: even-even nuclei are
bound more tightly than neighboring

In even-even nuclei there is an energy gap
of 1-2 MeV between the ground state and

odd-A nuclei. the lowest singe-particle excitations.
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Two nucleons in the same shell:

1 |
Inljj; J =0M =0) = %: < gmj —ml|00 > |jm)|j —m) = NCTES %:(—)j_mUmW —m)

This state will have the lowest energy for a short-range interaction. In the state J = 0 the nucleons
are relatively close (the spatial overlap of the two nucleon densities is maximal), whereas they are
not in higher angular momentum states.

For nuclei between closed shells, the nucleons (except the last one) will be paired off . This
configuration will be most favorable energetically. To excite even-even nuclei, either a pair

has to be lifted to a higher shell or it has to be broken. For odd nuclei, the odd unpaired
nucleon can simply be lifted to higher orbits.



Pairing in a degenerate single-j shell

1
.. general two-body interaction: V(1,2) — 1 Z (Ozﬁ]Vh& a5a7

a?ﬁ?W?
PAIRING HAMILTONIAN:

L 2j—|—m—|—m’
p=-G § : gm ] m@j— m’ajm( )

m,m’ >0

a) Two particles in a single-j shell 200 = 25 + 1 degenerate states.

27+ 1
The number of states occupied by 2 nucleons: N = ( JT )

2
Number of states of the form |m —m>: () = 2‘7; L
e 9 97531 1 3 5 7 9
Xampe ]_2 _2727272727 27 27 27 27 2



In matrix representation the pairing Hamiltonian reads:

0

0

1 0 0 0
1 0 0 0
1 0 0 0
0O 0 0 0
o 0 0 ... 0

with the two-nucleon basis arranged so that the first Q states are those of the form |[m —m >.

10)

1
VQ

(1)

1
VO

> (=)

m >0

closed shell

-

is the lowest energy
eigenstate of H, with
E, = - GQ.

ot at (o)



Since the eigenvalue of this state is equal to the trace of the matrix H,, all other eigenstates
of H, which are orthogonal to | ,> must be degenerate with eigenvalue zero. This is because
the sum of all eigenvalues equals the trace of the Hamiltonian matrix and because this
particular matrix Hp is negative definite.

2 valence neutrons in h9/2.
| b> is shifted downward in energy by —GQ.
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b) n — particles in a single-j shell

Filling the 1g9/2 orbital.
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The Hartree-Fock-Bogoliubov Approximation

Pure Slater determinants = occupation numbers n={0,1}. This is strictly valid only for doubly magic nuclei.
All others have partially occupied shells with a high density of almost degenerate states that are mixed by
the residual two-body interaction: nuclear pairing scheme.

1. Pairing correlations

— concept of independent quasi-particles defined by the Bogoliubov transformation:

by = Z(U’m a:r + Vin a;)

)
which relates single-particle states to quasiparticle states. In compact notation:

b [ a (U VvV
bT =W a+’W_VU*

= the transformation matrix is unitary.



The ground state of the system is determined by the condition that it is the quasi-

particle vacuum:
by, |®) =0 n

—> quasi-particle wave functions in coordinate space:

5 — W@ (8, Uinti(®)
" V@ ]\ Vinthi(@)

the single-particle density: Pij — <(I) CLj_CLZ’(I)> — (V*VT)@J — pjz
the pair tensor: Rij = <(I) @jai‘q)> — (V*UT)Z] — —hyjj

The completely antisymmetric state |® > is a quasiparticle vacuum if and only if the associated
generalized density matrix

satisfies the relations: RZ — R R+ == R



2. Hartree-Fock-Bogoliubov equations

— derived from the variational principle by using a quasiparticle vacuum as the trial wave function.

The gp vacuum is not an eigenstate of the particle number operator - additional constraint: the
average number of particles = number of particles in the system.

< OIN|D >=< D] ZCLZLC%\(I) >=trp=N

= minimize the expectation value of the hamiltonian:

A

H = H-uN
— Z < i|T — plj > a a; + — Z < 17|V Ikl > a+a+alak
ij zgkl

Elp, k] =< ®|H|® >= E[R]

) OF I« |0E .. O8E .
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ij Pi i L i 7 |




Hartree-Fock hamiltonian

Pairing field
_ 9B[R
- Ok!

]

Aij = —Aj;

hijg =<i|T —plj >+ <ik|V]jl > pu
kl

1 .
Aij — 5 zkl: < Z]‘V‘]-Cl > Kl

DEF. the quasiparticle hamiltonian: H =

(

h A

= the variational equation reads: 5{E[R] — tI’A(R2 — R)} =0

:> Hartree-Fock-Bogoliubov equation

SIS

H,R] = 0




H = H[R] |::> The HFB equation is nonlinear. Solution by iteration.

1) initial guess for the density and pair matrices p and k

2) calculate the Hartree-Fock hamiltonian h and pairing field A

3) solve the eigenvalue HFB equation

4) from the eigenvectors evaluate the new density and pair matrices.
The trace of the density matrix will not, in general, be equal to the
number of particles in the system -> change the chemical potential

L = W1+ 6p until the trace equals the desired number of particles.

5) repeat steps 2) - 4) until two successive calculations give the
same density and pair matrices to a desired accuracy.

The stationary value of the energy functional:
E=<®|H|® >= puN +tr(hp — k*A)— < O|V|D >

1. Quasiparticle basis ¢,, - diagonalizes the generalized one-body matrix R.
2. Canonical basis ; - diagonalizes the one-body density p.
3. Hartee-Fock basis - diagonalizes the mean-field Hamiltonian h.



3. Symmetries and constraints

i) symmetries related to the shape of the nucleus — spherical, axial quadrupole, triaxial quadrupole,
octupole

ii) time-reversal symmetry — for even-even nonrotating nuclei. The creation of a quasiparticle or the
rotation of the nucleus breaks time-reversal symmetry.

The landscape of the energy as a function of a shape degree of freedom is explored with the help of
constraints.

The equations of motion are obtained by minimization of a Routhian:

A

E=(H)— > XN = AalQa)

q=p,n &

with a constraint on the expectation value:

(Qa) = (D]|Qa|®) = Qu
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H = H — \Q
dE
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dq




4. The BCS approximation

— well defined only in the case of time-reversal invariance -> Kramers degeneracy

of single-particle states: €,, =— €4, for time-conjugate partners gbn, 7
The BCS approximation: forces the pairing 0 d
potential to be diagonal in the basis of the A — T
eigenstates of the mean-field potential: _d 0

dn'rh — 5nmdnm7 hgpn — EnPn

The pairing problem reduces to the determination of occupation amplitudes
by solving the gap equation:

(n — ,u)(ui — v,,%) + 2d, 5 Uy Uy, = 0

The two-component wave functions become simply:

¢(U) — UnPn qb(v) — Un¥Pn



n-particles in non-degenerate shells: BCS

2*, excitation energies in Sn isotopes:
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... between 2 and 30 nucleons (1 to 15 pairs) are distributed over the available five

neutron orbitals 2d5/2, 1g7/2, 1h11/2, 3s1/2, 2d3/2.



... consider a general trial wave function: ’6} = H (u,, + U,/CL;FCL,}F) ]O)

S \

BCS ground state. Not closed shell
an eigenstate of the
number operator.

... normalization: <6‘6> — H (Uz - UE)
v>0

... particle number: <6|ﬁ|6> = Z 22}3
v>0

.. particle number uncertainty:  An? = <6|ﬁ2‘6> — <(~)]f7,‘(~)>2 — 42 uﬁvﬁ
v>0

The uncertainty in the particle number arises from those single-particle states that are
fractionally occupied, i.e. 2 2
y occupied, u;, # 0,1 v, # 0,1



The coefficients u, and v, are determined from a constrained variational calculation:
5(0[H|0) = 0

H=H— X\ = Z(ey ~MN(ata, +afay) — G Z a:a}tapay

v>0 w,v>0

The Lagrange multiplier is chosen such that the average particle number equals the actual
number of valence particles:

0 ~ -~ o .
F . _— — _— —
rom 5 (O|H[0) =0 = A\ 5 (0| H10)

The BCS transformation from particle creation and annihilation operators to “quasiparticle”
operators:

+ + + +
c, = UyG, —V,ap a, = UyC, + U,Cp
C, = UyQy — vya; a, = UyCy + v,/cf{

inverse transformation



The BCS state is, by construction, the quasiparticle vacuum:
c,|0) =0 Vv

Rewrite the Hamiltonian in terms of quasiparticle operators:

H=Uy+ Hi1 + Hog + Hyy + Hyes

Hiy ~ cTec

H20 ~/ C+C+
H... ~ ccetet+ctctete+ceteTee+ he.

Because of the normal order of the operators, the expectation value of the interacting
terms in the BCS state vanishes, and the ground-state energy:

(O[H|0) = Up = ) [2(er — AV — Gup] — G

v>0

E Uy Uy

N d
The variational problem: §(0|H|0) = 0 = %Uo =0



2 2
From: v, +u, = 1

d
—Uy =0
dv,, 0

—

DEF. the pairing gap:

... solutions:
> _ 1
’U,V —

> _ 1
UV — 2

d 9, v, O

dv, v, u, Ou,

2(€, — Nuyvy, = Au, —v7)

G Z Uy, Uy,

vr>0

A

_ 2 . .
€, =€y — GUV includes the self-energy correction

for a particle in a given orbital u
interacting, via the constant pairing
force, with an extra pair of nucleons.

Ve, — A2+ A2
; Two equations are needed to

(e;/ — )\) determine the chemical potential

\/(e’y — )\)2 n AQ_ A and the pairing gap A.



Insert the solutions foru,and v, into: A = G E UV,
v>0

2 1
a — Z \/(6/ — )\)2 _I_ AQ Gap equal'ion

v>0

... plus the particle number condition:

@
P N ]

v>0

For a given set of single-particle energies, particle number n, and pairing strength G, these
two coupled equations have to be solved simultaneously for the unknown quantities A and A
(solution by iteration).
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Population v2 of pairs in single-particle levels for different ratios of the pairing strength
to the average distance between single-particle levels.



