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Self propelled particles

» Particles with an internal source of free energy that they can
convert into systematic movement.

» Used to model flocks of animals (from mammals to insects),
bacteria, some artificial systems. .. This will be a theoretical
talk!

» Main question: understand their collective properties

» Blooming field; many recent developments (I will not be able
to cite all relevant contributions!).



The model system (2D)
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» Point particles with an internal angular variable 6;

v

Move with speed v; along direction 6; + spatial noise

v

the speed v; may depend on the local density

v

Particles interact: they tend to align locally



Microscopic equations (2D)

e Spatial variables: transport in direction 6; (speed may depend on
local density) + noise
e Angular variables: interactions promoting local alignment + noise

X; = v(n,-)u(@,-) + 2DXU;(t)
0; = _I‘T,' o Z 'Sln(e,' — 9j) + 2D977,'(t)
Jj neighbor of i
with
nj = local density
oi, mj = gaussian white noises, unit covariance

Representative of a class of models with similar large scale
properties.



Qualitative behavior

e Strong interactions, or "external field” — local orientation order.
Not studied here.

e Weak interactions — no local orientation order
Large scale dynamics = diffusive.

e v depends on the local density p — effective diffusion coefficient
depends on p
Possibility of "motility induced phase separation” (Cates, Tailleur)



Main questions

e A macroscopic description? Finite N fluctuations? Stationary
measure? Probability distribution of the density?
e A very quick review

» J. Toner, Y. Tu (1995): phenomenological hydrodynamical
equations + noise introduced " by hand”

» E. Bertin, M. Droz, G. Grégoire (2006): write a Boltzmann
like equation + expansion close to the phase transition
threshold — derivation of Toner-Tu like equations, without
noise (many developments from there: Chaté et al., Marchetti
et al., lhle...)

» Math. literature: P. Degond, S. Motsch (2007); Fokker-
Planck like models (locally mean-field); far from the threshold

> Keeping finite N fluctuations: J. Tailleur, M. Cates et al.
(2008, 2011, 2013): without alignment promoting
interactions; Bertin et al. (2013): derive a noise from the
microscopic equations for nematics.



Our goals

1. start from microscopic equations

2. derive hydrodynamical equations and noise in a controlled way
Noise may have correlations — important to have a
microscopic derivation

3. exploit these results to study the dynamical fluctuations of the
empirical density (cf Macroscopic Fluctuation Theory).

4. obtain large deviation estimate for the stationary spatial
density p such as

P(p ~ u) < N5

S = "entropy”, or "quasi-potential”.

Simple framework: aligning interactions below threshold for local
order; density dependent speed (— clustering possible).



Microscopic equations (simplified), adimensionalized

% = ev(nj)u(b;) +5\/Eﬁi(1~—“) (1)
% — _% Z sin(0; — 0;) + V2 mi()),  (2)

’j neighbor of i/

with € = vo/(LDy), Dy = DxDy/V3, 5 = v/ Dy, t = Dyt.

Two important parameters:
D,: ratio spatial diffusion/" active” diffusion
7: strength of the aligning interaction

¢ = spatial time scale/angular time scale: small parameter



Strategy

Main object of interest: the empirical density
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f(x,0,t) N§:6x—x 5(0 — 0;(1))

1. Write an equation for f that keeps finite N fluctuations (cf D.
Dean 1996): in a sense exact in the large N limit

2. Use the time-scale separation to write an equation for p that
keeps finite N fluctuations: hoped to be exact in a combined
e —=>0, N— oo limit

3. Write a functional Fokker-Planck equation for pi¢[p], the pdf
of p.

4. Look for a stationary solution of the form

plp] < MoV



A fluctuating non linear Fokker-Planck equation

interaction
transport
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finite N fluctuations

82 2 2
+ w +é DXVXf

angular and spatial diffusions
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Meaning? A dynamical large deviation principle (Dawson 1987).

1 T
P(f ~ g0) = exp(—Nomlel) i Jorilel =5 | 10g—VEPLE?. gt

VFP = nonlinear Vlasov-Fokker-Planck operator= red terms



On the computations

e Local equilibrium + small deviation (order £ and 1/v/N
fluctuations)

F(x,0,t) = 2ip(x, 1) 4+ 6F(x, 6, )
T

e Equation for p: slow time scale, depends on §f

8,0 _ 2 2 V2DX g
at——&?V(v/u.gdf)—i-a D\Vep+e TN V- ( (x,y,t)) (3)

& = noise, multiplicative in p.

e 0f small — obtained by solving a linearized equation

e Reintroduce into Eq.(3) — the final equation, a fluctuating PDE
for p.



Dynamical large deviation principle
e Fluctuating PDE for p

ap 1
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e The fluctuating PDE for p is a rephrasing of a dynamical large
deviation principle "a la Dawson”

. 1T
P(p ~ u) = exp(—Nljo, 11[u]) with fjo 11[u] = 2/0 |0u—U[u]l* 1 p

e This kind of dynamical large deviation principle is the starting
point for the macroscopic fluctuation theory (in this case, it is
actually trivial. . .)



Yet another formulation: functional Fokker-Planck
equation

e Ordinary stochastic differential equation for x € RY — PDE
(Fokker-Planck) for the pdf of x.

e Stochastic PDE for a field p — functional equation for u[p],
"pdf’ of p.

drift part
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Results and discussion

e When 7 < 7, system effectively at equilibrium (case without
aligning interactions: Cates, Tailleur et al. 2007, 2011, 2013)
— computing S is possible, S[p] = [ s(p(x))dx

oy — _ [ o) +pv(p)V(p) | 2D
= ( (1-3) bl +b[p])

e — compute S[p]



Results and discussion
e Reasonable to assume v(p) decreasing — possible phase
separation (MIPS = Motility Induced Phase Separation). Role of

the interactions?
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Sketch of the D, — 4 phase diagram.



Results and discussion

(a)
b

Left: entropy s(p). Right: D, — p phase diagram.
» Spinodal line very sensitive to the interaction strength
(observed in simulations)
» Density fluctuations increase when approaching the ordered
phase
» A strong enough spatial diffusion always prevent phase
separation



Conclusion

» Nice example where the limiting procedures seem well
controlled + a general strategy

» Some physical insight in the " Motility Induced Phase
Separation” with aligning interactions

> Next step: with a local orientation order
— hyperbolic hydrodynamic limit
— one cannot expect an effective equilibrium in the same
sense

» Mathematical theory much less developed in this case. ..
(recent works by Mariani, Bertini et al.) Work in progress. ..



