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Nambu-Jona Lasinio (NJL) model 

High Density Effective Theory (HDET)

Low energy effetive theory

OUTLINE



From the previous lectures



• We have seen that we can easily solve a toy model with a local four Fermi 
interaction

• In the weak coupling limit, the phases with gapless fermionic modes are 
unstable

• The instability suggests that some inhomogenous phase dhould be realized

The path of these two lectures:

1) Build an EFT which is as similar as possible to the TOY MODEL

2) Study  crystalline color superconducting (CCSC) phase, which is one 
inhomogeneous candidate phase 



1. QCD is nonperturbative
2. Lattice simulations do not work (Barbour et al. 1986 Nucl.Phys. B275 296)

3. No experimental facility (so far) can reproduce the correct conditions

1. We do not know how to do computations
2. We do not have numerical methods for doing tests
3. We have no terrestrial lab for validating the theoretical results

The physics at high baryonic density is difficult to handle

We can use symmetries and analogies for obtaining qualitative and 
semiquantitative results

We can use compact stars as the  “lab”

The way out:

Let me refrase it:



Additional ingredients

We have to consider the typical environment of compact stars

• It is “cold”, with temperature of order tens of keV

• Matter is in weak equilibrium

• Matter is electrically neutral

• The strange quark mass might be comparable with the quark chemical potential

The first condition simplifies the treatment: we can take T=0.

The other conditions make the treament more complicated 



QCD Lagrangian

LQCD =
3X

i=1

 ̄i (i�µD
µ �mi + µi�0) i �

1

4
Fµ⌫
a Faµ⌫

Minimal coupling
Gluon kinetic term 
+ nonabelian interactionsChemical potential

Breaking of Lorentz symmetry

The fact that we can write the Lagrangian does not mean that we can solve it



However, we do not want to solve QCD.
We want to understand how things work at high density and low temperature

We want to do two things

1) Simplify the interaction; we have somehow to get rid of gluons

2) Simplify the structure; we have somehow to get rid of spinorial indices 

“Transform” QCD in a EFT that is as similar as possible to the TOY MODEL

We cannot get rid of color and flavor, because these are the symmetries that play a role 
in the condensation 



• Perturbatively the color antitriplet channel determines the attractive interaction 
THIS TELLS WHAT KIND OF CHANNEL WE WANT IN THE EFT

• Gluons are “screened”
THIS SUGGESTS THAT A LOCAL INTERACTION SHOULD NOT BE BAD

• “Active fermions” are close to the Fermi sphere
THIS TELLS THAT ANTIPARTICLES SHOULD NOT BE IMPORTANT 

• The residual symmetries and the low energy degrees of freedom
THIS SUGGEST THE FORM OF THE CONDENSATE AND OF THE LOW 
ENERGY EFT 

What we know



Nambu-Jona Lasinio (NJL) 
model

“Getting rid of gluons”



µ ⌘ µij,↵� = (µ �ij � µe Qij) �↵� +
2p
3
µ8(T8)↵��ijno minimal coupling

Color and electrical chemical potentials are introduced by hand. 
(in gauge theories the gauge fields that drive the system to a 
“neutral state”)

Simplifying the interaction
The most important part of QCD (for our puroposes) is the interaction between 
fermions and gauge fields

NJL Lagrangian LNJL =  ̄ (i�µ@
µ �m+ µ�0) + Lint



Local Fermi interaction

u u
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G

For the interaction term we try something that mimics QCD and that is simple to handle

Lint = GS

⇥
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• Analogous of the four-fermi interaction in the electroweak sector.

• Analogous of the interaction we have seen in the TOY MODEL

• The interaction diquark channel is in  the relevant color antitriplet

Two-flavor quark matter



1) No confinement

2) High energy cut-off

3) Non-renormalizable

4) Couplings have to be fixed

5) Missing Yang-Mills contributions (PNJL does a bit better) 

Shortcomings

NJL helps to have a qualitative and semiquantitative description 



Example: what happens changing the coupling
As we have seen in the previous lecture that at a fixed mismatch  changing the coupling 
we have different phases

The BCS-like gapless phase named g2SC is chromomagnetically unstable

This instability is the analologous of the instability we found in the two-level system
and in three-flavor quark matter in the gCFL phase

The qualitative aspect: “the gapless intermediate coupling phase is unstable” is 
trustable
What we do not know is in which of the three regimes above we are

• For GD/GS & 0.8, strong coupling, the 2SC phase is the only homoge-

neous stable phase

• For 0.7 . GD/GS . 0.8, intermediate coupling, the g2SC phase is allowed

for �µ > �2SC

• For GD/GS . 0.7, weak coupling, only unpaired quark matter is favored.

BEC-like

BCS-gapless

Unpaired phase

Two-flavor homogeneous phases



High Density Effective Theory
“Getting rid of the spinorial structure”



First we focus on noninteracting degenerate massless quarks

Then we shall add the condensate and the fluctuations  

Start from the QCD (or NJL) Lagrangian for obtaining a 
simpler Lagrangian with no Dirac structure 



• Identify relevant scales

• Momentum decomposition

• Projecting out negative energy fields

• Rewriting the Lagrangian with positive energy fields  

• Get rid of the Dirac structure

• Expanding the Lagrangian

Various steps



Relevant scales

NGB

HDET

QCDL FP

FP

FP + 6

+ b

6

b

L

L

In general, the presence of a hierearcy implies that one can develop an EFT

Fermi surface

gap parmater scale

full QCD here

Given the large scale µ the idea is to expand

L = L0 +
1

µ
LI +

1

µ2
LII + . . .



Momentum decomposition

µ

R

u

2b

µ

portion of the Fermi sphere

Momentum separation
p⌫ = µv⌫ + `⌫

`⌫ = (`0, `kv)where

therefore p0 = `0 p = (µ+ `k)v

v⌫ = (0,v) |v| = 1

velocity dependent fields

 (x) =

Z
dv

4⇡
e

�iµv·x
 v(x)



Antiparticles, at the leading order, decouple

Positive and negative energy fields

✏± = �µ± |p|Positive and negative energies

p = (µ+ `k)vconsidering that

✏+ = `k

✏� = �2µ+ `k

particle on the top of the Fermi sphere

antiparticle deep in the Dirac sea

Energy projectors

 ±,v(x) = P± v(x)

P± =
1± �0� · v

2

Exercise: show that this 
operator project positive and 
negative energy states 

Positive and negative energy 
velocity dependent fields



Rewriting the   Lagrangian{
no spinorial structure

light-like vecotors 

{

“residual” spinorial structure

L =
X

v

 †
+iV ·D + +  †

�(2µ+ iṼ ·D) � +  †
+�

0i/D? � +  †
��

0i/D? +

Lµ⌫ =
V µṼ ⌫ + V ⌫ Ṽ µ

2
Pµ⌫ = gµ⌫ � Lµ⌫

V µ = (1,v) Ṽ µ = (1,�v)

Aµ
? = Pµ⌫A⌫ = (0,A� (A · v)v)

Aµ
k = Lµ⌫A⌫ = (A0, (A · v)v)

velocity projectors

Exercise. Show that for any vector field



Disappearence of spinorial structure? How does that happen?

for large chemical potentials

J

⌫(x) =  ̄(x)�⌫ (x) =

Z
dv

4⇡

dv0

4⇡
e

�iµ(v0�v)·x
 ̄v0(x)�⌫ v(x)

Consider the current

v0 = v this is a “selection rule”

Gordon decomposition (for massive fields)

since then

ū(p0)�µu(p) = ū(p0)

✓
pµ + p0µ

2m
+ i

�µ⌫q⌫
2m

◆
u(p)

v0 = v
p⌫ = µv⌫ + `⌫

p0⌫ = µv⌫ + `0⌫

ū(p0)�µu(p) ' µ vµ

m
ū(`0)u(`)Show that



Integrating out the negative energy fields
iV ·D + + i�0 /D? � = 0

(2µ+ iṼ ·D) � + i�0 /D? + = 0
Equations of motion:

 � = �i
1

2µ+ iṼ ·D
�0 /D? +

The negative energy states represent the “small” component 
The positive energy states are the “large” component

then we get

Integrating out the “small” component we obtain the 
HDET LAGRANGIAN

LI =

Z
dv

4⇡


 †
+(iV ·D) + � Pµ⌫ †

+Dµ
1

2µ+ iṼ ·D
D⌫ +

�

L = L0 +
1

µ
LI +

1

µ2
LII + . . .



La =

Z
dv

4⇡
 †
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�+ ⇢ iṼ µ@µ + Ṽ µAµ

◆
 

Lb =

Z
dv

4⇡
 †Pµ⌫AµA⌫

✓
�2µ+ V · `+ V ·A ��
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µ
LI +

1

µ2
LII + . . .

Turning on pairing and fluctations
Nambu-Gorkov field
(a bit more complicated than in the toy model)

with

with L = (2µ+ Ṽ · `� Ṽ ·A)(�2µ+ V · `+ V ·A)��2 � i✏Aµ = @µ�

La is basically the TOY MODEL Lagrangian

L
toy model

=  †
✓

i@
0

� ⇠(p) + �µ�3 ��
�⇤ i@

0

+ ⇠(p)� �µ�3

◆
 



Integrating over the positive energy fields  (as in the toy model, but here we keep Δ as a field) 

the full inverse propagator is S�1 ⌘ S�1
MF + �

As in the toy model we now expand

� = �⇢ + �1 + �2 + �3 + �4 + . . .

Tr ln (1 + SMF�) = Tr

" 1X

n=1

(�1)n+1

n
(SMF�)

n

#

�⇢ =

✓
0 �⇢
�⇢ 0

◆
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Z
Z0

⇠

R
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⇤
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h
1
g

R
d

4
x �

2
i
det[S

�1
]

1/2

det[S

�1
0 ]

1/2

Effective action

Se↵ ⇠ � i

g

Z
d

4
x

⇥
⇢

2 + 2⇢�
⇤
� i

2
Tr ln (1 + SMF�)



quark

“gauge boson”Minimal coupling

Nonminimal couplings

Interaction with fictitious gauge bosons

�1 =

✓
�V ·A 0

0 Ṽ ·A

◆
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L0
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[V ·A(2µ+ Ṽ · `) + Ṽ ·A(2µ� V · `)]� �1

L0
Pµ⌫AµA⌫

�4 =
�3

L0
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One-point function

Self-energy

after renormalization

induced metric

L1 = �iTr[S�]
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c2s = 1/3

gµ⌫ = diag(1,�1/3,�1/3,�1/3)



Four-point function

L3 = �i
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Three-point function



Low energy effective theory



Nambu-Goldstone bosons of CFL 
Since the color superconductors are realized in compact stars (ultracold systems) we can 
integrate out the fermionic degrees of freedom, focusing on the low energy NGBs  

Le↵ =
f2
⇡

4
Tr[@0⌃@0⌃

† � v2⇡@i⌃@i⌃
†]

Casalbuoni and Gatto, Phys. Lett. B 464, (1999) 111

⌃ = ei�
a�a/f⇡ �a describes the octet (⇡±,⇡0,K±,K0, K̄0, ⌘)

Octet

v2⇡ =
1

3

f2
⇡ =

21� 8 log 2

18

µ2

2⇡2

Since chiral symmetry is explicitly broken by the quark masses, these are pseudo NGBs



�Le↵ = Tr(M†⌃+ ⌃†M)

�Le↵ = �cDetM Tr(M�1⌃)� c0 Det⌃ [Tr(M⌃†)2 + (TrM⌃†)2] + h.c.

U(1)Anot allowed by                 symmetry 

Masses
In standard chiral perturbation theory, one considers a mass term like 

Thus, we are forced to  terms like

Son and Sthephanov, Phys. Rev. D 61, (2000) 74012 

m2
⇡± = A (mu +md)ms

m2
K± = A (mu +ms)md

m2
K0,K̄0 = A (md +ms)mu

kaons are lighter than mesons!

⇡+ ⇠ (d̄s̄)(us)

K+ ⇠ (d̄s̄)(ud)

A =
3�2

⇡2f2
⇡

Qualitative reason:
has strangeness 0

has strangeness 1



“H-Phonon”
There is an additional massless NGB, ϕ, associated to U(1)B         Z2

Quantum numbers ϕ ~ <Λ Λ > like the H-dibaryon of Jaffe, Phys. Rev. Lett.  38, 195 (1977)

Effective Lagrangian up to quartic terms

Le↵(') =
3

4⇡2

⇥
(µ� @0')

2 � (@i')
2
⇤2

bulk “sound” or phonon

classical field long-wavelength
fluctuations

'(x) = '̄(x) + �(x)

Son, hep-ph/0204199

Phenomenology

Dissipative processes  due to vortex-phonon interaction damp r-mode oscillations of 
CFL stars rotating at frequencies < 1 Hz 

               Phys. Rev. Lett. 101, 241101 (2008) 

http://arXiv.org/abs/hep-ph/0204199
http://arXiv.org/abs/hep-ph/0204199

