Neutron star periods

Sergei Popov SAI MSU

Diversity of young neutron stars

Young isolated neutron stars can appear in many flavors:

o Radio pulsars

o Compact central X-ray sources in supernova remnants._
o Anomalous X-ray pulsars
o Soft gamma repeaters
o The Magnificent Seven & Co.
o Transient radio sources (RRATs)
o

"GRAND UNIFICATION" is welcomed! (Kaspi 2010)

See a recent review in 1111.1158

Contents

- Episode 1. Initial spin periods. NSs in SNRs.
- Eposide 2. Initial spin periods and field decay.
- Episode 3. CCOs and emerging magnetic field
- Episode 4. Close-by cooling INSs: "One second problem"

Episode 1. Initial spin periods of neutron stars

Sergei Popov (SAI MSU) Roberto Turolla (Univ. Padua)

arXiv: 1204.0632, 1206.2819

PSRs in SNRs

See a review on NSs in SNRs in 1011.3731

CCOs

For two sources there are strong indications for large (>~100 msec) initial spin periods and low magnetic fields: 1E 1207.4-5209 in PKS 1209-51/52 and PSR J1852+0040 in Kesteven 79 [see Halpern et al. arxiv:0705.0978]

Recent list in: 0911.0093

CCO	SNR	Age (kyr)	$d \over (m kpc)$	P (s)	f_p^{a} (%)	$\frac{B_s}{(10^{11} \text{ G})}$	$L_{x,\text{bol}} (\text{erg s}^{-1})$	References
RX J0822.0-4300	Puppis A	3.7	2.2	0.112	11	< 9.8	$6.5 imes 10^{33}$	1,2
CXOU J085201.4-461753	G266.1-1.2	1	1	613	< 7		$2.5 imes 10^{32}$	3,4,5,6,7
1E 1207.4-5209	PKS 1209-51/52	7	2.2	0.424	9	< 3.3	$2.5 imes 10^{33}$	8,9,10,11,12
CXOU J160103.1-513353	G330.2+1.0	> 3	5		< 40		$1.5 imes 10^{33}$	13,14
1WGA J1713.4-3949	G347.3-0.5	$\widetilde{1.6}$	1.3		< 7		$\sim 1 \times 10^{33}$	7,15,16
CXOU J185238.6+004020	Kes 79	7	7	0.105	64	0.31	5.3×10^{33}	17,18,19,20
CXOU J232327.9+584842	Cas A	0.33	3.4	122	< 12		$4.7 imes 10^{33}$	20,21,22,23,24
XMMU J172054.5-372652	G350.1-0.3	0.9	4.5			* * *	3.4×10^{33}	25
XMMU J173203.3-344518	G353.6-0.7	~ 27	3.2				$1.0 imes 10^{34}$	26,27,28
CXOU J181852.0-150213	G15.9 + 0.2	1 - 3	(8.5)		122.2		$\sim 1 \times 10^{33}$	29

Sample of PSRs+SNRs

Table 1. Sample of PSRs associated with SNRs					Table 1—Continued					
PSR	SNR	$\tau_{SNR}/10^3 { m yrs}$	$\tau_{sd}/10^3 \; {\rm yrs}$	Ref.	PSR	SNR	$\tau_{SNR}/10^3 {\rm \ yrs}$	$\tau_{sd}/10^3 {\rm \ yrs}$	Ref.	
J0537-6910	N157B	as the PSR	4.9	Wang and Gotthelf (1998)	B1853+01	W44	6.5-20	20.3	Harrus et al. (1997)	
J1119-6127	G292.2-0.5	as the PSR	1.6	Pivovaroff et al. (2001)	J1957+2831	G65.1+0.6	40-140	1568.	Tian and Leahy (2006)	
J1747-2809	G0.9+0.1	as the PSR	5.3	Aharonian and et al. (2005)						
				Porquet et al. (2003)	B1951+32	CTB80	> 18	107.	Castelletti et al. (2003)	
J1747-2958	G359.23-0.82	as the PSR	25.5	Camilo et al. (2002b)	B1338-62	G308.8-0.1	< 32.5	12.1	Caswell et al. (1992)	
J1846-0258	Kes75	as the PSR	0.73	Leahy and Tian (2008)	J2229+6114	G106.6+2.9	> 3.9	10.5	Kothes et al. (2006)	
J1930+1852	G54.1+0.3	as the PSR	2.9	Camilo et al. (2002a)						
					B0531+21	Crab	0.957	1.24	Stephenson and Green (2002)	
J0007+7303	CTA 1	10.2-15.8	13.9	Slane et al. (2004)	J1210-5226	G296.5+10.0	10-20	101817.	Vasisht et al. (1997)	
J0205+6449	3C58	4.3-7	5.4	Slane et al. (2008)	J1437-5959	G315.9-0.0	22	114.	Camilo et al. (2009)	
J0538+2817	S147	40-200	618.1	Anderson et al. (1996)	J1811-1925	G11.2-0.3	1.6	23.2	Torii et al. (1999)	
				Ng et al. (2007)	J1852+0040	Kes79	6	191502.	Sun et al. (2004)	
B0540-69	0540-693	0.66-1.1	1.67	Williams et al. (2008)	J2021+4026	G78.2+2.1	6.6	76.9	Uchiyama et al. (2002)	
B0656+14	Monogem Ring	86-170	110.9	Thorsett et al. (2003)	B2334+61	G114.3+0.3	7.7	40.6	Yar-Uyaniker et al. (2004)	
J0821-4300	Puppis A	3.3-4.1	1489.	Gotthelf and Halpern (2009)						
B0833-45	Vela	11-27	11.3	Aschenbach et al. (1995)						
J1124-5916	G292.0+1.8	2.4-2.85	2.85	Gonzalez and Safi-Harb (2003)	30 na	irs' PS	R+SNE			
B1509-58	G320.4-1.2	6-20	1.6	Yatsu et al. (2005)	00 pa					
J1809-2332	G7.5-1.7	10-100	67.6	Roberts and Brogan (2008)						
J1813-1749	G12.8-0.0	0.285-2.5	4.7	Brogan et al. (2005)						
J1833-1034	G21.5-0.9	0.8-40.	4.9	Safi-Harb et al. (2001)						

Table 2. Spin parameters of PSRs in the sample								Table 2—	Continued	L	
PSR	Ps	Ż	$B/10^{12}~{ m G}$	P_0 s	P_0/P	PSR	Ps	Ż	$B/10^{12}~{\rm G}$	P_0 s	P_0/P
J0537-6910	0.016	5.18E-14	0.92	$\ll P$	~ 0	11800 2222	0.147	2 AAE 14	9.2	< 0.126	< 0.02
J1119-6127	0.408	4.02E-12	41.	$\ll P$	~ 0	11812 1740	0.045	1 KE 19	2.5	< 0.042	< 0.02
J1747-2809	0.052	1.56E-13	2.9	$\ll P$	~ 0	J1013-1749	0.045	1.5E-13	2.0	< 0.043	< 0.97
J1747-2958	0.099	6.13E-14	2.5	$\ll P$	~ 0		0.045	1.5E-13	2.6	> 0.031	> 0.69
J1846-0258	0.326	7.08E-12	48.6	$\ll P$	~ 0	J1833-1034	0.062	2.02E-13	3.6	< 0.057	< 0.91
J1930+1852	0.137	7.51E-13	10.3	$\ll P$	~ 0	B1853+01	0.267	2.08E-13	7.5	< 0.221	< 0.83
							0.267	2.08E-13	7.5	> 0.036	> 0.14
J0007+7303	0.316	3.6E-13	10.8	< 0.163	< 0.52	J1957+2831	0.308	3.11E-15	0.99	< 0.3	< 0.99
J0205+6449	0.066	1.94E-13	3.6	< 0.029	< 0.45		0.308	3.11E-15	0.99	> 0.29	> 0.95
J0538+2817	0.143	3.67E-15	0.73	< 0.134	< 0.93						
	0.143	3.67E-15	0.73	> 0.118	> 0.82	B1951+32	0.04	5.84E-15	0.49	< 0.036	< 0.91
B0540-69	0.05	4.79E-13	5.0	< 0.039	< 0.78	B1338-62	0.193	2.53E-13	7.1		_
	0.05	4.79E-13	5.0	> 0.03	> 0.59	J2229+6114	0.052	7.83E-14	2.0	< 0.041	< 0.79
B0656+14	0.385	5.5E-14	4.7	< 0.183	< 0.48	02220 0111	0.002	1.0012 11	2.0	0.011	
J0821-4300	0.113	1.2E-15	0.37	< 0.113	~ 1	D0521 + 01	0.022	4 9917 19	20	0.016	0.49
	0.113	1.2E-15	0.37	> 0.113	~ 1	B0531+21	0.033	4.23E-13	3.8	0.016	0.48
B0833-45	0.089	1.25E-13	3.4	< 0.016	< 0.2	J1437-5959	0.062	8.59E-15	0.74	0.055	0.9
J1124-5916	0.135	7.53E-13	10.2	< 0.054	< 0.40	J1811-1925	0.065	4.40E-14	1.7	0.062	0.97
	0.135	7.53E-13	10.2	> 0.004	> 0.03	J1852 + 0040	0.105	8.68E-18	0.03	0.105	~ 1
J1210-5226	0.424	6.6E-17	0.17	0.424	~ 1	J2021 + 4026	0.265	5.47E-14	3.9	0.254	0.96
B1509-58	0.151	1.54E-12	15.4	_		B2334+61	0.495	1.93E-13	9.9	0.45	0.91

B vs. P₀

All presented estimates are made for standard assumptions: n=const=3. So, field is assumed to be constant, as well as the angle between spin and magnetic axis.

Crosses – PSRs in SNRs (or PWN) with ages just consistent with spin-down ages. We assume that $P_0 < 0.1P$

B vs. $\tau_{\rm SNR}/\tau_{\rm SD}$

Recently, Zhang and Xie (2011) proposed that such a plot can be explained by field decay. We believe that a much more natural explanation is to assume significant P_0 .

Checking gaussian

Checking flat distrbution

Flat between 0.001 and 0.5 s.

Very wide distributions in general do not fit the data we have. Episode 2. Initial periods and field decay

> Sergei Popov (SAI MSU) Andrei Igoshev (Radbound Univ.)

> > arXiv: 1303.5258, 1309.4917

Wide initial spin period distribution

Based on kinematic ages. Mean age – few million years. Note, that in Popov & Turolla (2012) only NSs in SNRs were used, i.e. the sample is much younger! Can it explain the difference?

Magnetic field decay and P_0

One can suspect that magnetic field decay can influence the reconstruction of the initial spin period distribution.

Exponential field decay with $\tau=5$ Myrs. <P₀>=0.3 s, $\sigma_P=0.15$ s; <log B₀/[G]>=12.65, $\sigma_B=0.55$ $P_0 = P \sqrt{1 - \frac{t}{\tau}}.$

T<10⁷ yrs, 10⁵<t

10⁵<t<10⁷ yrs

Igoshev, Popov MNRAS arXiv: 1303.5258

Real vs. reconstructed P_0

How long reconstructed initial periods changed due to not taking into account the exponential field decay

The amount of field decay necessary to explain this shift is in correspondence with the radio pulsar data

Another option: emerging field

The problem is just with few (6) most long-period NSs. Is it possible to hide them when they are young, and make them visible at the age ~few million years?

Yes! Emerging magnetic field!!!

Then we probably need correlations between different initial parameters Episode 3. CCOs and emerging magnetic fields

> Sergei Popov (SAI MSU) Roberto Turolla (Univ. Padua)

> > arXiv: 1206.2819

NS birth rate

[Keane, Kramer 2008, arXiv: 0810.1512]

Evolution of CCOs

Among young isolated NSs about 1/3 can be related to CCOs. If they are anti-magnetars, then we can expect that 1/3 of NSs in HMXBs are also low-magnetized objects. They are expected to have short spin periods <1 sec. However, there are no many sources with such properties. The only good example - SAX J0635+0533. An old CCO?

Possible solution: emergence of magnetic field (see Ho 2011).

Where are old CCOs?

Yakovlev, Pethick 2004

According to cooling studies they have to be bright till at least 10⁵ years. But only one candidate (2XMM J104608.7-594306 Pires et al.) to be a low-B cooling NS is known (Calvera is also a possible candidate).

We propose that a large set of data on HMXBs and cooling NSs is in favour of field emergence on the time scale $10^4 \le \tau \le 10^5$ years.

Some PSRs with thermal emission for which additional heating was proposed can be descendants of CCOs with emerged field.

Emerged pulsars in the P-Pdot diagram

Emerged pulsars are expected to have $P\sim0.1-0.5$ sec $B\sim10^{11}-10^{12}$ G Negative braking indices or at least n<2. About 20-40 of such objects are known.

Parameters of emerged PSRs: similar to "injected" PSRs (Vivekanand, Narayan, Ostriker).

The existence of significant fraction of "injected" pulsars formally do not contradict recent pulsar current studies (Vranesevic, Melrose 2011).

Part of PSRs supposed to be born with long (0.1-0.5 s) spin periods can be matured CCOs.

Espinoza et al. arXiv: 1109.2740

Episode 4. Close-by cooling NSs and "One second problem"

> Sergei Popov (SAI MSU) Co-authors: Jose Pons et al. arXiv: <u>1309.4917</u>

Magnetic field decay

A model based on the initial field-dependent decay can provide an evolutionary link between different populations (Pons et al.).

arXiv: 0710.4914 (Aguilera et al.)

$$B = B_0 \frac{\exp\left(-t/\tau_{\rm Ohm}\right)}{1 + \frac{\tau_{\rm Ohm}}{\tau_{\rm Hall}} (1 - \exp\left(-t/\tau_{\rm Ohm}\right))}$$

Extensive population synthesis

We want to make extensive population synthesis studies using as many approaches as we can to confront theoretical models with different observational data

Log N – Log S for close-by young cooling isolated neutron stars
 Log N – Log L distribution for galactic magnetars
 P-Pdot distribution etc. for normal radio pulsars

MNRAS 401, 2675 (2010) arXiv: <u>0910.2190</u>

See a review of the population synthesis technique in Popov, Prokhorov *Physics Uspekhi* vol. 50, 1123 (2007) [ask me for the PDF file, if necessary - it is not in the arXiv]

Cooling curves with decay

10⁶

Log N – Log S with heating

Log N – Log S for 7 different magnetic fields.

- 1. $3 \ 10^{12} \text{ G}$ 2. 10^{13} G
- 3. $3 \ 10^{13} \ G$ 4. $10^{14} \ G$ 5. $3 \ 10^{14} \ G$
- 6. 10^{15} G 7. $3 10^{15}$ G

[The code used in Posselt et al. A&A (2008) with modifications]

Different magnetic field distributions.

Fitting Log N – Log S

We try to fit the Log N – Log S with log-normal magnetic field distributions, as it is often done for PSRs.

We cannot select the best one using only Log N – Log S for close-by cooling NSs.

We can select a combination of parameters.

Model	$\sigma_{\log B}$	x_c	$3 imes 10^{12} { m G}$	$10^{13} \mathrm{G}$	$3 \times 10^{13} {\rm ~G}$	$10^{14}~{\rm G}$	$3\times 10^{14}~{\rm G}$	$10^{15} \mathrm{G}$	$3\times 10^{15}~{\rm G}$	Line
No mag			0.5	0.5	0.0	0.0	0.0	0.0	0.0	Long-dashed
A1			0.3	0.2	0.1	0.1	0.1	0.1	0.1	Solid
A2			0.3	0.2	0.2	0.1	0.1	0.1	0.0	Dotted
G1	1.1	12.5	0.575	0.164	0.114	0.08	0.039	0.019	0.009	Short-dashed
G2	0.84	13.0	0.37	0.244	0.191	0.126	0.049	0.0165	0.0038	Dot-dashed
G3	0.46	13.5	0.045	0.243	0.396	0.263	0.049	0.0039	0.000075	Dot-dot-dashed

Log N – Log L for magnetars

We used the same initial magnetic field distributions.

Curves are shown for three log-normal distributions with and without a "transient" behaviour.

It is assumed that the total luminosity can be well approximated by the energy release due to field decay.

It is seen that the same log-normal distributions can reasonably well describe the data for magnetars.

Data points from the McGill catalogue. Limits - from Muno et al. (2008)

P-Pdot tracks

Color on the track encodes surface temperature.

Tracks start at 10^3 years, and end at ~3 10^6 years.

Kaplan & van Kerkwijk arXiv: 0909.5218

Population synthesis of PSRs

Best model: $\langle \log(B_0/[G]) \rangle = 13.25$, $\sigma_{\log B0} = 0.6$, $\langle P_0 \rangle = 0.25$ s, $\sigma_{P0} = 0.1$ s

The "one second" problem

Two types of sources are observed:

• Radiopulsars (P<1 sec)

Magnificent Seven (P>1 sec)

No close-by cooling NSs in the range ~-0.5 <log P< ~0.5

Kaplan arXiv: 0801.1143

P-Pdot diagram for coolers

This is a P-Pdot diagram for close-by cooling NSs according to our model.

Numbers correspond to the observed sources.

Initial magnetic fields of the modeled coolers

The plot shows the distribution of the initial magnetic fields of NSs which contribute to the Log N – Log S diagram in the range ~0.1-10 cts/s

Obviously, there is the same problem as with the period distribution.

New calculations

Dbserved Calculated New cooling models (Pons, Vigano). Now low-B NSs are hotter than before, and high-B NSs are colder.

Still, it is not possible to explain the P-Pdot data. Fine tuning is necessary.

Evolution without heating

Kaspi-like population

Kaspi-like population with additional peak at $B=10^{14}$ G and small dispersion

Calculations with new cooling curves from the St.Petersburg group (Sternin, Yakovlev et al.) can easily explain the Log N – Log S, but cannot the P-Pdot without finetuning for the B-distribution (curves are not sensitive to B, so it is important only for spin evolution).

Solutions for the "one second" problem

3

Fine-tune the thermal properties of NSs and hope that the gap is due to low statistics

Probably, the unique initial magnetic field distribution is a bad assumption

Or the whole scenario is wrong