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The Folding Path problem

Langevin dynamics and Path integral
representation

Dominant paths

® Hamilton-Jacobi representation
Langevin Bridges

® short time approximation

® exact numerical solution
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1. What 1s a Protein

_(biopolymers): Proteins, Nucleic Acids

(DNA and RNA), Polysaccharides

catalytic activity: enzymes

transport of ions: hemoglobin (O;), 1on channels
motor protein

shell of viruses (influenza, HIV, etc...)

prions

food, etc...
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Proteins exist under 2 forms

» Folded or Native: globular unique
conformation, biologically active

» Unfolded: random coill, biologically inactive

* Note that a globular polymer has an
extensive entropy

N ="
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The Protein Folding
problem

® A sequence of amino-acids is given by the
biologists.

® What is the 3d shape of the corresponding
protein?

® TJo study this problem, try Molecular

Dynamics: Karplus, Levitt and Warschel,
Nobel prize in Chemistry 2013

mardi 13 mai 14



Parametrization (CHARMM, AMBER, OPLS, ...)

a ¥ & ™
<D =7\

E=Yk(b-b)'+ Yk©O-0)"+ Yk, (+cosnp=3) + ¥k v-vy)’

bonds valence angles dihedrals impropers
+E48l] (_lj 12_ _lj)6 +E332QZQJ
i< Fij Fij <y € I \
Use Newton or Langevin dynamics in kCal/mol
m, r,+vy; n+ =1,()
or,

where m;(t) 1s a Gaussian noise satisfying the fluctuation-dissipation
theorem:

<n;(t)n ;) >= 2yikBT5ij5 (r-1) ]
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Why it does not work
(yet?)?

® To discretize the equations, one must use time
steps of the order of 1075

® Large number of degrees of freedom (a few
thousand) plus few thousand water molecules

® Force fields not necessarily adapted to folding
® |ongest runs:around |us << folding time | ms- Is
® Recently, runs of Ims on short proteins

® Many metastable states and high barriers
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The problem of protein
structure prediction is too
complicated

Simpler problem: How do
proteins fold? How do they go
from Unfolded to Native State!?




® |n given denaturant conditions, a protein

spends a fraction of its time in the native
state and a fraction of its time in the
denatured state.

ke it Dk
ey N ¥ U

time
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Denaturation curves
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In given denaturant conditions, a fraction of the
proteins are native, and the rest are denatured (o
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The Folding Pathway
Problem

® T[he problem:Assume a protein can go
from state A to state B.Which pathway (or
family of pathways) does the protein take!?
How are the trajectories from A to B!
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Motivation from single molecule experiments

® Examples:
® from denatured to native in native conditions

® Allosteric transition between A and B
Difficulty: looking for rare events

Can one describe these reactions in terms of a small
set of dominant trajectories with fluctuations around?
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Langevin dynamics

The case of one particle in a potential U(x)
at temperature I’

Use Langevin dynamics

md%‘ | dx | 8U—C(t)
a2 " Tat T or

where 7 is the friction and ¢(?) is a
random noise

< C()C(t) >=2kpT~o(t — ')
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Overdamped Langevin
dynamics

® At large enough time scale, mass term

negligible ,
mw ~ yw

m
T & 2m—
/y

kgT

=D

T~ 10~ 3s

D = 10"°cm?/s m =~ 5.10"%%kg
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® Take overdamped Langevin (Brownian)
dynamics

dx 1 oU

e with Gaussian noise:

krnlT
< () >= 2 ’

® v is the friction coefficient: [ =

Diffusion coefficient /

o(t —t')
kT
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® Equation of motion is a stochastic equation

® The Probability to find the particle at point x

at time t is given by a Fokker-Planck equation

0 0 1 oU 0P (x,t)
Ep(x’t) B D@:U (kBT Or Pla,t)+ ox )
with

P(z,0) = d(x — x;)
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® Folkker-Planck equation looks very much like a
Schrodinger equation, except for |st order
derivative. Define

__BU(=)

P(z,t)=e 2 Q(x,t)

® The function Q(z,t)satisfies an imaginary time
Schrodinger equation with a Hamiltonian H

L0 _ g

ot
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® where H is a “quantum” Hamiltonian given by

1
4

(VU)? - 2

1
H=-(-v*+ v2U)
v

Uz )~ U ()

Plxy teleit) =e 67 < aple” Bt H g >

® Spectral decomposition

<wple” W gy =N e T Ba W (3) Wy ()

HU,(z) = E, W, (2)
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® At large time, the matrix element is
dominated by the ground state

bo(e) o~ BU(x)/2
VZ
Z = /d:z:e_ﬂU(“")
with
HWyy =0
so that
P(xg,telz;, t;) ~ e U +e—BU(wf);U(”)e—<tf—ti>E1\Ifl(a:f)\If1(:cq;)

Z

/

~1 o
T = F| 7 is the reaction time (&)
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® Stationary distribution: the Boltzmann
distribution

lim P(z,t) = P(x) ~ exp(—U (x)/kgT)

t— 400

® General form: Path Integral

_U(xf U(x;)
P(xs,tr|xiti) = 2kpT / Dix (T o SefrX/kpT

® Boundary conditions:

x(ti) = X; X(If) = Xf
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Path Integral representation

_Ulyp)-Ulx)
P(xfytf|x17tl — 2kpT / @x —Sefrlx]/kpT

® The effective action is given by

Sefflz] = /t f dt(%f + Verrlz(t)])

7

® and the effective potential is given by

1

T —((VU)? = 2kgTV?U)

Verrlz| =
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Saddle-Point method:WKB approximation

work in collaboration with
P. Faccioli, F. Pederiva, M. Sega
University of Trento

To compute the path integral, look for paths which have
the largest weight: semi-classical approximation.
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® Dominant trajectories: classical trajectories

inverted
vyd?zr O(—Vesslx]) « ‘potenttial

2 dt? ox

® with correct boundary conditions.

x(t;) = @i r(ty) = g

® Problem: one does not know the transition time.
Inverse folding rate is equal to mean first passage
time (first passage time is distributed).
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* Z

N ‘. T voe s 7 W2
s p 0 A s N Mv
T =05 T = 0.02

Conserved energy

E = %33'2 — Veff(ilf)
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® Solution: go from time-dependent Newtonian

dynamics to energy-dependent Hamilton-Jacobi
description

Sefflz] = /t f dt(%iQ + Verrlz(t)])

® For classical trajectories

.
Eepp = 7# = Veyylal

L f 4
Sepplol = —Eeps(ty — i) + / | dw\/ S (Fers + Vegslel)

28
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® [he method: minimize the Hamilton-Jacobi
action

SHy = /:f dl\/2 (Eeff+ Verrlx(1)])

® over all paths joining X;to X f
dl 1s an infinitesimal displacement along the path

E.¢r 1s a free parameter

® The total time is determined by

Xf 1
tf_ti_/xi dl\/Z(EeferVeff[X(l)])'

determine folding time
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® The total time is determined by the trajectory and by
the energy E.¢¢

® £, is not the true energy of the system

Y.
E= i = Vesy(w)
e |f the final state is an (almost) equilibrium
state, then the system should spend a
maximum time

* be = (
Eeff=— (G (x7)
- 7,
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® The H| method is much more efficient than
Newtonian mechanics because proteins spend

most of their time trying to overcome energy
barriers.

® No waiting-times in HJ: work with fixed
interval length dl
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® For a Protein, minimize

N—
SHi=Y \/2 (Eepr+ Verr(n))Al, ni1 + AP,

® where P=Y""'(Ali;x1— (A1) and )\ is a
Lagrange multiplier to fix the interval length

D? ?
E (ZVJM(Xi(n)7Xj(n>)>

Verr(n) =Y. {2

i
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-The energy can be evaluated by normal mode analysis
or short time MD runs

-The Transition State defined by Commitment Analysis
P(xs — ©;) = P(aws — x¢)

U(xy) = Ulxi)
2kpT

= Suy([x]5x5, %) — Sur(x]; X2, X 7).
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Folding of Alanine-dipeptide

0L | | _H
Cc—-C—-N-C-C-N—H
o~ | ] | NH
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Alanine Dipeptide

® Use GROMOS96 force field
® There are four local minima ¢7,, —C7., and

O, — OR

® The effective energy is computed by few ps
MD runs
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® Transition states can be obtained by
commitment analysis

P(Cﬁi,%s) — P(xfaxts)

which in the saddle-point approximation
become

Ulxy) —Uxi)
2kpT

= SHy([x];x55, %) — SHy([X]3X25,x7)
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FIG. 1: Dominant Folding Paths for the C7, —C7,4 (red squares)
and o7, — olg (blue squares) transitions. In the background, the free
energy profile for the  and ¢ dihedrals is shown (in units of kJ/mol).
Black squares identify the minimum residence time conformations,
and the white squares the transition states defined by comittement
analysis.
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Difficulties with the Method

 Many local minima, particularly with all atom
simulations: many routes to folding?

» Optimisation of HJ stuck in the vicinity of
initial trajectory

« How to overcome these difficulties?

38
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Langevin Bridges

» Consider paths starting at (x(,0) and
conditioned to end at (x¢,%¢)

* The conditional probability for such a path
to be at (x,t) is given by

1
P(xy,tr|zo,0)

FP equation
adjoint FP equation /
P(x,t) = P(x,t|xg,0)

AN

Pz, t) = Q(x,t)P(x,t)

Q(CE,t) :P(xfatf’xvt) 39
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Fokker-Planck and adjoint

or 0 <aplﬂaUP> /

Ot ox

9Q  Q aUaQ/
o~ Pz TP e

conditional probability

\ap_ a<@7> 0

40
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* Modified Langevin equation for conditioned
paths

dr D OU . 9mQ
7= ror Ty Tl

Q(x,t) = P(xy,tf|z,t)
Q(x,t) = e~ 2UEN-U@) o zple” B =0H |z >

dx /CBT 0
— =2
dt v Ox

In < 2|e” @5 |2 > 4n(t)

dx
— =< x(t t
=< (1) > (1 )
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 Example: Brownian bridges

U(zx) =0

1 B (xf—a:)Q
P t t — 4D(tf—t)
(@, trlz,t) 1Dty — 1)

» Conditioned Langevin equation becomes

dx_xf—x
dt  tp—t
dX_QIZ‘f—X

IR average i§ linear
dt tf — 1 :(> in time

- (1)

42
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 Example: the Harmonic oscillator

1
U(zx) = §Kx2

* Bridge equation

der K xf—a’;cosh (ty — 1)
dt sinh & (tf—t)

- n(t)

* Note that this equation does not depend on
the sign of K: same trajectories for well or
barrier

44

mardi 13 mai 14



s I ' I | ' I ‘ K 03
il il ""J Y i ilu M. _
. M,‘ i ‘;s wétﬂ‘ i ',\$ “.w* il J. X=-2.
",.,‘.;!'.l'x’.'dm%n &m ‘hp »A H‘J\ ,,'J

Y

TR T R
\ w Wﬁ*" (e W A :n*‘ ’ t‘~ “"“f
# A e { Jilin

—
-

500 trajectories between -1 and +1

mardi 13 mai 14



* |n general, we don’t know how to calculate
the function Q(x,t). We need to make
approximations.

* Some important requirements:
- Q(x,1)>0

—Detailed balance: Q(x,t) = P(z¢,tf|z,1)
and we should have

P(Cl?f, tf‘il?, t) _ U(xi)B_TU(x)
P(ajvtf‘vat)

—Local in time and space (for simplicity and
tractability)

46
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* Langevin equation for conditioned paths

dr D OU . 9mQ
&= wror Ty Tl

Q(x,t) = P(xy,tslz,t)
Q(Qf,t) — e_g(U(mf)_U(m)) < ZEf‘G_(tf_t)H‘ZE >

dx /CBT 0
— —9 In < —Er=H | 5 (¢
o N n < xysle x> +n(2)

47
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Short transition path time
approximation

* In the Kramers picture, there are 2 time
scales:
—Kramers time, or waiting time, or folding time
AFE

T ~ eFBT
— Transition path time (Hummer, Szabo)
AFE

kT

TTrp ~ lOg

—We will assume

Trp << TK

48
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Q(z,t) =e 25T < xple” =g >

For short times, use the Trotter formula (Baker,
Campbell, Haussdorf). To satisfy detailed balance,
use symmetric form

c—€(Hot+V1) _ ,—eV1/2 ,—eHo ,—eV1/2 4 0(83)
I(z,t) =< xs|le” T =02 >

_ ot DVaE)HVA@)/2 g o6 =D Ho |y

1 B (a:f—a:)2
—H (t _t) — 4D (tp—t)
< xgsle OV T > = f
/l ‘ \/4wD(tf —) °

49
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* For short enough time, putting all the terms
together we obtain the (approximate)
Langevin bridge equation

V(Z) = (VU)? — 2kgTV*U

This equation is to be integrated with initial condition I;
Equation is local.

50
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* Works very well for “short times”
* Forlonger times, need to reweight the paths

w({z(t)}) = __ /tfdt i 1o\ i€ _ T =2 b gy :
I Y A it~ dit ~ ty—t 42 v

/

true weight

actual weight

* then for any observable

51

mardi 13 mai 14



Example: Quartic double well

« We take
U(x) = 3(1132 —1)?
V(2) = —— (U2(x) — 2kpTU" (2))

52
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Trajectories
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Averages and Observables

* Average trajectory. exact (black),
approximate (red), reweighted (blue)

vvvvvvvvv
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The Mueller potential

Viey) =3 Avexp [aila = )+ bilw = )y — of) + ity — )’

where A = (=200, —100, —170,15), a = (—1,—1,—6.5,0.7), b = (0,0, 11,0.6),
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Transition 2-3
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Histogram of barrier heights
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Work In progress: exact numerical solution
of Langevin Bridge

* Need to solve the 2 equations

d D U 9100
ar _ _ oD
i T or 7 on

0Q  _9%Q oU dQ
ot = Paoz TP as

« but need Q(x,t) only along trajectories

—— > equation for Q(z(t),t)

62
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3lfCtk)

a1 k
Tpal = T — DBdt L opar 2108 QERE) | s

Oy, Oxy
2
Qarsr k+1) = Qzn, k) + (Trsr — fk)an(;Z’ k) L %(zm )?? %(55, k)
0*Q(zy, k) U (z1) 0Q(xx, k)
_ Ddt &Ei + Dpdt e o
< (p>=0

< (rCr >= Op

So if we know a path up to time k, we can increment x and then Q.

To compute the derivatives of Q, we need to grow a family of many paths in
parallel, and look for points close enough to compute derivatives.

There remains some difficulties (instabilities)

63
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Other numerical approach

« Equation to solve:

dv D ou QDE?IHQ
dt kT Ox O

» Start with Qo(z,t)
* Generate M trajectories
O, {a=1,.., M}
« From these trajectories, generate Q1(z, t)

+n(t)

* |terate procedure o
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Conclusion

* No need of reaction coordinates

* Method is efficient, and fast : completely
parallelizable

 All trajectories are statistically independent
* Possibility to reweight the trajectories

» Possibility to include the solvent

« Can be generalized to discrete systems.

65
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