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CONDITIONS IN COMPACT STARS
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1. QCD is nonperturbative
2. Lattice simulations do not work (Barbour et al. 1986 Nucl.Phys. B275 296)

3. No experimental facility (so far) can reproduce the correct conditions

1. We do not know how to do computations
2. We do not have numerical methods for doing tests
3. We have no terrestrial lab for validating the theoretical results

The physics at high baryonic density is difficult to handle

We can use symmetries and analogies for obtaining qualitative and 
semiquantitative results

We can use compact stars as the  “lab”

The way out:

Let me refrase it:
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Additional ingredients

We have to consider the typical environment of compact stars

• It is “cold”, with temperature of order tens of keV

• Matter is in weak equilibrium

• Matter is electrically neutral

• The strange quark mass might be comparable with the quark chemical potential

The first condition simplifies the treatment: we can take T=0.

The other conditions make the treament more complicated 
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Large quark number chemical potential
Quark number densities of “free” quarks  

ni = Ci

k3F,i

3⇡2
kF,i =

q
µ2
i �m2

i

300 MeV < µ < 1 GeV

Only u,d,s quarks are relevant. Light quarks can be treated as massless. 

Fermi mismatch (unpaired quark matter)

µ =
µu + µd + µs

3

pFd = µ+
1

3
µe pFu = µ� 2

3
µe pFs ' µ� 5

3
µe

electric neutrality

weak equilibrium

µu = µd � µe

µd = µsu+ d $ u+ s
u ! s+ ē+ ⌫e
u ! d+ ē+ ⌫e

2

3
nu � 1

3
nd �

1

3
ns � ne = 0

µe '
m2

s

4µ
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Fixed mismatch, increasing coupling
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CFL

Whenever there is BCS pairing, the Fermi surfaces have to match.

If the mismatch is too large, pairing cannot occur. The largest chemical potential mismatch which allows 
paring is named the Chandrasekhar-Clogston limit (derived it for weakly coupled two level systems)

quasiparticles with mixed color and flavor 

no color intreaction “strong” color intreaction
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Chemical potential stress on the CFL phase
At a given interaction strength a  large chemical potential difference tends to disrupt the CFL paring

Free energy gain / �CFL

Free energy cost / �µ ⇠ M2
s

4µ

CFL favored for

�CFL > c
M2

s

µ

Various possibile transitions:

• 2SC phase

• gapless CFL phase (unstable)

• CFL-K0

• Crystalline color superconductors
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CFL-K0 phase
Kaons could be introduced for “stabilyzing” the system

When there is a chemical potential mismatch there is a lack of strange quarks

d

u

s

PF

red green blue

Adding K0 ⇠ “ds̄”

we can effectively increase the number of strange 
quarks and reduce the number of d quarks 

P.F.. Bedaque and T. Schäfer, Nucl.Phys. 
A697 (2002) 802-822

Kaon condensation occurs for Ms & m1/3
u �2/3

CFL
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gCFL phase
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CFL

unpaired

2SC

g2SC

2SCus

M.M et al. Phys.Lett. B605 (2005) 362-368,

h ↵iC�5 �ji /
3X

I=1

�I"
↵�I✏ijI Alford et al. Phys.Rev.Lett. 92 (2004) 222001 

Phase with gapless modes may be favored. 
One assumes that pairing is channel dependent and finds that some quasiparticles are massless 

It is chromomagnetically unstable
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Aiming at a simpler system

•  Quark condensate can break several symmetries. 

FIRST UNDERSTAND HOW THINGS WORK FOR GLOBAL AND 
GAUGE SIMMETRIES.

•   The analysis of complictae structures needs some preiminary work

TOY MODEL WITH MISMATCHED FERMI SPHERES

• Adding degrees of freedom will only make the game more complicated

AND INTERSTING 
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TOY MODEL
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Two non-relativistic  species of fermions            1  2

µ1 = µ+ �µ
µ2 = µ� �µ

different chemical potentials

equal mass m

 t = ( 1, 2)Defining

Lfree =  † �i@t � E(p) + µ+ �µ�3
�
 

Two-level system

SYSTEM

PF
1

PF
2

No interaction

L = Lfree + LI
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States with negative energy correspond to holes

⇠(p) = E(p)� µ =
p2

2m
� p2F

2m
' pF

m
(p� pF ) = vF `

Residual momentum and energy can be above or below the Fermi surface, 
therefore they can be positive or negative

“residual energy” “residual momentum”

Dispersion law ✏ = ±�µ+ ⇠(p)

The effect of the chemical potential mismatch is a shift of the energy

Lfree =  † �i@t � ⇠(p) + �µ�3
�
 

inverse propagator

{
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Lfree =  † �i@t � ⇠(p) + �µ�3
�
 =

1

2

⇥
 † �i@t � ⇠(p) + �µ�3

�
 +  

�
i@t + ⇠(p)� �µ�3

�
 ⇤⇤

1st step: Write

� =
1p
2

0

BB@

 1

 2

 ⇤
1

 ⇤
2

1

CCA2nd step: Introduce the Nambu-Gorkov spinor

Nmbu-Gorkov basis

Using the Nambu-Gorkov spinor 

write the Lagrangian in a matrix form 

�new =
1p
2

0

BB@

 1

 ⇤
2

 ⇤
1

 2

1

CCA

Exercise

Lfree = �†
✓

i@t � ⇠(p) + �µ�3 0
0 i@t + ⇠(p)� �µ�3

◆
�

3rd step: Rewrite the Lagrangian in the matrix form
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Exercise. Compute the determinant of the inverse propagator and show that the dispersion laws are 
given by 

✏± = ±�µ+ |⇠(p)| ✏̂± = ±�µ� |⇠(p)|
particles holes

•  In the Nambu-Gorkov basis there is a DOUBLING of the degrees of freedom

     Particle and hole states appear as zeros of the inverse propagator.   

• Of course the new theory is competeley equivalent to the standard one. 

   So, why is it useful?
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LI =
�

2
 

†
s(x) 

†
t (x) t(x) s(x)

We use a local Fermi interaction

Basically it is a smibosonization of the theory or a Hubbard-Stratanovich transformation.

Keeping the x dependence of the condensate means that we shall consider fluctuations of 
the condensate

Turning on the interaction

The effect of the attractive interaction is to produce a difermion condensate

h s(x) t(x)i =
�(x)

�

"st

 †
s 

†
t t s ! h †

s 
†
t i t s +  †

s 
†
t h t si � 2h †

s 
†
t ih t siMean field:

Exercise. Which symmetry is broken by the condensate ?
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L = �

†
✓

i@t � ⇠(p) + �µ�

3 ��(x)"
�⇤(x)" i@t + ⇠(p)� �µ�

3

◆
�� |�(x)|2

�

Using the Nambu-Gorkov basis we obtain

which is rather compact.

Note that the gap parameter appears as an off diagonal matrix. It is equivalent to a Majorana mass 
term for neutrinos See for example  F. Wilczek.,  arXiv:1401.4379

Exercise. Write the Lagrangian using  �new

✏± = ±�µ+
p

⇠2 +�2 ✏̂± = ±�µ�
p
⇠2 +�2

The dispersion laws of particles and holes are respectively
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⌦ = �1

2

2X

a=1

Z
d3p

(2⇡)3
{✏a + 2T log(1 + e�✏a/T

)� ⇠a}+
�

2

G

⌦ =
�2

G
� 1

2

Z
d3p

(2⇡)3

h
|✏1|+ |✏2|� 2⇠

i

The integral in this expression is ultraviolet divergent and can be regularized by considering the 
S-wave scattering length

m

4⇡a
= � 1

G
+m

Z
d3p

(2⇡)3
1

p2

Free energy

At vanishing temperature
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� = G�

Z

d3p

(2⇡)3
1� f(✏1)� f(✏2)

2Ep
,

n =

Z

d3p

(2⇡)3

⇢

1� ⇠

Ep
[1� f(✏1)� f(✏2)]

�

,

�n =

Z

d3p

(2⇡)3

n

f(✏1)� f(✏2)
o

.

1) Fixed chemical potentials; only a)
2) Fixed total number density;  a) and b)
3) Fixed differential number density; a) and c)
4) Fixed number densities;  a), b) and c)

Several possibilities:

a)

b)

c)

@⌦

@�
= 0

@⌦

@µ
= �n

@⌦

@�µ
= ��n

Constraints

Compact stars

Ultracold atoms
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Results for cold atoms
Phase diagram

Gap parameter Chemical potential

Mean field
analysis

M.M et al. Phys.Rev. A74 (2006) 033606
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FLUCTUATIONS
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�(x) = �0 + ⌘(x)

We now expand around the mean-field solution, writing

Introducing the fluctuations

Z =

Z
D⌘⇤D⌘D †D e�S[ †, ,⌘,⌘⇤]

Where the Wick rotated action is given by

S[ †
, , ⌘, ⌘⇤] =

Z
d

4
x

⇢
1

�

|�+ ⌘(x)|2 � †
✓

�@

x

4 � ⇠(p) + �µ�

3 �(�+ ⌘(x))✏
(�+ ⌘

⇤(x))✏ �@

x

4 + ⇠(p)� �µ�

3

◆
 

�

The partition function can be written as

23



To find the effective action for the fluctutions, we integrate out the fermionic fields, 
which can be done  because the action is quadratic in these fields. 

Z =

Z
D⌘⇤D⌘e�S[⌘,⌘⇤]

S[⌘, ⌘

⇤
] =

Z

d

4
x

n

1

�

|�+ ⌘(x)|2
o

�
n

1

2

Tr log

✓

�@

x

4 � ⇠(p) + �µ �(�+ ⌘(x))

�(�+ ⌘

⇤
(x)) �@

x

4
+ ⇠(p) + �µ

◆

+ (�µ ! ��µ)

o

We expand the logarithm in increasing powers of

Tr log(

ˆO +

ˆV ) = Tr log(

ˆO) + Tr

⇣ 1X

n=1

�1

n
(� ˆO�1

ˆV )

n
⌘

⌘ and ⌘⇤

Exercise. Which change of basis have we done here ?
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S[⌘, ⌘⇤] = S(0) + S(1) + S(2) + ...

free energy of the system 
in the absence of fluctuations

vanishes why?

 lowest order non-trivial term
 in the expansion of the action.
Effective LO action for the fluctuations 

⌘(x) =
1p
2
(�(x) + i✓(x))

Goldstone boson: breaking of U(1) 
associated with total number conservation

Higgs mode: radial oscillation

L�,� = A(@t�(x))
2 � B

3
(~r�(x))2 � C�(x)2 +D(@t�(x))

2 � E

3
(~r�(x))2

From the LO effective action we obtain
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Stability analysis
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The stability of the system is guaranteed when all the coefficients are positive and if the free-
energy of the system is a global minimum.

Role of the fluctuations

The fluctuations allow to probe the stability of the mean field solution. We are essentially 
probing the functional space arounf the stationary point.

L�,� = A(@t�(x))
2 � B

3
(~r�(x))2 � C�(x)2 +D(@t�(x))

2 � E

3
(~r�(x))2

A and D turn to be always positive. These are the kinetic coefficients, no surprises here.
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 δµ/∆
0

-1

0

1

 µ
/∆

0

0.707

0 I

II
0: no gapless fermionic mode
I: one gapless fermionic  mode
II: two gapless fermionic modes

At the right of the dashed line, metastable or unstable regions

⌦s = ⌦N

E=0 F=0
Chandrasekhar-Clogston limit

Stable gapless phase!!

C=0

M.M et al. Annals Phys. 325 (2010) 1987-2017
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Gauging the U(1)
We have so far assumed that the U(1) is a global symmetry, what happens if we gauge it?

This happens if we switch on a charge. In this case the system becomes a superconductor.

The goldstone boson is “eaten” by the longitudinal component of the gauge field.

Meissner mass squared of the gluon

One of the stability condition is related with having a non-tachionic photon

@µ� ! Aµ

Debye mass squared

L�,A = AA

2
0 �

B

3
A2 � C�(x)2 +D(@t�(x))

2 � E

3
(~r�(x))2

This remains unchanged: probes the radial direction
{
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