Problem 1: Geometrical units

A geometric unit system is a system of natural units in which the base physical
units are chosen so that the speed of light in vacuum, ¢, and the gravitational con-
stant, G, are set equal to unity, i.e., c=1and G = 1.

1.1 Show that for the geometric unit system the mass of the sun is M, = 1.47 km.
1.2 Show that for A = 1 and ¢ = 1 one obtains the conversion factor 1 = 197.3 MeV fm.

1.3 Using geometric units, estimate the Schwarzschild radius, Ry, = 2M, of the Earth
(Mgaren = 107 My), Sun (M = 1 M), and a neutron star (Mys = 2 My,).

1.4 What happens to an object if it is shrunk below it’s respective Schwarzschild ra-
dius?

Problem 2: Thickness of a neutron star atmosphere

The atmosphere of Earth has a thickness of over 100 kilometers, however the
Chandra X-Ray Observatory recently detected an atmosphere on the neutron star
Cassiopeia-A that measured only 10 centimeters thick. How can a small planet have
a deeper atmosphere than an entire stars-worth of matter? The size of an atmosphere
depends on a balance between the force of gravity pulling it towards the center of the
planet, and the pressure of the atmosphere due to its temperature and density, pushing
in the opposite direction. A pair of simple equations then defines how the density of
the atmosphere has to rearrange itself with height above the surface so that gravity
and pressure are always in balance. The equations look like this:

n(z) =ng exp(z/H), where H =kT/mg, (1)

where k is Boltzman’s constant which equals 1.38 x 1072* Joules/degree. The expo-
nential equation says that as you get farther from the surface, the density of the gas,
n, drops very fast. The quantity, H, in meters, is called the scale height and its value is
defined by the atmospheres temperature, 7', in Kelvins, and the acceleration of gravity
at the surface, g, in multiples of Earth’s acceleration (9.8 m/s?). It also depends on
the average mass, m, of the particles in the atmosphere. A light atmosphere made
from hydrogen (m = 1) will produce a value for H that is much larger than one made
from pure oxygen (m = 16). The surface acceleration of the neutron star is 10" times
that of Earth, the temperature of the gas is 3 x 10° Kelvins compared to Earths of 300
Kelvins, and the neutron star atmosphere is composed of carbon (A = 12) rather than



Earth’s mixture of nitrogen and oxygen (A = 28).

2.1 From the formula for H, and the way in which it scales with m, T" and g, what
would you predict as the scale height for the neutron star atmosphere if for Earth,
H = 8 kilometers?

2.2 How far from the surface would you have to travel in order for the density of the
atmosphere to fall by 10° times for: A) Earth and B) a neutron star?

Problem 3: Stars in hydrostatic equilibrium

Consider a star that is in hydrostatic equilibrium. The forces acting on a mass
shell inside of such a star are gravity, which acts radially inward, and the pressure
force produced by the matter inside the mass shell, which acts in the radial outward
direction (see Figure 1). The mathematical relation between pressure P and energy
density € of the matter is called the equation of state, P(¢). The mass of the mass shell
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Figure 1: Hydrostatic equilibrium of a mass shell of thickness dr.

is dm = Amwer?dr.

3.1 Show that in Newtonian physics the pressure gradient is given by (G = ¢ =1)

P T
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0

dr r?
The surface, R, of the star is defined by P(r = R) = 0 and the star’s total gravitational
mass, M, is given by M = m(r = R). Recall that pressure inside a hydrostatically
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stable star is monotonically decreasing from the center to the surface.

3.1 Qualitatively, plot the pressure profile of hydrostatically stable stars, as described
by Equation (2), and compare it with the pressure profile of hydrostatically stable stars
that follows from Einstein’s field equations of General Relativity theory as (G = ¢ = 1)
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Equation (3), know as Tolman-Oppenheimer-Vokoff equation, will be derived during
my lectures. Comment on the qualitative differences. Which stars (classical or General
Relativistic ones) will have smaller radii?

Problem 4: Numerical modeling of compact stars

4.1 Write a numerical program (Fortran, C, or C++) that solves the stellar structure
equation (3) numerically using the bag model equation of state

P =(c—4B)/3, (4)

which describes the stellar interior in terms of a relativistic gas of deconfined quarks.
Here P and e denote pressure and energy density in units of MeV/fm3, and B =
57 MeV /fm? is a constant. Compute 50 stellar models whose central densities €. range
from 5B to around 20B. (A sample Fortran 90 code is provided below.)

4.2 Design your program such that it writes the stellar radius R (in km) and mass M
(in units of the mass of the sun) of an entire stellar sequence to an output file.

4.3 Plot M as a function of R. Repeat the computation but this time for Newtonian
stars. Show the mass-radius relationship of this stellar sequence in the plot that you
just created. Comment on any differences between Newtonian stars and General Rel-
ativistic stars..

4.4 Modify your code such that the gravitational redshift

B (1 2M>—1/2 ]
= R

of light emitted from the surface of a compact star is computed for a given mass and
radius, both for Newtonian stars and General Relativistic stars. Illustrate the results
graphically.



program relativistic_stars

! Fortran 90 sample code which solves both the Newtonian & General Relativistic
| equations of stars which are in hydrostatic equilibrium.

implicit none

real :: e_c, p_c, e, p, pdr, msun_km=1.475, deltaec
integer :: choice

double precision, parameter ::
double precision, parameter ::
double precision ::

real, parameter ::

msun_mev = 1.115829d60
c18 =1.0d18
cf, mass, r, dr

pi=acos(-1.), bag=57.0 I* Bag constant in MeV/fm~3

open (unit=10, file=’MvsR.dat’, status=’unknown’)

write(*,*) ’ Newtonian (1) or General Relativistic (2) calculation?’

read(*,*) choice

if (choice == 1) then

write(*,*) > A Newtonian solution will be computed.’
else if (choice == 2) then
write(*,*) ’ A General Relativistic solution will be computed.’

else

write(*,*) ’ Input error -> computation terminated!’

stop
end if

cf
e_c
deltaec

do while (e_c <= (20.*bag))
p_c = (e_c - 4.xbag) / 3.

mass= 0.

r = 1.0el6

dr = 1.0el6

e =e.c; p-=

pdr =
call TOV(pdr,

1.
choice, mass, cf, r, e, p, pi, dr, bag)

msun_km*c18/msun_mev
4 .2xbag
bag/10.

I* Compute conversion factor
I* Initialize central density of 1st stellar model

I* Compute sequence of stellar models
I* Central pressure

I* Initialize star’s mass

I* Initialize radial distance in fermi
I* Initialize step size in fermi

I* Initialize e, p



write (k,*) > R=’, r/c18, ’km,’, ’> M=’, mass/msun_mev,’M_sun’

write(10,20) r/c18, mass/msun_mev I* Qutput r in km, mass in M_sun
20 format (2x, £8.4, 4x, £8.4)
e_c = e_c + deltaec I* Central density of next stellar model
end do

close(unit=20)

stop
end program relativistic_stars4

I %

subroutine TOV(pdr, choice, mass, cf, r, e, p, pi, dr, bag)
I %

'* This subroutine integrates the TOV equation

implicit none

integer, intent(in) :: choice

real, intent(in) :: pi, bag

double precision, intent(in) :: cf

real, intent(inout) :: pdr, e, p

double precision, intent(inout) :: mass, r, dr
real :: f

do while (pdr > 0.)
if (choice == 1) then
f = e * mass * cf / (r*r)

else if (choice == 2) then
f = (e+tp) * (4.*pi*r**3*p+mass) * cf / (r*r*x(1.-2.*mass*cf/r))
end if

mass = mass + 4.*pikrxrkexdr
pdr =p - f *x dr
p = pdr
e = 3.xpdr + 4.x*xbag
r =r +dr
end do

return
end subroutine TOV



Problem 5: Metric tensor

Consider the fictitious two-dimensional line element given by
ds® = gjjdr'da’ = x*da® + 2dzdy — dy® . (5)
5.1 From Equation (5), read off the components of the covariant metric tensor, (g;;).

5.2 Use g'*gi; = &' to determine all contravariant components (g*).

5.3 Raise and lower indices on the vectors (4;) = (1,1), (B?) = (0, 1).



