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Overview

Linear response!

Linear response to temperature kicks!

Entropy production and something else!

Time-symmetric quantities: how many?



A macroscopic FPU?

Livia Conti, Lamberto Rondoni, et al: www.rarenoise.lnl.infn.it 

http://www.rarenoise.lnl.infn.it


Linear response for FPU?

How does a Fermi-Pasta-Ulam chain react to a change in 
one temperature?!

Nonequilibrium specific heat     variance of the energy!

Compressibility in nonequilibrium?
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Fluctuation-Dissipation Th.: Kubo!

An observable A(t) reacts to the appearance 
of a potential V(s)!
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Out of equilibrium: many FDT

a1) perturb the density of states and evolve 
(Agarwal, Vulpiani & C, Seifert & Speck, Parrondo &C,…) !

a2) “bring back” the observable to the 
perturbation (Ruelle)!

b) probability of paths (Cugliandolo &C, Harada-
Sasa, Lippiello &C, Ricci-Tersenghi, Chatelain, Maes, …)!

short review: Baiesi & Maes, New J. Phys. (2013)



Path probability (Markov),  

 Overdamped Langevin!

!

Discrete states C, C’, …with jump rates 

! ! {xs} for 0  s  t

dxs = µF (s) ds+
p

2µT dBs

W (C ! C 0)



Diffusion

Probability of a sequence dx0, dx1, dx2, . . .
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Diffusion + perturbation

Perturbation changes the path probability!

Ratio of path probabilities is finite for 

dxs = µF (s) ds+hsµ
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Susceptibility (h>0 for s>0)

Susceptibility
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Markov generator

In this case: L = µF
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interpret as expected variation:



Response function

1/2 entropy production !

minus 1/2 “expected” entropy production
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Response function
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Entropic term Frenetic term

Baiesi, Maes, Wynants, PRL (2009) !
Lippiello, Corberi, Zannetti, PRE (2005) !



Negative response

The sum of the two terms may be <0!

!

Example: negative mobility for strong forces 

Baerts, Basu, Maes, Safaverdi, PRE (2013)!
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Negative mobility



The structure of R(t,s) is different for inertial 
systems!

Achieved in a standard path-space 
comparison, with different drift terms 
(Radon-Nicodym derivative, Girsanov Th.)

dxs = µF (s) ds+
p

2µT dBs



The structure of R(t,s) is different for inertial 
systems!

Achieved in a standard path-space 
comparison, with different drift terms 
(Radon-Nicodym derivative, Girsanov Th.)

What happens if we change the noise term?

dxs = µF (s) ds+
p

2µT dBs



Mathematical problem

The response to T kicks involves changing the 
noise term!!

               not well defined for different noises!

However: we are interested in the limit  h—> 0

Ph(!)

P (!)



T(1+h), small deviation from  T
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Dangerous term (mathematically)

entropy production, !
as before new terms



Four terms:

Entropy production!

Expected entropy production!

!

!

Activity (?)!

Expected activity (?)
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[Sekimoto, Stochastic Energetics]

heat flux / temperature



Four terms:

Entropy production!

Expected entropy production!
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Time symmetric



Dynamical activity

Very relevant in kinetically constrained models!

Count the number of jumps between states!

time-symmetric quantity

! Lecomte, Appert-Rolland, van Wijland, PRL (2005) !
! Merolle, Garrahan, D. Chandler, PNAS (2005) !



Relation with activity

The (dx)^2 term should scale as the number 
of successful jumps in an underlying random 
walk description



Susceptibility
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antisymmetric!
(entropy produced) symmetric terms!

(frenetic contributions + activity)

Susceptibility



Example: harmonic spring

Susceptibility of the internal energy 



Inertial dynamics!

Harada-Sasa/stochastic energetics for the 
entropy production terms
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Harada-Sasa for transients/jumps:   Lippiello, Baiesi, Sarracino, PRL (2014)



Inertial dynamics

T dM(xt, vt) =
(mdvt)2

2�dt
� T � m

�

F (xt)dvt

T BM (xt, vt) =
�

2

"
v

2
t �

✓
F (xt)

�

◆2
#

�A(t) =
1

2T

⌧
A(t)

h
S(t)�

Z t

0
BS(s)ds+M(t)�

Z t

0
BM (s)ds

i�

antisymmetric symmetric terms

Susceptibility



Conclusions

General scheme: probability of trajectories ->  physics!

Time-symmetric quantities in response formulas!

Not only dissipation, but also “activation”!

Name(s): dynamical activity, frenesy, traffic, … !

Attempt to compare trajectories with different T


