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Self propelled particles

I Particles with an internal source of free energy that they can
convert into systematic movement.

I Used to model flocks of animals (from mammals to insects),
bacteria, some artificial systems. . . This will be a theoretical
talk!

I Main question: understand their collective properties

I Blooming field; many recent developments (I will not be able
to cite all relevant contributions!).



The model system (2D)

i
particle i

I Point particles with an internal angular variable θi
I Move with speed vi along direction θi + spatial noise

I the speed vi may depend on the local density

I Particles interact: they tend to align locally



Microscopic equations (2D)

• Spatial variables: transport in direction θi (speed may depend on
local density) + noise
• Angular variables: interactions promoting local alignment + noise

ẋi = v(ni )u(θi ) +
√

2Dxσi (t)

θ̇i = − γ
ni

∑
j neighbor of i

sin(θi − θj) +
√

2Dθηi (t)

with

ni = local density

σi , ηi = gaussian white noises, unit covariance

Representative of a class of models with similar large scale
properties.



Qualitative behavior

• Strong interactions, or ”external field” → local orientation order.
Not studied here.

• Weak interactions → no local orientation order
Large scale dynamics = diffusive.

• v depends on the local density ρ → effective diffusion coefficient
depends on ρ
Possibility of ”motility induced phase separation” (Cates, Tailleur)



Main questions

• A macroscopic description? Finite N fluctuations? Stationary
measure? Probability distribution of the density?
• A very quick review

I J. Toner, Y. Tu (1995): phenomenological hydrodynamical
equations + noise introduced ”by hand”

I E. Bertin, M. Droz, G. Grégoire (2006): write a Boltzmann
like equation + expansion close to the phase transition
threshold → derivation of Toner-Tu like equations, without
noise (many developments from there: Chaté et al., Marchetti
et al., Ihle. . .)

I Math. literature: P. Degond, S. Motsch (2007); Fokker-
Planck like models (locally mean-field); far from the threshold

I Keeping finite N fluctuations: J. Tailleur, M. Cates et al.
(2008, 2011, 2013): without alignment promoting
interactions; Bertin et al. (2013): derive a noise from the
microscopic equations for nematics.



Our goals

1. start from microscopic equations

2. derive hydrodynamical equations and noise in a controlled way
Noise may have correlations → important to have a
microscopic derivation

3. exploit these results to study the dynamical fluctuations of the
empirical density (cf Macroscopic Fluctuation Theory).

4. obtain large deviation estimate for the stationary spatial
density ρ such as

P(ρ ≈ u) � eNS[u]

S = ”entropy”, or ”quasi-potential”.

Simple framework: aligning interactions below threshold for local
order; density dependent speed (→ clustering possible).



Microscopic equations (simplified), adimensionalized

d x̃i
dt̃

= εṽ(ni )u(θi ) + ε

√
2D̃x~σi (t̃) (1)

dθi
dt̃

= − γ̃
ni

∑
j neighbor of i

sin(θi − θj) +
√

2 ηi (t̃) , (2)

with ε = v0/(LDθ), D̃x = DxDθ/v
2
0 , γ̃ = γ/Dθ, t̃ = Dθt.

Two important parameters:
D̃x : ratio spatial diffusion/”active” diffusion
γ̃: strength of the aligning interaction

ε = spatial time scale/angular time scale: small parameter



Strategy
Main object of interest: the empirical density

ρ(x, θ, t) =
1

N

∑
i

δ(x− xi (t))

Phase space empirical density

f (x, θ, t) =
1

N

∑
i

δ(x− xi (t))δ(θ − θi (t))

1. Write an equation for f that keeps finite N fluctuations (cf D.
Dean 1996): in a sense exact in the large N limit

2. Use the time-scale separation to write an equation for ρ that
keeps finite N fluctuations: hoped to be exact in a combined
ε→ 0, N →∞ limit

3. Write a functional Fokker-Planck equation for µt [ρ], the pdf
of ρ.

4. Look for a stationary solution of the form

µ[ρ] � eNS[ρ]



A fluctuating non linear Fokker-Planck equation

∂f

∂t
=

transport︷ ︸︸ ︷
−ε∇ (v(ρ)u(θ)f ) +

interaction︷ ︸︸ ︷
γ

ρ

∂

∂θ

(
f

∫
dθ′sin(θ − θ′)f (θ′)

)
+

√
2

N

∂

∂θ

(
η(x, θ, t)

√
f
)

+ ε

√
2Dx√
N
∇x ·

(
~σ(x, θ, t)

√
f
)

︸ ︷︷ ︸
finite N fluctuations

+
∂2f

∂θ2
+ ε2Dx∇2

x f︸ ︷︷ ︸
angular and spatial diffusions

Meaning? A dynamical large deviation principle (Dawson 1987).

P(ft ≈ gt) � exp(−NJ[0,T ][g ]) ; J[0,T ][g ] =
1

4

∫ T

0
||∂tg−VFP[g ]||2−1,gdt

VFP = nonlinear Vlasov-Fokker-Planck operator= red terms



On the computations

• Local equilibrium + small deviation (order ε and 1/
√
N

fluctuations)

f (x, θ, t) =
1

2π
ρ(x, εαt) + δf (x, θ, t)

• Equation for ρ: slow time scale, depends on δf

∂ρ

∂t
= −ε∇(v

∫
uθδf ) + ε2Dx∇2ρ+ ε

√
2Dx√
N
∇ ·
(
~ξ(x , y , t)

)
(3)

ξ = noise, multiplicative in ρ.
• δf small → obtained by solving a linearized equation
• Reintroduce into Eq.(3) → the final equation, a fluctuating PDE
for ρ.



Dynamical large deviation principle
• Fluctuating PDE for ρ

∂ρ

∂t
= U[ρ](~x) +

1√
N
ν(~x , t)

U[ρ](~x) =
1

2
∇ ·

(
v(ρ)

1− γ̄
2

∇[v(ρ)ρ]

)
+ Dx∇2ρ

〈ν(x , y , t)ν(x ′, y ′, t ′)〉 = D[ρ](~x ,~x ′)δ(t − t ′)

• The fluctuating PDE for ρ is a rephrasing of a dynamical large
deviation principle ”à la Dawson”

P(ρ ≈ u) � exp(−NI[0,T ][u]) with I[0,T ][u] =
1

2

∫ T

0
||∂tu−U[u]||2−1,D

• This kind of dynamical large deviation principle is the starting
point for the macroscopic fluctuation theory (in this case, it is
actually trivial. . .)



Yet another formulation: functional Fokker-Planck
equation

• Ordinary stochastic differential equation for x ∈ Rd → PDE
(Fokker-Planck) for the pdf of x .
• Stochastic PDE for a field ρ → functional equation for µt [ρ],
”pdf” of ρ.

∂µt
∂t

=

drift part︷ ︸︸ ︷
−
∫

d~x
δ

δρ(~x)
(U[ρ](~x)µt)

+
1

2N

∫
d~x

δ

δρ(~x)

{∫
d~x ′D[ρ](~x ,~x ′)

δ

δρ(~x ′)
µt

}
︸ ︷︷ ︸

diffusion part



Results and discussion

• When γ < γc , system effectively at equilibrium (case without
aligning interactions: Cates, Tailleur et al. 2007, 2011, 2013)
→ computing S is possible, S [ρ] =

∫
s(ρ(x))dx

s”(ρ) = −

(
v2(ρ) + ρv(ρ)v ′(ρ)(

1− γ̄
2

)
b[ρ]

+
2Dx

b[ρ]

)

• → compute S [ρ]



Results and discussion

• Reasonable to assume v(ρ) decreasing → possible phase
separation (MIPS = Motility Induced Phase Separation). Role of
the interactions?
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Sketch of the Dx − γ̃ phase diagram.



Results and discussion

Left: entropy s(ρ). Right: Dx − ρ phase diagram.

I Spinodal line very sensitive to the interaction strength
(observed in simulations)

I Density fluctuations increase when approaching the ordered
phase

I A strong enough spatial diffusion always prevent phase
separation



Conclusion

I Nice example where the limiting procedures seem well
controlled + a general strategy

I Some physical insight in the ”Motility Induced Phase
Separation” with aligning interactions

I Next step: with a local orientation order
→ hyperbolic hydrodynamic limit
→ one cannot expect an effective equilibrium in the same
sense

I Mathematical theory much less developed in this case. . .
(recent works by Mariani, Bertini et al.) Work in progress. . .


