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Brief history and overview of superfluidity.

In Neutron Stars (NS) both superfluidity and
superconductivity are likely to be present.
Indeed both the neutron and the proton

components are expected to be superfluid in

some density region of the NS and a charged
superfluid can be identified as a
superconductor. Both have a basic relevance
for many phenomena that occur in NS.
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Let us start with a brief survey of
superfluidity , which actually was discovered
after superconductivity. It was first realized in
the boson 4He liquid. We consider for
simplicity this case since, as we will see, some
of the properties of boson superfluids can be
transferred to Fermion superfluids. Few years
after the discovery that liquid 4He at a
temperature 1. of about 2.2 K undergoes a
phase transition, it was realized
(independently Kapitza and Meisener 1938)
that below 1. the liquid has some peculiar
properties, completely different from an usual
classical liquid.



Schematically

1. Below 1. the viscosity of the fluid drops to
a vanishing small value.

2. "Fountain effect” : heath transfer induces
matter transfer.

Due to property 1 the term "supefluid” was
iIntroduced. It was London who first realized
correctly that the superfluid phenomenon is
associated with Bose-Einstein condensation
(BEC). Nowadays perfect BEC is produced in
experiments on cold atoms.



Let us consider an ideal (non interacting) gas
of bosons in a large container.

1
") = (B — 10/ — 1 )

under the condition Y. n(k) = N, the total
number of particles.




We can imagine a macroscopic occupancy at
a non-zero momentum

j = pk/m macroscopic current

o(r)

exp(ikr) common wave function

Is the "super-current” stable 7 Why the fluid
below T, is frictionless (superfluid) 7

] — Z_TI ,«"1 A€ ,»’I1 J— ,,"{1 ,"{1* o
J = 5 (W'Y — pVy*) current
p . L .
d—g + V] =0 local continuity equation
p = ||? density




Let us put

(r,1) = \/p(r, 1) exp(=iS(r,1))
then j(r,t) = Dpo(r,t)VS(r,t)

m

ihVS(r,t)/m = velocity v at the point (r,t).

If we assume that the boson condensate is in
some wave function ¢(r,t), the current is a
macroscopic current, which is N times the

one associated with a single particle. It
follows that the evolution of the possible
condensate described by the field o(r,t) is
characterized by an irrotational flow

rotv =V xVS(r,t) =0



No closed fluid stream can be present. In the
initial irrotational flow, a finite value of
circulation can appear only through some
topological change of the flow, i.e. a
discontinuity in the flow pattern. T herefore,
for a smooth evolution of the condensate, an
initial irrotational flow will remain irrotational.

S(r,t) determines a "potential flow". In the
long wavelength regime, the condensate can
be described by Euler equation

%V + vVv + Vu(r,t) = 0

where u(r,t) is the local chemical potential.



Neglecting the term quadratic in v,
V(&S(r.t) + p(rt)) =0
G t) + p(r,t) = C

To this equation we can associate the
continuity equation, with the current

i(r,t) = p(r,)v(r, 1) = p(r, ) VS(r, 1)
O pu(r,t) + s2AS(r,t) = 0
ps? = Ou/op

From Euler equation and the continuity
equation one gets the standard wave equation



A2
%ZS(r,t) = s2AS(r,t)
where s is the velocity of wave propagation.
e NoO local equilibrium

e Restoring force from particle-particle
Interaction

e Quantization : phonons w = sq
Like photons for the Electromagnetic Field

e [ hey exhaust the total excitation strength
(to be demonstrated)



Let us consider an external body of mass M
which is moving with a velocity V inside a
superfluid.

Dissipation is present if transfer of energy
occurs between the body and the fluid, i.e. if
some excitations of the fluid with momentum
q and energy w(q) is produced by the motion
of the body




Energy and momentum conservation

MV = MV' + q

AIMV2 = IMV'? + w(q)
From these equations one gets
¢ =2M[V.q-<D] =2M[V-q - 3]

T his last relation cannot be satisfied if

V' < s, no dissipative process is possible. For
a quadratic g-dependence of w(q), the
equation can be satisfied for any value of the
velocity V and the motion is damped.



T he same is true if the body is at rest and

the fluid is moving (Galilei transformation), in
particular for a flow through a pipe

T he phenomenologic%l critical velocity is at
least two orders of magnitude smaller.

eSome other type of excitations that can
produce dissipation at much smaller velocity.

e | hese excitations must contain some
rotational flow

e | he overall superfluid flow is not any more
irrotational everywhere



e | hey must correspond to some discontinuity
or singularity

VORTEX'!

It can be described, in its simplest
configuration, by a singular straight line
around which a fluid circulation takes place.
Around the singularity the flow is still
irrotational, which means that the value of
circulation iIs constant along any path going
around the straight line

[ = §v.-dl = cost



For a cylindrically symmetric vortex (and
stationary) the flow velocity v(r) is
tangential, and then

I
v (T> — 2nr

T he singularity at » = 0O is apparent.

r all W
- W,

Q "




In fact

rot (v(z,y)) = 16(x)d(y)
Of course the singularity is an idealization
and the vortex has actually a normal core.

he condensate wave function v¥» must be of
the type

w(r,¢) = n(r) exp(ing)
Since ¥ (r,¢») must be single-valued, n must
be an integer. nh is the angular momentum
of each particle along the vortex axis, and

therefore circulation around the vortex is

quantized
¢p-dl = mév-dl = 2mnh

In agreement with B-S quantization.



T he straight line configuration is the one
with the lowest energy, because the energy is
proportional to the length (as we will see).
Where can a vortex end 7

e At the the border with the normal phase or
the empty space.

e It can close on itself : vortex ring.

T he first possibility is favoured in the case
the superfluid is inside a rotating container,
like in Neutron Stars




Natural vortex ring

Vortex ring from the vulcan Etna



In a rotating vessel the superfluid cannot
follow the rotation since this would imply the
presence of a rotational flow

rotv(r) = 2Qz
T he only possibility for the superfluid to
follow the rotation is the formation of a
certain number of vortices, co-rotating with
It. The superfluid rotates as a rigid body,
when it is seen at macroscopic level.
However, the value of the curl vanishes

everywhere except at the core of each vortex,

so that
N = mQR?/h

IS the total number of vortices.
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Energy and stability of vortices.

Intrinsic energy of a rotating superfluid
FE = FEy — wJ;
Eqy energy in the inertial reference frame

J. total angular momentum
Weakly interacting boson gas

_ 2 3. _ 1 2 [ gxdr
E = mzf v(r)<psd>r = smpsl= [dzs
— m[ s L m(R)

a vortex core radius
R cut-off distance

L vortex length



T he total angular momentum of this vortex is
given by h times the number of particles

J. = T R?L ps I

R

The formation of the vortex will be favoured

above a critical angular velocity we

we =~ IN(4)

T
Because the formation energy of a vortex is
proportional to the square of the angular
momentum, the formation of a n = 2 vortex
IS not favoured with respect to the formation
of two n = 1 vortices. A rotating superfluid
IS therefore expected to contain only vortices

with one quantum of vorticity.



T here is an interaction among vortices. Let
us consider for simplicity two vortices. The
total velocity flow will be just the sum of the
two flows

V= V]+Vp
and the energy

E = FE{ + E> 1 2772[7‘}12&5'”%

Vorticity of the same sign : repulsion

Vorticity of opposite sign : attraction

Similarity with the magnetic interaction
between two conducting wires. A set of
vortices form a triangular lattice (ideal case).



Microscopic approach

T he quantization can be performed on a
microscopic basis. Part of the theory of the
excitations in a boson superfluid can be
transferred to the fermion case.

Hamiltonian
h2}:2

H = 3 ( Sy ﬂ) +

q T T
T Z{k} a:kla'k2a'k3a'k45k]_ +k2 «,k3+k4

ar T, ay : the creation and annihilation
operators at momentum k.

T his Hamiltonian has to be viewed as an
effective one.



Due to the interaction, even at zero
temperature the condensate will be partly
depleted, but we will assume that the
condensate still contains a macroscopically
large number of particles Ng

[No+ 1> (No—+ 1)%
1
|NO —1> (No)f

a,g|No >
a.olNo >

T hen a.g and ag can be substituted by their
(macroscopic) average value /Ng and keep
only the terms with the largest powers of ag
or ap In the interaction term of the
Hamiltonian.



Hiny = 541 N§ + 2No Zk;éo(a;[{a'k + aﬁ]t_ka'_k)

+ No Zk;ﬁo(a;r{aik + aga_y) |

Inconvenience : this interaction does not
conserve exactly the number of particles. The
chemical potential x can be used as a

Lagrange multiplier to conserve the average
number of particles.

UK X — ’UkOJT_k

A =
T T

Canonical transformation : «,al boson

operators
2 2 1

uk - ,Uk -_—



The Hamiltonian becomes, with number
density n = Ng/V

H = 3Vgn2 + ¥/[(ek + ng)ug — nguyny]
_|_% S (e + ng)(u.l% + zl%) — 2nguy vy ] (OzLOfk + Oé'T_kOé'_k)

+5 5 [ng(ug + v2) — 2ugv (e + ng)] (@{;O"T—k + aka_k)

T he diagonalization is obtained by the
vanishing of the last term. One finds

uf =3I+ 1 5 v = S - 1]
By, = /(e +19)? — (ng)? = /e (e + 2ng)



With these parameters v and v, the
Hamiltonian reads

H = Ep + 5 Y0 Ex(ay oy ‘|‘0~"T_ka’—k)

T he operators a,.lT{a,k have eigenvalues O, 1, 2

Eo
Ek:

OV

T
X

ground state energy
excitation energies of momentum k
Vo>= 0: "« - vacuum”

W > . excited state at energy Ey

T hese excited are the quantized phonons. All
the excitations are sets of independent
phonons.



The energy Ey is linear in the momentum Kk,
INn agreement with the macroscopic
treatment. This is the " Goldstone mode” |, as
expected in broken symmetry phase

transitions.

he order parameter is the

condensate ag, and the broken symmetry is
the gauge invariance of the Hamiltonian

ay — ape'™

he order parameter and the ground state

are not gauge invariant. The Goldstone mode
corresponds to a slow modulation in space
and time of the gauge phase.



Since there is no restoring force, at k = 0 the
energy must vanish. This is the physical basis
of the general Goldstone theorem. The
microscopic calculation satisfies the theorem,
but it gives something more

e [ he velocity of the Goldstone mode is
explicitly related to the particle-particle
iInteraction.

e [ he system is stable only If the interaction
IS repulsive.

Sum rules method shows that the energy of
Mmulti phonons states is proportional to higher
powers of the momentum.



Finite temperature

Boson condensation occurs at a given critical
temperature 1., which is a function of p. For
a free gas at 1. the chemical potential

vanishes

— 1 f k2 dk
P = 52 &xpe(B)/To) =1
and then
T. = Cp2/3
T 'V"cf \“\ T
H /v./ ' »-tc_

a1
N
-
Q
%




. Gas of thermally excited quasi-particles :
normal component

- Reduction of the condensate density

- Two-fluid model of superfluidity at finite
temperature

- Appearance of viscosity, due to the normal
component

- T he flow of the supefluid component is still
frictionless.



Fermion superfluidity and Nuclear Matter

Historically superconductivity was the first
evidence of frictionless flow. It was in fact
discovered in 1911 by H.K. Onnes, who found
that some metals at temperature lower than
few degrees Kelvin were showing zero
electrical resistivity, hence the name. Up to
present times it was possible to put only
upper Iimit to the value of resistivity. For
iInstance in some experiment an electrical
current was circulating freely (i.e. no voltage)
In a metallic ring for a couple of year without
showing any loss of intensity.



No macroscopic occupation number is
possible for fermions. How superfluidity is

possible 7

. A satisfactory theory of superconductivity
was found only in the late fifties, the
Bardeen-Cooper-Schiffrer (BCS) theory

. Since then it was expected that liquid 3He,
which is a fermion system due to the nuclear
spin (1), could also display superfluidity

- Only In the seventies it was indeed found
that 3He becomes superfluid below about
1073 K .



T he standard BCS theory

If the particle-particle effective interaction at
the Fermi surface is attractive, the system Iis
unstable with respect to a rearrangement of
the Fermi surface with the formation of
correlated pairs of particles, irrespective of
the strength of the interaction

Roughly speaking the particles form bound
pairs around the Fermi surface. Consider the
scattering of two particles

T(K  kw) = vk k)

—l—QTZ fl. k//Qdk//f( (k’/ /{7”) ;1//2 T(/C” ,QJ)



e [ he total momentum of the two particles is
zero (scattering around the Fermi surface).
Then the relative momenta k, k' are the
modulus of the (opposite) momenta of the
two interacting particles.

o ki < k' < ke

Assuming a smooth interaction, one can take
' = kpoin oK' E"). One gets

T(kp, kpyw) = ok

If the interaction vy < 0 — singularity in the
vicinity of Ey , because of the divergence of
the logarithm term.



e INn vacuum a singularity at negative energy
corresponds to a bound state

eIn the medium a singularity below 2E
indicates instability towards the formation of
bound pairs

e | he result Is exact provided the effective
interaction vgp is " exact”

e [ he "condensation” is not Iin a single
quantum state but in a single quantum
number : the pair total momentum P = 0O

T he s-wave pairing in neutron matter must
be in the 155 channel



T he singularity can be still present also for
P # 0 and the " condensation” would
correspond to a flow at velocity v = P/2m.
T he ground state is for zero momentum.

. The correspondence with a boson gas
becomes self-evident when the pair binding is
large enough to form "molecules” so tightly
bound that their internal structure is
irrelevant and form boson particles.

. If the interaction is not so strong, the
Cooper pairs overlap and the Pauli principle
could destroy the pair

1 1
3 \3 O\3 1
R ~ TL/\/ mB >> d ~ (477/))3 m— (§)3 Tp




However, particles are indistinguishable

"pairing field” !

T he binding of the pairs in the medium can
be actually even larger than in vacuum.
Neutron Matter is expected to be superfluid
with a binding of 1-2 MeV, but two neutrons
do not form a bound state ! They form only
a "virtual state” at about -60 KeV.



BCS theory
T he model hamiltonian
H= Sia - ma,a,

T 2kk! ka’a'Lga'T_k_Oa'_k/_ga'k/a
It describes the interaction between pairs of
particles at P = 0. The pairing field is just
the average of the pair operators

a_k—olke 7 < A_k—gks ~

e [ hese averages are not macroscopic
quantities (as in the boson case), they
describe the average field acting on each pair.



We split now the pair operators in the
averages and fluctuations

A_k—clke — < A_k_c0ks >

and neglect the terms quadratic in the
fluctuation. Approximate hamiltonian

Hpcs = Ykolek — :u)a';r(ga'ka
T 2k (Aka-;rmai_k_(, + Ai’;a—k—aaka)
—Ap <a_g_saK, >
where
Ak = Zk’ ka/ < A_K/_5QK! 5 >

IS the average interaction of a pair with all
the others.



T hese averages are "anomalous”, they do not
conserve the particle number and the ground
state has not a definite number of particles

e [ he mean field hamiltonian includes the
process of addition and removal of a pair of
particles around the Fermi surface in order to
form Cooper pairs

e [ he chemical potential i can be used as a
Lagrange multiplier to fix the average number
of particles

e For N — oo, the relative fluctuations vanish



Canonical transformation

ukak -+ vde
—vpQy. + ukdﬂL

CL}FO_
R

lu|? 4+ |vg|* = 1 — the new operators a and
£ satisfy the fermion commutation relations.

One finds

— 1 K—H
u? = 5 (1 + )
12 . l kM
el =3 (1 - %Y
and the Hamiltonian in the diagonal form

reads



The key quantity £y is given by
By = \/(ex — )% + AF

afa and ,BTB are positive definite. The ground
state will be the state |Wg > such that

ax|Wo >= Bi|Wog>= 0

Then Eg is just the ground state energy and
the excited states, with energy Ey, are

OinWO > ; 61];'\”0 >

The minimal excitation energy is AA,F, the
energy spectrum has a gap. This is half the
enerqgy for breaking a pair.




The gap Ay can be determined by imposing

self-consistency with the original definition

Ay =

Y Vi < (ugage + o B ) (—owal, 4+ upB_ge) >
—_— — Zk’ ka/ukmk/

From the explicit expressions for v and v, one

gets
1 VANW,
Ak = =3 Y Vi gE

This is the " gap equation ". Due to the
expression for Ey, it is non-linear and in
general must be solved numerically.



If the pairing gap is small with respect to the
Fermi energy (" weak coupling limit"”), the
iIntegrand is sharply peaked at the Fermi
energy Er = pu, and one can take the gap
function and the interaction at kr, and a
constant density of state. T hen the integral
can be done analytically

Ng = 2E.exp (%)

A = VkFArF(mkF/QWQ) «— density of states

where the integration has been restricted to a
strip around the Fermi energy of width 2F..



e Sensitivity to the interaction strength is
exponential

e Non-analytical dependence on the
Interaction : phase transition, instability
towards the Cooper pair formation

he average ¢(k) =< a_j_,ar, > can be
clearly interpreted as the wave function of the

Cooper pair. It can be written

,. A
¢(k) = —ugvg = g

he wave function is sharply peaked at kg,
which shows that the pairs are formed around

the Fermi surface.




e Fourier transform — pair wave function ¢(r)
e ¢(r) is expected to display a long tail
e The size of ¢(r) is the "coherence length” ¢

One can estimate ¢ from the width ¢6; In

momentum of ¢(k), that is §, ~ mAp/h2kp

> 7 mAp

where d ~ 1/kp is the average distance
between particles. The size of the Cooper
pairs is larger than d whenever the gap is
smaller than the Fermi energy.

{




T he opposite limit when the pairing gap
exceeds the Fermi energy should corresponds
to the boson limit (BCE). However that
expression is not any more valid, since then
the chemical potential is drastically different
from the free gas Fermi energy Er. One can
show that indeed the gap equation in this
limit merges in the Schrodinger equation,
where the chemical potential is negative and
plays the role of the binding energy (per
particle). Then two particles bound state
(boson) is formed, if the potential admits it.
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Energetics

If a solution of the gap equation does exist,
then the superfluid phase is lower in energy
than the normal one. This is a consequence
of the variational nature of the BCS solution.

Trial wave function :
(W(A) >= T [uk -+ ’l"kaLoaT—k—a] [P >

¢o . vacuum state. The energy minimization
on u,v produces the BCS solution. Since this
set of states includes the normal one,
whenever A #= 0 the energy of the superfluid
will be lower than the normal one.



Weak coupling regime.

Eo =2k (Ek — ,u.)’ul% + D> KK/ %ka/%ll(( %}1{(,/
T he gain in energy due to the pairing
Interaction overcomes the increase in Kinetic
energy and finally the difference in
energy/particle is

2
e uper 6,"n,or-m.,a..l — _ 3 AF
0 0 16 £ F

T he gain in energy is much smaller than the
Cooper pair binding energy, because only a
fraction Ap/Epr << 1 of the particles
participates to the pairing.




Neutron matter

The bare nucleon-nucleon (NN) interaction is
complex. It is in general convenient to project
the interaction in a given (ISJ1") channel

[ relative angular momentum
.S total spin
. J total angular momentum
- T" total isospin

hese are conserved quantum numbers in
free space, but in the pairing process the
channels can be coupled.



T he neutron matter in NS can be expected

to be superfluid on the basis of the
experimental phase shifts
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Taking the bare interaction as the effective
pairing interaction, one can look for which
channels the interaction is attractive at the
relevant momentum. The Fermi momenta in
NS ranges from vanishing small values to
2.5—-3.0 fm—1. At low momenta the only
attractive channel is the 1S5 one. This
suggests that s-wave pairing can be present
at the low density typical of the inner crust
and of the outer core. In the inner core the
main possible pairing channel is the

3P, —3 F». For the proton component the 15,
channel can be active.



Solving the gap equation with the bare
NN interaction ( Argonne vig )

3 =
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T he pairing gap is not much smaller than the
Fermi energy, and we are neither in the weak
coupling limit nor in BEC limit, which is the
difficult regime !

For pairing in the 3P> —3F,, the anomalous
mean field s is not rotationally invariant. The

coupling scheme is more complex

y [S.JM
k()M = < (aka_x) > =

fde{YYlm(Qf{)* Zaa’S;m < Qg _ko! =~
C(5050'|SS.)C(SS=lm|JM)
where S = 1,1 =1, J = 2, and |M| < 2.
Then gap is a combination of M projections,
and the ground state is the one which
minimizes the energy.




Gapless superfluidity

The gap depends on the direction of k, so
the ground state will be in general
anisotropic. It is not well established which M
combination is the lowest in energy. Taking
an average over direction, the different M are
decoupled, as in the results of the figure. In
non s-wave channels in general the pairing
gap has nodes in some directions. There is
not a fully forbidden energy region above the
ground state energy, namely the excitation
energy can vanishes in some direction. This
case is called "gapless superfluidity’ .



T he excitation spectrum

In the 1So superfluid the breaking of a pair
requires an energy 2A. This excitation
corresponds to a two quasi-particles

excitation. _
(Hpcs — Eo) ol AL WEHES >

= (B + Ey) ol 8, [wHCS >

For |k| = |k/| = kg, one has

Ey + By = 2Ap, the minimal excitation
energy. One quasi-particle excitation is the
addition of an unpaired particle to the BCS
ground state.



Besides this breaking pair excitation, we must
expect also the Goldstone mode. Gauge
iInvariance is broken below the transition
point. The order parameters is just the
pairing field k(k) = < aya_y >, which is
non-zero in the superfluid phase. Physically
speaking the two modes corresponds to the
fluctuations of the pairing gap around its
ground state value, one for the modulus and
the other for the phase. The superfluid flow
associated to the Goldstone mode are
produced by pairs of particles with momenta

k 4+ q/2 and =k + q/2



B

"

0 P#o

Ly

Different relative momentum k of the pairs
can contribute and they can be coupled
together by the interaction. The relation
between energy and momenta is dependent
on the interaction and a microscopic approach
IS necessary to find the mode velocity.




T he two modes are actually coupled, since
phase and density are coupled. The
pair-breaking mode above 2Ar and the
Goldstone mode can be identified in the
microscopic calculations reported in the figure
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Besides these elementary excitations, vortices
can be present in the superfluid matter, as in
the case of 4He. This is particularly relevant
in rotating NS, where vortex structures must
be present. One has to keep in mind that the
condensate wave function is the center of
mass wave function of the Cooper pairs. At
the center of the vortex the transition to
normal matter can be produced by Cooper

pairs breaking.
Microscopic calculations, within the BCS

scheme, reveal also that the density tends to
be reduced in the vortex core.



of a single vortex line
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Finite temperature and the phase
transition

T he gap equation can be extended to finite
temperature 7'. T he modification is only In
the occupation numbers. For the 150 case

Ay (T
A(T) = =135 Vige(1 — 2f(Ew/T)) %i )
f (Ek/ T) = exp( Ekl/T) 1 q.p. occupation number

Notice that, as 7" — O

1 — 2f(Ey/T) = tanh(E/T) — 1



As the temperature increases the factor
tanh(E/T) decreases. No solution for 1" > T
. phase transition to the normal state. The
Cooper pairs are thermally broken, and at 1.
the pairing field is too weak to be supported
by the interaction. Then 7. must be close to
2A. Here we assume that all pairs have
still zero total momentum. To estimate 1.
we put A = 0, By = |e — p| in the gap
equation

1 = —%Zk/ ka/ tanh(Ek//T'c))/Ek/

1. =~ 1.764 Ap weak coupling



T he full temperature dependence of the gap,
can be obtained only numerically. It can be
well approximated by

. 1
3% = (- )

A more precise trend is reported in the figure




Specific heath capacity

Within BCS theory it is possible to derive the
thermodynamic properties of a fermion
superfluid, in particular the specific heath
capacity, relevant for NS cooling

e [ hermal pair breaking : Boltzmann factor
exp(—Ap/T)
e Gas of Goldstone quanta : 73 contribution
for I' << Ap

o ForI' ~ T, large contribution of the

pair-breaking mode to the neutrino emission,
and thus to cooling.



Proton superconductivity

e Protons in NS can be superfluid

e [hey form a superconductor in the
homogeneous matter

First consider NON-superfluid protons.
- Ohmic regime . j = oE

T he conductibility o is dominated by the
electrons, which are not superfluid.

. : — 4m: | 10E
Maxwell eq. : rotH = o B il




In the magneto-hydrodynamical limit the time
derivative term is neglected. From the second
Maxwell equation

1 OH -'-
S = —rotE = — € I‘Ot(I‘OtH)

Ao

= ¢ |_-V2H + V(v-H)]

Ao

Since V-H = 0, the evolution equation of H
becomes

OH __ 2 —2
ot — 47rcrv H

e Diffusion equation with D = ¢?/4nco



Proton superconductivity

e 0 — oo . completely trapping of the
magnetic field 7

e In some sense it is the opposite ! The
magnetic field is expelled from a
superconductor ! This is Meissner effect,
valid for not too high magnetic field.

First of all, Ohm law must be substituted by

Newton’ s law
&N = ¢ (E + v x H)

dt m

No stationary flow is possible if E %= 0. Here
the derivative is the total one and all
quantities are " coarse grained” .



Meissner effect comes from the gauge
Invariance of the electromagnetic field
coupled to matter. For a charged particle
moving in a static magnetic field the relation
between the canonical momentum p and the

velocity v is
mv = p — %A,

A : vector potential, g : charge. The
hamiltonian (kinetic energy) is

Hp = 4 (p — %A)Q gm. . p = —ihV

2m

For a Cooper pair m = 2M and q = 2e.



T his form of the hamiltonian iIs gauge
iInvariant. At quantum mechanical level, if the
wave function is multiplied by a phase and to
the vector potential is added a corresponding
gradient term

I ; A —- A+ %qu)

the Schrodinger equation for Hp remains
unchanged. The phase contribution coming
form the momentum operator is cancelled by
the additional term of the vector potential.
T his invariance implies the local conservation
of current.



In a neutral superfluid the current is given by

] = hpvs S = phase of the condensate

Tre

where ng is the superfluid density, and the
flow is irrotational. For a superconductor
under a magnetic field this expression must
be modified. This expression for the current
IS not gauge invariant as it should be. As
suggested by the form of the hamiltonian, we
add a term proportional to the vector
potential, and the electric current becomes

] = 6—TznS (VS — =

Tre LC

e )



T he flow is not any more irrotational

. 220
rot j = _ Z2e ns H

mc

H is the magnetic field. This is the second
constituent equation of the theory of
superconductivity, as first developed by
London. It shows that the rotational part of
the flow is produced by the magnetic field (
+ possible vortices ). What is irrotational is
the flow of the momentum p

nse mec

| , 2
rot p = -~ rot (J L 2¢ ”"*A) =0



Meissner effect : in some superconductors an
applied static magnetic field is expelled from
the interior, provided the applied intensity is
below a critical value, above which
superconductivity is destroyed. T his effect
can be explained from the London’ s
equation. Taking the curl of the second
Maxwell equation, one gets

rot (rot H) = —V2H = —87"825”3H

mc

T his elliptic differential equation fixes the
magnetic field configuration.



One dimension : H, = H.(z), H.(x) = H? if
r <0

(12Hg — 8776271,3 .
da2 me2 ~

i

—

Inside the sample ( assuming a constant
density ) the field H. decays exponentially

H. = HY exp(—x/\)

1

\ — me? 2
8W62n3




A IS the London penetration depth : the
magnetic field cannot penetrate the
superconducting sample more than A.

T he origin of the effect is on the possibility of
persistent currents. According to the Maxwell
equations a current j must be present inside
the sample along the y direction

_ ¢ OH, __ ¢
]l/ T 41 ()l T 4;&/\

2 exp(—3)

his current produces a magnetic field that
cancels the applied magnetic field inside the
sample. The superconductor is a perfect
diamagnetic material.



Above a critical magnetic field
superconductivity disappears. This can be
seen from energy balance considerations.

e Condensation energy/particle :
3 A%
_— F
€cond — T 16 Er

e Magnetic energy density : Ey = H?/87

At small H, the superconducting phase is
favoured, the magnetic field is excluded. As
the magnetic field increases, the energy cost
for the exclusion increases, up to the value H.
where normal phase becomes favoured.



The value of H. is obtained by equating the
two energies

1 1
H. = ("""EQAQ)Q = (47N(0)A2)?
where N (0) is the density of state. The
critical magnetic field depends on
temperature through the pairing gap. The
magnetic field exclusion is reversible as the
temperature crosses the critical value at a
given external field.



According to the shape of the sample, the
magnetic field can produce regions of normal
phase inside the sample before the
suppression of superconductivity, which is
usually indicated as "intermediate phase’.

T his is not so relevant for NS, where the bulk
part is dominating. However some
superconductors allow the formation of flux
tubes that passes through the matter, below
the critical value, independently of the shape
of the sample. Before discussing this relevant
Issue, it Is convenient to consider the case of
a superconducting sample that has a "hole”.



T he circulation of the momentum along a
circuit that encloses the hole

I = ¢ p-dl
IS independent of the circuit because the
momentum vector field is irrotational.

According to the expression of the canonical
momentum, one has

I . 2e
[ =" §j-d 4+ 2

2eng




® is the flux of the magnetic field through a
surface S impinging on the circuit

b =4¢A-dl = [¢H-dS
The current is concentrated at the (internal)
border of the hole. It decays exponentially
inside the superconductor and therefore the
momentum circulation is given only by the

flux of the magnetic field.
By quantization ( Bohr-Sommerfeld

quantization or the usual " phase argument”)
the flux of the magnetic field through the
hole must be quantized

—_ C
b = Znh



T hus the flux going through the hole must be
multiple of the " flux quantum” &g

bg = 2 ~ 2.07 x 1077 Gauss cm?

This is the flux that can be trapped in the
hole, even in absence of an external applied
magnetic field, as produced by a persistent
super-current flowing just near the internal
edge of the hole.

Let us now consider, instead of the hole, the
normal core of a superfluid vortex through
which the magnetic field can penetrate.



T he flow is not any more irrotational, but the
momentum circulation I must be still a
multiple of h. The circulation I, following
London, is called " fluxoid”’, and the
corresponding physical configuration " flux
tube’ . Both the current circulation and the
flux of magnetic field are not constrained by
quantization, in principle they can have
arbitrary values. It is only the fluxoid that is
quantized.



Type Il superconductors

In some superconductors one finds a first
critical strength H,.q, above which flux tubes
start to appear. Their number increases as
the magnetic strength increases. At a second
critical field H,.», the whole system makes a
transition to the normal state. These
supeconductors are called of type II. The

others, where no flux tubes appear, are called
of type L.




It turns out that the discrimination between
type I and type II superconductors is
determined by the ratio  between the
London penetration depth A and the
correlation length &, which characterizes the
Cooper pair size. If this ratio is larger than 1,
then we have a type II superconductor.
Proton matter in NS is expected to be of
type II, and therefore nuclear matter inside a
standard NS is expected to contain flux tubes.



In fact, after some manipulations, one finds

1

=1 =3 (GE) ~ 60 x (£)
M . proton mass, kp ~ 1 fm—1. In NS proton
matter one expects A/FEr of the order
0.1 — 0.2, and therefore k should be
substantially larger than 1. However these
estimates contain large uncertainties, and the
possibility of type I superconductivity cannot
be definitely excluded.



T he quantization condition for a flux tube
can be written

I = ¢p-dl = mggv-dl—l—%cb = nh

the integration is along a close path enclosing
the flux tube and & is the flux of the
magnetic field across the surface enclosed by
the path. The circulation of v is not any
more independent of the path, and so is the
flux ®. However their sum is a constant and
iIndependent of the path. The lowest energy

IS obtained by considering the lowest possible
Kinetic energy.



It can be seen that this implies an
exponentially small velocity field v at large
distance. Taking a path at large distance,
one can conclude that the flux ® must be
again a multiple of the flux quantum

b = nPg

T he lowest stable configuration will be for

n = 1. The flux tube is a 'magnetic vortex’,
l.e. a vortex induced by the magnetic field.
Around the flux tube the magnetic field and
the superconducting density behave like In
the figure.



T he magnetic field and the velocity field are
maximum at the center of the core and
decreases exponentially at large distance.

T he density recovers from zero to the bulk
value in a distance of the order of A\. Each
flux tube carries a flux quantum &g.



One can estimate the density of the flux
tubes in the NS matter by considering a
typical magnetic field strength H ~ 1012
Gauss. In a surface of 1cm? the number N of
flux tubes turns out to be of the order

N = 4 ~ 1019/cm?

T heir average distance at a typical proton
density is of the order of 10° fm, while the
penetration depth is about 30 fm. The flux
tubes can be then considered isolated from
each other.



his density of flux tubes has to be compared
to the expected density of rotational vortices.
The quantum of vorticity is 2nh/2M, so that
the number of vortices per cm? can be
estimated as

2

Ny ~ wM ., _10%

577~ T(se) vortices/cm

Even for the fastest pulsars with 7' ~ 10—3sec,
this density is overwhelming much smaller
than the flux tubes density. The rotational
vortices are embedded in a tangle of flux
tubes.



T he transition to the normal phase will
happen when the average distance between
flux tubes is of order of A. This requires a
magnetic field strength H ~ 1017 Gauss,
which is hardly reached even in magnetars. In
a terrestrial type II superconductor
(electrons) the vortices, at high enough
density, form a triangular lattice (due to the
repulsion among them). This is not the case
of NS proton matter, where they are expected
to be "curly” and randomly distributed.
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Flux tubes are formed in NS when the
temperature decreases below the critical
temperature and the critical magnetic filed.
However the formation is affected by
convective or turbulent motion of the matter.



Effective mass and entrainement

In a Fermi gas, like the neutron and proton
matter in NS, the particle interact among
each others. One can assume that on each
particle is acting a mean field U(k) produced
by all the other particles. For a
hydrodynamical flow this can be a good
starting point. T he mean field Is in general
momentum dependent and therefore the
energy of a particle will be

21,2
e(k) = 5 4 U(k)



T he particle dynamics is around the Fermi
surface, so we can expand the energy to first
order in k£ — kp

217.
e(k) = Ep + "2k — kp)

m — 1 m  dU
m* ' R2L o dk

where the effective mass m™ was introduced.
T he velocity and corresponding current are

. Ode _ hk
Vo= op -~ m*
Jj = pv

where |k| = kp and p is the density



he momentum dependence of U is due to
the momentum dependence of the effective
quasi-particles interaction at the Fermi
surface, the basis of Landau theory of Fermi

liquid. If the system is superfluid, the current
becomes

J = (p—ps)VN + psVs

where v is the velocity of the normal

component, and the index 'S’ stands for
superfluidity.



For the two component NS matter the
effective mass has a non-diagonal term, due
to the neutron-proton interaction, i.e. the
neutron and proton currents are coupled

Jn = (p— pnn — pn p)VN + PnnVSn T Pnp VSp

jp = (p—pnn — ppr)VN + ppnVsy + pprVsn

A neutron current "drags’ a proton current.
A striking consequence of this
"entrainement’’ iIs that also the rotational

vortices carry a magnetic flux.



Superfluidity in the Crust

T he internal crust of a Neutron Stars is a
non-homogeneous matter composed by a
lattice of nuclei, a neutron gas and electrons.
At finite temperature a small fraction of
unbound protons are also present. In the
transition region between the crust and the
core the nuclear lattice could be replaced by
an irregular structure (pasta phase).
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Position of the neutron chemical potential



T he neutron gas is probably superfluid, but in
general also the neutrons bound in nuclei are
superfluid. T herefore, superfluidity permeates
the whole structure of the crust. The
rotational vortices penetrate inside the crust,
but the presence of the nuclear lattice
modifies their dynamics. Indeed a vortex can
be "pinned’ by the lattice.

T he processes of pinning and de-pinning Is

believed to be at the origin of the glitch
phenomenon.



Possible positions of a vortex in the crust
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Density = 1/10 saturation density , Wigner-Seitz cell
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Vela pulsar: Rate of recovery from Glitches
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Qo(t)

Pulsation frequency §2

Time

Q1) = (1) + AQ,[Qe /" + 1 = 0.

T he observed recovering time 7 is of the
order of months or years. This long time is
evidence of a very low friction between crust
and core, which points in the direction of a
superfluid component.



The Many-body problem

The theory of superfluidity /
superconductivity can be formulated in its
more general form in the framework of the
many-body theory of fermion systems, In
particular in Nuclear Matter. The challenging
ambition is to predict the pairing gaps in NS
matter. In the most general form of the gap
equation the gap A(k,w) is a function of
both momentum k and energy w, and it reads




I is the irreducible pairing interaction and
D(k,w) =
(6. —p+w— MK, —w)) (e, —p—w—M(k,w))+
A (k, w)?
The quantity M is normal self-energy. The
ratio A /D is the "anomalous’ propagator
F(k,w), which is a generalization of the
Cooper pair wave function. All many-body
effects are included, even the direct effect of
pairing on the interaction /. The formula is in
prinCiple exact. If we neglect all the energy
dependences one obtains the previous BCS
gap equation.



In the previous simplified formulation we took
M = 0. The different many-body effects can
be identified as follows.

e Energy dependence of the effective pairing
iInteraction I, which implies a pairing gap
dependent also on energy. T he energy
dependent Is produced by the dynamical
Interaction processes in the medium.

e [ he effective pairing interaction is in
general different from the bare NN
Interaction. One of the main many-body
effect is the so-called "induced interaction”.



wo particles that propagate in the medium
can excites the medium and exchange
between them the Nuclear Matter excitation
qgquanta




e The self-energy M(k,w) introduces the
effective mass m™ and the quasi-particle
strength Z in the gap equation.

T hese many-body effects modify only
moderately the gap equation, but due to the
exponential form of the gap, it is difficult to
get the desired accuracy. The pairing gap is
therefore not well known. For the 150 gap
the accuracy can be estimated to be a factor
of 2, just by comparing different many-body
approaches. For the 3P2 channel, it occurs at
higher density and the accuracy can hardly be
better than one order of magnitude.




Many-body effects on the proton gap
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Pairing gap for the s-wave in neutron matter
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6. Vortices dynamics






- A: direct, m*=m
- — direct, m*

= C:+ZS + ZS’ channels
- + central induced

~ = + spin-orbit induced

-~ B: Baldo et al. (1998)




