Beyond the Static Mean-Field

Approach

Symmetry Restoration and

Configuration Mixing



Nuclear Many-Body Correlations

short-range long-range collective correlations
(hard repulsive core of nuclear resonance modes large-amplitude soft modes:

the NN-interaction) (giant resonances) (center of mass motion, rotation,
low-energy quadrupole vibrations)

...vary smoothly with nucleon number! ...sensitive to shell-effects and strong
Can be included implicitly in an effective variations with nucleon number!
Energy Density Functional. Cannot be included in a simple EDF

framework.



Restoration of Broken Symmetries

A self-consistent mean-field (SCMF) wave function breaks necessarily several symmetries of
the nuclear Hamiltonian (translational, rotational).

EXAMPLE: the only translational invariant product wave functions are products of plane
waves, but they cannot be used to describe strong correlations between nucleons and their

clustering into a finite nucleus.

A. Symmetry of a Hamiltonian and Broken Symmetry

- symmetry of the hamiltonian of the system:

UHUt = H [H,U] =0

-unitary transformation: preserves the norm of state vectors and the matrix elements of
observables.

-symmetry group of H: the eigenvectors of H are classified according to the irreducible
representation of the symmetry group.




State of broken symmetry (deformed state): cannot be classified according to an irreducible
representation of the symmetry group of the Hamiltonian H.

— set of unitary operators (representing the symmetry group of the Hamiltonan).
U(Oé) The parameter a can be discrete or continuous.

[Pa) = U(a)|®)

(Da|H|Pa) = (DU (a)HU (o)|®P)
= (O|H|P) Vo

= all deformed states |® a > are DEGENERATE.




B. Symmetries of the Hartree-Fock field

|® > - independent-particle state with the associated single-particle density p

pij = (®laj a;|®) = (P|p|®)

- consider a unitary transformation: ‘6> — U‘(I)>
C> pij = (®laj a;|®)
- with: U+ +U Zk ka: U+CL¢U — Zk Uikak

ﬁ> 5=UpUT
— in the HF approximation: E <(I)‘H‘(I)>
>¢ UHUY = H d> Elp] = Elp]




Elp) = Elp] © >  h[p] = UhlplU*

transformation of the Hartree-Fock hamiltonian

1) the density matrix p is invariant under the transformation U:

p=p = hlp]=nhlp

U represents a self-consistent symmetry of the HF hamiltonian.

2 pFp  |hp, U F#0

U represents a broken symmetry of the HF hamiltonian.

Example: translational symmetry is always broken by the HF potential of a bound
finite system.



C. Symmetries in the presence of pairing fields

In the Hartree-Fock-Bogoliubov (HFB) approximation the quasiparticle vacuum is characterized
by the generalized density matrix:

_( r K
R”_<-—Wkiﬂ—ﬂ*>

— unitary transformation: ’$> e U’(I)>

D pij = (®lala;|®) = (UpU™)y

/_ﬂiij —

U 0

R -
R = URU U={ 0 o+




If U represents a symmetry of the Hamiltonian H = E[R] — E[R]

|:> H [ﬁ] e Z/[H [R]Z/{—I_ transformation of the HFB Hamiltonian

1) self-consistent symmetry of the HFB Hamiltonian

RU =0 R=R UHU =H
2) broken symmetry

RU A0 R#AER  UHUT #H

The pairing field breaks the invariance with respect to the transformation induced by

the operator: .
_ N _ +
U=c¢ N=)> Sa; a;

2ip
= L p Ke
— > [R=URU _(_K*B_M ]l—p*)




D. Broken symmetries in finite systems

In finite systems broken symmetries arise only as a result of approximations (variational
principle applied to a restricted set of trial wave functions).

A broken symmetry implies a degeneracy of the solutions of variational equations.

Pa) = U(a)|®)

SYMMETRY RESTORATION - the new trial wave function is a linear superposition of the
degenerate deformed states.

Y) = [ daf(a)|®a)

The minimization of the energy with respect to the expansion coefficients f(a) is equivalent
to the projection of states of good symmetry from the deformed state |® >. The resulting

states can be classified according to the irreps of the symmetry group.



EXAMPLE: parity - discrete broken symmetry

| ® > a normalized state that is not an eigenstate of the parity operator M. [H,M]=0 implies
that the linearly independent states |® > and M| ® > are degenerate.

—> new trial function: ‘@D()\» — ‘(I)> -+ )\H’(I)>

— parameter to be evaluated by minimizing
the energy expectation value

B = (U(N)[H|T(N)) 1+ A2+ 2\(HII)/(H)

(T(N)|P(N)) = \H) 1+ A2 + 2)(II)

=0 = [[(HI) — (H)(](1 - ) =0




If |®@ > is not an eigenstate of the parity operator:

<HH>#<H><H> — A\ = *+1

—> parity eigenstates:

\xpﬁ:%@:ﬂ)\@ | L) = [0

The same states are obtained by simply acting with the projection operators:

Py = —(1+10)

on the deformed state |® >. The degeneracy of the deformed states |® >and N|® >
has been removed:

(HII) — (H){II)
1 — (II)2

E_|_—E_:2



E. Non-conservation of particle number

| ® > a normalized state, not an eigenstate of the particle number operator N.

H N =0 = e_iO‘N\CI>> a € |0, 27]

degenerate states!
27T
da
| G r@lea)

- new trial QT
. d A
function: |\If> :/ Oéf( ) zozN|(I)>
0

ot N=N-—n, Ba) = e~V |P)
The projection on states with good particle number is equivalent to the requirement that
the energy: (U|H|W)
ST
searoarywty [ da g do’ £ () (Ba H|@a') (o)

respect to variations —

of f*(a) and f(a). fozw doy f027f do’ F*(a)(Pa|Pa’) f (o)



P | [ e - Ba) =0

Hill-Wheeler equation

the solutions are eigenstates of the particle number operator!

Fourier transform:

o0 27T
(n—n)o dov —zn n)o
:an€< ) — fn:/ 2 : )f()
n=0 0 7T

$ HW equation: Z fn<q)’(H — E)Pn’q)>62(n_ﬁ)a — O

where: n=0

27 dOé — operator projecting onto states
P S / —i(N—n)a with particle number n.
0

e
2T




The Hill-Wheeler equation is valid for all angles a:

= > fol®@|(H — B)Py| @) =0

nonvanishing coefficients exist only if the energy E equals:

O|HP,|9)

Y
o = )P, )

The solution of the HW equation is the projected state:

‘\Ij> — fn’an>7 ‘\Ijn> = Pn‘q)>




F. Angular momentum projection

LAB. z

M bk = = = —

3 INT.

Symmetry violation in many-particle
wave functions can be related to
collective motion.

A deformed wave function |® > defines a fixed
orientation in space (principal axes of the mass
distribution). All wave functions:

|OQ>=R(Q) |O®>

have the same internal structure and yield the
same energy expectation value = collective
rotational motion approximately preserves the
intrinsic structure.




Angular momentum operators in the laboratory and intrinsic frames

INT. €q (CL =1, 2, 3) : €q " €p = 5ab7 €q X € = €apcle
LAB. az (Z — &, Y, Z) : éa — 7§’6173(52)&7;7 (2 = {Oé, 67 7}
Euler angles

The Euler angles are dynamical variables which specify the orientation of the intrinsic
frame.

Def. intrinsic angular momentum operators: Ia, — €4 J

— —

:Ia, Jz] =0 Va,z’ = =
_ . I — J ; [3, JZ
_Icw Ib] — _Zeabc-[c

set of commuting operators,

72 2 2 T2 can be diagonalized simultaneously
r2=N"r=N 2=
a ()




T3 IKM) = I(I+1IKM)
§> LIIKM) = K|[IKM) —I<K<I
JIIKM) = M|IKM) —I<M<I

> HKM){IKM|=1, (IKM|I'K'M'Y = 811/ 0k 1/ S i
ITKM

The states |IKM > can be represented by the wave functions < Q|IKM >, which depend on
the Euler angles Q = {a,B,y}. With the definition of the state |Q >:

Q) = R(Q)Q = 0)
=

(QIKM) = (Q=0RT(Q)|[KM)

= > (Q=0I'K'M')(I'K'M'|R*(Q)|IKM)
I"K'’" M’



The rotation does not change the intrinsic angular momenta => K=K’ and I=I". If the Euler
angles are chosen in such a way that the INT and LAB frames coincide for Q=0:

<Q:O’[KM>:C[5KM C[:\/(Ql—I—l)/Sﬂ'z

= > QKM

V(21 +1)/872D7 ;1 ()
= V@It 1)/8r%e M d e (8)e "

27 +1 : :
IKM|II'K' M) = == / dQODY, . (Q) DL (Q)

872

— 51]’5KK’5MM’




Variational principle and angular momentum projection

—_
Deformed state |® >, not an eigenstate of J 2, J3

7?/(057 67 ’7) _ 6—ian€—iﬁJy6—inyz

[H, R] — O — ‘(I)Q> — R(Q)‘(I)> degenerate states

—> new trial function: ‘\Ij> — /dﬂf(ﬂ)‘q)gn — /de(Q)R(Q)’(I)>
The weight function f(Q) is determined by requiring that the energy expectation:
VI H|\W
o (H )
(VW)

is stationary with respect to variations of f* and f.

S | [ a9 @) - Blo) () = 0




The solutions of the HW equation are eigenstates of the operators J 2, J3

21 +1 .
FO = 3 5 HicDhe(®) = i = [ (@)Dl
IMK

> [0 = S Pl |®)

IMK
21 +1
where: P]&K = 87‘(‘2 /dQD&K(Q)R(Q)
pl " = pl PL NP — 580w PL
( MK) — + KM ( MK) MK — VII'"UOMM'L KK/

not quite a projector!

with:  [H, Pi ] =0 §>



W equation: S (@|(H ~ E)Pleyer|®) flype =0
K/

= eigenvalues determined by the equation:

det [(B|(H — E) Pl | ®)] = 0

a) the HW equation is equivalent to the diagonalization of the hamiltonian in the basis P]‘\T4K|<I>>
b) H does not connect states with I£1’, and the eigenvalues do not depend on M

= eigenstates: ‘\IJIM> — Z fj{fKP]QK‘(I»
K




G. Projection before and after variation

How do we determine the deformed (symmetry-violating) intrinsic function |® > ?

i) Variation before the projection (VBP)

(P H|P)

| ® > is determined by the variational principle: 5 —

(@)

The deformed solution is a superposition of eigenstates of the corresponding symmetry
operator (for example, angular momentum). The wave function:

Ur) = P'|2)

is no longer a product wave function, but a complicated superposition of Slater
determinants. It contains many more correlations than the function |©® >.

This method violates the variational principle, because we do not vary the projected wave
function. It does not allow for changes in the self-consistent mean-field for different values
of | (within a rotational band).



ii) Variation after projection (VAP)

(U, |H|Y;)  (®|P'HP'|®)
:> ’ (Pr|¥r) =0 (®|PIP!®) =Y

= minimize the expectation value of the projected energy PIHPI
within the set of product wave functions |® >.

This method corresponds to a double variation, using the ansatz:

) = / 10 (Q)R(Q)|®)

and varying the energy with respect to both the weight function f(Q) and the
generating function | >.

Much more complicated than VBP!

(1) must repeat the variation for each value of |
(2) PTHP! is a multi-particle operator



Configuration Mixing

E vibrations E

deformations shape
rotations coexistence

l

l |
QO Q Q1 Q2 Q

The most important correlation effects in nuclear structure stem from large amplitude
collective motion. Low-lying excited states are admixed into the mean-field ground state.
These admixtures can be removed by configuration mixing: superposition of several
mean-field states.

Correlations include nuclear surface vibrations (low-lying excitations) and zero-energy
modes (translation, rotation, ...) related to restoration of symmetries which are broken
by the mean-field ground state.



A. The Generator Coordinate Method

— starting from a set of mean-field states |®(q) > that depend on the collective coordinate q,
approximate eigenstates of the Hamiltonian H are obtained by GCM configuration mixing:

/Weight functions
W) = / dq |(q)) fi(a)

RN

Generator coordinate Intrinsi H
(collective variable) ntrinsic (e.g. 72
wave functions

The weight functions fk(q) are found by requiring that the expectation value:

[o (| H | W)
k P
(V| W)

is stationary with respect to an arbitrary variation 6fk.

:> dq' [H(q.q") — ExZ(q.q")| fr(d')

Hill-Wheeler equation




H(g. q') = (2(q)|H|®(¢)) Z(q.¢) = (®(q)|®(¢))

Hamiltonian kernel overlap kernel

—> for any operator O: O(q,q/) _ <(I)(Q)‘OA’(I)(C],)>

The weight functions are not orthonormal and they cannot be interpreted as collective wave
functions for the variable g. This role is assigned to the functions:

gr(q) = /dQ’ 7'%(q,q) fr(q)

The matrix element of any operator between two GCM states can be expressed in terms of
the g, 's as:

(WO 0 = / / dgdq’ g5(a) O(a,¢) ()



with: @(C], q/) _ //dq” dq’"Il/2(q, q//) O(q//,q///)zl/Q(q///’q/)

The GCM energies E, and functions g, are the eigenvalues and eigenvectors of the hermitian
integral operator

dq' H(q,q") 9x(¢') = Ergr(q)

Gaussian Overlap Approximation: the overlap kernel is replaced by a Gaussian function of
the form:

/ / [ 1 (C]—C]/) 2
Y] —_— -
7(q,q ) ~Zc(q,q") = exp 4 5 () )

q

\

based on the rapid decrease of the matrix elements between wave functions corresponding
to different values of the collective variable.



B. Choice of the collective coordinate

1. RESTORATION OF BROKEN SYMMETRIES: the family of wave functions |®(q) > is
generated by the symmetry operations: rotation in coordinate space for angular
momentum, rotation in gauge space for particle number. The functions f|(q) are a priori
determined by the properties of the symmetry operator.

2. SHAPE DEGREES OF FREEDOM: L
the collective space is generated by

constrained mean-field calculations. 161

The generating function is unknown I

and has to be determined by the 12—

diagonalization of the Hill-Wheeler < |

equation. 2 8l
W

The starting point is usually a 4l

constrained HFB calculation of

the potential energy surface with

the mass quadrupole components 0
as constrained quantities. -




Example: Self-consistent mean-
field calculation which includes
correlations related to restoration
of broken symmetries (rotational,
particle number) and to fluctuations
of collective variables (quadrupole
deformation).

1. Mean-field potential energy
curve calculated with a constraint
on the quadrupole moment.

2. Angular-momentum and particle
-number projected energy curves.

3. The Hamiltonian is diagonalized
within each of the collective sub-
spaces of the nonorthogonal bases
|J, g> by using the Generator
Coordinate Method.

(MeV)
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14
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10




C. Angular momentum projection and configuration mixing: 1>#Sm
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Men-field energy curve of 1>*Sm (dashed), and the corresponding angular-momentum
projected (J = 0+; 2+; 4+, and 6+) energy curves, as functions of the axial deformation B.
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— larger variational space for projected GCM calculations!

—> triaxial shapes, breaking time-reversal @
invariance, different deformations for —
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D. Coexisting shapes in the N=28 isotones

60

[l 0
00 02 04 06 038

Y (deg) %0 v (deg)

0
04 06 08



20

0 . ' 0 | 0
00 02 04 06 0.8 00 02 04 06 0.8 00 02 04 06 0.8
sph.
Exp. values A&‘,:% Buin
Neutron N=28 spherical shell gaps 4.80MeV  BCal 4.73  0.00

447 MeV  OAr| 448  -0.19

60 ’Y (deg) 448 3.86 0.34

267 | 3.13  -0.35
OMg| 2.03  0.45

V. 0 0
00 0.2 04 0.6 0.8 00 0.2 0.4 06 0.8
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Single-particle energy (MeV)
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Single-particle energy (MeV)

Single-particle energy (MeV)
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Single-particle energy (MeV)

Single-particle energy (MeV)

42g;. single-particle levels
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Energy (MeV)
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E. Global study of quadrupole correlation effects

M. Bender, G. F. Bertsch, and P.-H. Heenen

. s ) . Phys. Rev. C 73, 034322
Definition of correlation energies ——————T——————1

deformation energy

22 F

\
1) The static deformation energy is 20 i A ]

the energy difference between a

mean-field configuration g and the 18 i ﬂ -
corresponding spherical state: 16 [ ]
= 12 _
5 10 i

Static deformation energy as a
function of neutron number N.
Isotopic chains are connected
by lines.

0 20 40 60 80 100 120 140 160
Neutron Number N




2) The energy gained by the projection of a deformed mean-field state |g > (on angular

momentum |=0) is its rotational energy:
Erot (Q) — E(Q) — EO(Q)

3) The rotational energy correction: E]:() =k (me) — EQ (QO)
mean-field minimum
minimun after projection

Rotational energy Erot(qo) at
the minimum of theJ =0
projected energy curve.

Erot (q()) (NICV)
(@) — [\ w W~ Ot (@) ~J
T

50 100 150 200 250
Mass Number A

-



4) The correlation energy gained by configuration mixing:

_— GCM ground state
Eacm = Eo(q0) — Erk=o

The total dynamical correlation energy is the energy difference between the mean-field
ground state and the projected GCM ground state:

Ecorr — E(me) _ Ek:O :

1
% 4t -
= 2 F =
S
] dynamical quadrupole correlation energy |
O 1 1 M 1 M 1 i 1 M 1 M 1 i 1

0 20 40 60 80 100 120 140 160
Neutron Number N



(i) The quadrupole correlation energy varies
between a few 100 keV and about 5.5 MeV.

(ii) Projection on angular momentum J =0
provides the major part of the energy gain of
up to about 4 MeV; all nuclei gain energy by
deformation.

(iii) the mixing of projected states with
different intrinsic axial deformation adds a
few 100 keV up to 1.5 MeV to the correlation
energy.

(iv) Typically nuclei below mass A < 60 have a
larger correlation energy than static
deformation energy, whereas the heavier
deformed nuclei have larger static
deformation energy than correlation energy.
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