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Gamma-Ray Bursts (GRBs)
 Variable `bursts’ of gamma-rays lasting milliseconds to minutes.

 Discovered by the VELA satellites in 1967 when monitoring
nuclear test ban treaty (declassified 1972)

 GRBs occur about once per day across the whole sky.
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“When you’ve seen one GRB…. you’ve see one GRB”





Barraud et al. 2002
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BATSE Bursts (from Nakar 2007)
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  Gamma-rays are difficult to focus.
The precise location of a GRB on the
sky is difficult to pin down accurately.

  ‘Consensus’ opinion in the 1970s & 80s:
GRBs come from within our Galaxy.

The Dark Ages (1972-1991)



  Gamma-rays are difficult to focus.
The precise location of a GRB on the
sky is difficult to pin down accurately.

  ‘Consensus’ opinion in the 1970s & 80s:
GRBs come from within our Galaxy. Compton Gamma-Ray

Observatory (1991-2000)

The Dark Ages (1972-1991)

The Milky Way

“The Great Debate”







GRBs as Ultra-Relativistic Explosions

Epeak

Large (cosmological) distances ⇒
huge energies Eγ ~ 1051-1054 ergs ~ 10-3 - 1Mc2

Γ~ 100-1000

v ~ 0.99999 c

fast variability δtvar ~ 10 ms ⇒ 
compact source Rmax~ c/δtvar~107 cm

GRB Spectrum
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radius of 1st photon :  R1 = ct
radius of 2nd photon :R2 = c(t " #t) + $c#t

#tobs ~ (R1 " R2) /c ~ (1" $)#t ~
$ ~1

2#t /%2

1st photon leaves at t=0

2nd photon leaves Δt later.. …over which time the gamma-emitting
shell has moved this distance

Why GRBs must originate from relativistic outflows





•  If GRBs originate from far
away, they must be very
energetic explosions.
• Space is filled with tenuous
gas.  When the explosion runs
into the gas, the resulting shock
will accelerate electrons.  This
powers synchrotron emission
from radio to X-rays.

The Afterglow Revolution (~1997)

collisionless shock - A. Spitkovsky
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Beppo Sax

z > 0.835!



Deceleration of a Relativistic Jet
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E = "#2r3 = const
t ~  r/2c#2 $

Zhang &
 M

acFadyen 2009

! 

" syn # B$ e
2

t1

t2

t3







G
eh

re
ls

, R
am

ire
z-

R
ui

z,
 &

 F
ox

 2
00

9;
 d

at
a 

fro
m

 P
ih

ls
tro

m
 e

t a
l. 

20
08

Resolving the Radio Afterglow => Relativistic Motion

! 

z = 0.168;  DA ~ 600 Mpc
" = #ct

DA
~ 0.2 # t

100 d( )mas
$ # ~ 1

(days)
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GRBs as Jetted Relativistic Explosions

Once corrected for
beaming, the true energies
of GRBs are less extreme

Θjet ~ 5-10o

jet opening angle

Jet Break



Implications for the “Central Engine”
• Rapid variability dt ~ 10 ms ⇒  R < c dt ~ 103 km
• Relativistic velocities v ~ c
• Huge energy release ~1050-1052 ergs ~ 10-4 -10-2 Mc2

⇒ Catastrophic birth or destruction of stellar mass
compact objects (neutron stars or black holes)

BH

NS

~day 1

Fender et al. 2004

~day 3

~day 5

NS Circinus X-1



Central Engine
GRB / Flaring

Relativistic Outflow (Γ >> 1)

Afterglow

1.  What is jet’s composition? (kinetic or magnetic?)

2.  Where is dissipation occurring? (photosphere? deceleration radius?)

3.  How is radiation generated? (synchrotron, inverse-compton, hadronic?)

GRB Emission: Still Elusive!

~ 107 cm



Prompt Emission Models
Internal Shocks (Synchrotron)

“Photospheric” Dissipation (IC Scattering)

• jet variability ⇒ internal collisions ⇒
shocks ⇒ particle acceleration + B field
amplification ⇒ synchrotron

pros: shocks inevitable in variable flows

cons: low radiative efficiency, requires
fine tuning of shock parameters

• GRB emission = thermal spectrum
Comptonized (producing high energy
power-law tail) by hot electrons near
photosphere.

pros: ~MeV spectral peak set by
photosphere temperature (robust)

cons: source of electron heating
uncertain (shocks, collisions,
reconnection)
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GLAST =
Fermi

~50 MeV - 100 GeV



• Extreme Bursts (e.g. 080916C: Eiso = 8.8 x 1054 ergs )

• Distinct GeV Component
– Delayed wrt MeV photons
– Slow Decay ( ~ t -1.5 )
- Origin: Prompt? Afterglow? (e.g. Kumar & Barniol Duran 09; Ghirlanda+09)

GBM (8 keV - 40 MeV)
LAT (20MeV - 300 GeV)

090902B
 (Ferm

i C
ollaboration 09)Ghirlanda et al. 2009

090510



Beloborodov et al. 2011







X-Ray Afterglows in the Swift Era
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‘Canonical’ X-Ray Light Curve

Steep Decay Phase

GRB Here

Late Flares

Plateau Phase









BATSE Bursts (from Nakar 2007)

short

Gamma-Ray Burst Durations

Duration

long



GRB  030329 and the Supernova Connection

Exploding “Wolf-Rayet” Star

radius R~1011 cm
(3 light-seconds).





Gamma-Ray Burst Galaxies
(courtesy A. Fruchter)

⇒ Long GRBs come from the
deaths of massive Stars

GRB  030329 and the Supernova Connection

Exploding “Wolf-Rayet” Star

radius R~1011 cm
(3 light-seconds).




