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CONDITIONS IN COMPACT STARS




The physics at high baryonic density is difficult to handle

1. QCD is nonperturbative
2. Lattice simulations do not work (Barbour et al. 1986 Nucl.Phys. B275 296)
3. No experimental facility (so far) can reproduce the correct conditions

Let me refrase it:

1. We do not know how to do computations
2. We do not have numerical methods for doing tests
3. We have no terrestrial lab for validating the theoretical results

The way out:

-
We can use symmetries and analogies for obtaining qualitative and

semiquantitative results

We can use compact stars as the “lab”

\_




Additional ingredients

We have to consider the typical environment of compact stars

® It is “cold”, with temperature of order tens of keV
® Matter is in weak equilibrium
® Matter is electrically neutral

® The strange quark mass might be comparable with the quark chemical potential

The first condition simplifies the treatment: we can take T=0.

The other conditions make the treament more complicated




Fermi mismatch (unpaired quark matter)

Large quark number chemical potential 300 MeV < & < 1 GeV

Quark number densities of “free” quarks
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Only u,d,s quarks are relevant. Light quarks can be treated as massless.
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Fixed mismatch, increasing coupling

quasiparticles with mixed color and flavor

red green blue red green blue red green blue

UNPAIRED 2SC CFL

>
no color intreaction “strong” color intreaction

Whenever there is BCS pairing, the Fermi surfaces have to match.

If the mismatch is too large, pairing cannot occur. The largest chemical potential mismatch which allows

paring is named the Chandrasekhar-Clogston limit (derived it for weakly coupled two level systems)
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Chemical potential stress on the CFL phase

At a given interaction strength a large chemical potential difference tends to disrupt the CFL paring

Free energy gain o< Acrr CFL favored for

M2
M32 ACFL > c—=
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Free energy cost o< o ~ i
Various possibile transitions:

* 2SC phase

* gapless CFL phase (unstable)

* CFL-KO0

* Crystalline color superconductors




CFL-KO phase

P.F.. Bedaque and T. Schifer, Nucl.Phys.

Kaons could be introduced for “stabilyzing” the system A697 (2002) 802-829

When there is a chemical potential mismatch there is a lack of strange quarks

Pr

A

Adding Ko ~ “d3”

we can effectively increase the number of strange
quarks and reduce the number of d quarks

red green blue

Kaon condensation occurs for



http://inspirehep.net/author/profile/Bedaque%2C%20Paulo%20F.?recid=556611&ln=it
http://inspirehep.net/author/profile/Bedaque%2C%20Paulo%20F.?recid=556611&ln=it
http://inspirehep.net/author/profile/Sch%C3%A4fer%2C%20Thomas?recid=556611&ln=it
http://inspirehep.net/author/profile/Sch%C3%A4fer%2C%20Thomas?recid=556611&ln=it

gCFL phase
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Phase with gapless modes may be favored.
One assumes that pairing is channel dependent and finds that some quasiparticles are massless

3
i
(VaiCys1p;) Z Are®e;ip Alford et al. Phys.Rev.Lett. 92 (2004) 222001
I=1

It is chromomagnetically unstable M.M et al. Phys.Lett. B605 (2005) 362-368,
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Aiming at a simpler system

® Quark condensate can break several symmetries.

FIRST UNDERSTAND HOW THINGS WORK FOR GLOBAL AND
GAUGE SIMMETRIES.

® The analysis of complictae structures needs some preiminary work

TOY MODEL WITH MISMATCHED FERMI SPHERES

® Adding degrees of freedom will only make the game more complicated

AND INTERSTING




TOY MODEL




Two-level system

-

Two non-relativistic species of fermions Y1 Y2

p1 = p+op
fo = — Op

SYSTEM

different chemical potentials

equal mass m

WV

No interaction

[Lzﬁfree_F»CI )

Liree = ' (10 — E(p) + p + Suc®) 9

Defining ' = (¢1,s)




“residual energy” “residual momentum”

Residual momentum and energy can be above or below the Fermi surface,
therefore they can be positive or negative

States with negative energy correspond to holes

Ltree = TPT (Zat = f(p) T 5”0‘3) ¢

W_/

Inverse propagator

Dispersion law e = +ou +&(p)

The effect of the chemical potential mismatch is a shift of the energy




Nmbu-Gorkov basis

1st step: Write

Livee = U1 (0, — E(p) + 50%) w0 = = [1 (10, — £(0) + 610°) 4 + 1 (8 + E(p) — 6p0®) "]

¥1

1
2nd step: Introduce the Nambu-Gorkov spinor X = 7 gi
1

2

3rd step: Rewrite the Lagrangian in the matrix form

) 3
Liree = XT ( 00 g(p) = :

0 10y + £(p) — dpo® ) A

(
Exercise

1
Using the Nambu-Gorkov spinor Xnew = /2

write the Lagrangian in a matrix form




-

Exercise. Compute the determinant of the inverse propagator and show that the dispersion laws are

given by

particles holes

e+ = +ou + |€(p)| éx = =op — |£(p)]

~N

¢ In the Nambu-Gorkov basis there is a DOUBLING of the degrees of freedom

Particle and hole states appear as zeros of the inverse propagator.

® Of course the new theory is competeley equivalent to the standard one.

So, why is it useful?




Turning on the interaction

We use a local Fermi interaction

( m:%l@)ﬂ(@%@)%(@ J

The effect of the attractive interaction is to produce a difermion condensate

ol = 2 e

Mean field: Dlpishs —= (WivD by, + il (hps) — 20Tl (hsabs)

Basically it is a smibosonization of the theory or a Hubbard-Stratanovich transformation.

Keeping the & dependence of the condensate means that we shall consider fluctuations of
the condensate

Exercise. Which symmetry is broken by the condensate ?
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Using the Nambu-Gorkov basis we obtain

= i0y — £(p) + dpo” —A(z)e _A@)?
£=x ( A*(x)e 10y + £(p) — duo? > 4 X

which is rather compact.

[ Exercise. Write the Lagrangian using Xnew j

Note that the gap parameter appears as an off diagonal matrix. It is equivalent to a Majorana mass

term for neutrinos See for example F. Wilczek., arXiv:1401.4379

The dispersion laws of particles and holes are respectively

er = £op+ 2+ A2 &y =5 — /€2 + A2
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Free energy

At vanishing temperature

A? 1
9—6‘5/

The integral in this expression is ultraviolet divergent and can be regularized by considering the
S-wave scattering length

d’ 1
Betenf




Constraints

Compact stars
Several possibilities:

1) Fixed chemical potentials; only a)

2) Fixed total number density; a) and b)
3) Fixed differential number density; a) and\
4) Fixed number densities; a), b) and c) \

Ultracold atoms




Results for cold atoms

Mean field
analysis

Gap parameter Chemical potential

M.M et al. Phys.Rev. A74 (2006) 033606




FLUCTUATIONS




Introducing the fluctuations

We now expand around the mean-field solution, writing

(A@) =20 +n) )

* —_ T *
The partition function can be written as 4 = / Dn DnD\IJTD\I/e S[®',¥,n,n"]

Where the Wick rotated action is given by

-

e . —0ps — E(p) + Spo? —(A +n(x))e
S[W‘Ly‘lf,n,n]—/d x{X\AﬂLﬂ(x)\ —‘I’T< (A+n€(a:))eu - x4+§(1?)—5,uo3

\_




To find the effective action for the fluctutions, we integrate out the fermionic fields,
which can be done because the action is quadratic in these fields.

7 = /Dn*pne—s[nm*]

/d%{%mJﬁ(xﬂz} _{lTrlog( —0ps —E(D) + 0 —(A+7(x)) >+(5u—>—5u)}

2 —(A+n*(z))  —0z +&(P) +op

Exercise. Which change of basis have we done here ?

We expand the logarithm in increasing powers of 7 and 1"

Trlog(O + V) = Trlog(O) + Tr(§ : 7(—0—1V)“)
n=1




S, =8S9 + 8P+ 5@

/ V\lowest order non-trivial term

free energy of the system - . .
&y Y in the expansion of the action.

in the absence of fluctuations z : -
| Effective O action for the fluctuations

vanishes why?

2
\ Goldstone boson: breaking of U(1)

. . = associated with total number conservation
Higgs mode: radial oscillation

From the LO effective action we obtain

Lxg = A(at¢($))2 = g(ﬁqﬁ(x))z = C)\(x)Z - D((‘?t)\(x))Q =




Stability analysis




Role of the fluctuations

The fluctuations allow to probe the stability of the mean field solution. We are essentially
probing the functional space arounf the stationary point.

Lrns = AB:d(2))? — 2 (F())? — CA@)* + D@:A@))? —

E= 2
- = (VA@))

The stability of the system is guaranteed when all the coefficients are positive and if the free-
energy of the system is a global minimum.

A and D turn to be always positive. These are the kinetic coefficients, no surprises here.




Chandrasekhar-Clogston limit

0: no gapless fermionic mode
I: one gapless fermionic mode
I1: two gapless fermionic modes

OL/A,

QSZQN

At the right of the dashed line, metastable or unstable regions |
Stable gapless phase!!

M.M et al. Annals Phys. 325 (2010) 1987-2017




Gauging the U(1)

We have so far assumed that the U(1) is a global symmetry, what happens if we gauge it?

This happens if we switch on a charge. In this case the system becomes a superconductor.

The goldstone boson is “eaten” by the longitudinal component of the gauge field.

[ 8“¢—>A“j

Lo = AR} — S A% — ON@) + D@AR))? ~ - (VA(@))

T W_/

E
3

Debye mass squared

Meissner mass squared of the gluon
This remains unchanged: probes the radial direction

One of the stability condition is related with having a non-tachionic photon
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