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Motivation

Prepare a macroscopic system at initial time with an inhomogeneous

temperature T0(x). At some macroscopic time t, we expect that the

temperature Tt(x) at x is given by the solution of the heat equation

(Fourier, 1822):

∂tT = ∇[κ(T )∇T ].

κ(T ) is the thermal conductivity.



• It turns out that one dimensional systems (e.g. carbon nan-

otubes) can display anomalous energy diffusion if momentum

is conserved . The heat equation is no longer valid: the con-

ductivity is infinite, energy current correlation function is not

integrable...

• What shall replace the heat equation?



Microscopic models

Standard microscopic models of heat conduction are given by very

long (=infinite) chains of coupled oscillators, i.e. infinite

dimensional Hamiltonian system with Hamiltonian

H =
∑
x∈Z

{
p2
x
2 + V (rx)

}
, rx = qx+1 − qx .



Conserved quantities

Conserved quantities:

1. The energy H =
∑

x ex , ex = p2
x
2 + V (rx),

2. The total momentum
∑

x px ,

3. The compression of the chain
∑

x rx =
∑

x(qx+1 − qx).

The problem of the existence (or not ) of other conserved

quantities is a highly challenging problem (ergodic problem).
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Hydrodynamics: Euler equations

It is expected that in a Euler time scale the empirical energy e(t, x),

the empirical momentum p(t, x) and the empirical compression r(t, x)

are given by a system of compressible Euler equations (hyperbolic

system of conservation laws):
∂tr = ∂xp,

∂tp = ∂xτ,

∂te = ∂x(pτ),

τ := τ(r, e− p2

2 ).

This can be proved rigorously if the ergodic problem (precisely

formulated) can be solved (before the shocks).



Some theoretical approaches

Apart from a huge amount of numerical simulations (see Dhar’s

review), there are various theoretical approaches to predict the time

decay of total energy current correlation function C (t):

• Renormalization Group analysis (Narayan-Ramaswamy’02). C (t) ∼

t−2/3.

• Mode Coupling Theory (Delfini-Lepri-Livi-Politi’06): C (t) ∼ t−2/3

(asymmetric potentials) and C (t) ∼ t−1/2 (symmetric poten-

tials).

• Kinetic Theory (Pereverzev’03, Lukkarinen-Spohn’07): C (t) ∼

t−3/5 (for FPU β).



Nonlinear fluctuating hydrodynamics predictions

Recently, Spohn (following van Beijeren) developed a theory of non-

linear fluctuating hydrodynamics (NFH) to predict the behavior of

the long time behavior of the time-space correlation functions of all

the conserved fields g(x , t) = (rx(t), px(t), ex(t))

Sαα′(x , t) = 〈gα(x , t)gα′(0, 0)〉τ,β − 〈gα〉τ,β〈gα′〉τ,β

where 〈·〉τ,β is the (product) equilibrium Gibbs measure at tempera-

ture β−1 and pressure τ

〈·〉τ,β ∼ exp{−β
∑
x

(ex + τ rx)}drdp.



Nonlinear fluctuating hydrodynamics predictions

• The long time behavior of the correlation functions of the con-

served fields depends on explicit relations between thermody-

namic parameters (KPZ universality class and others).

• It is a macroscopic theory based on the validity of the hydrody-

namics in the Euler time scale after some corse-graining proce-

dure.

• Mutatis mutandis, it can be applied for any conservative model

whose conserved fields evolve in the Euler time scale according

to a system of n = 2, 3 . . . conservation laws. Similar universal-

ity classes appear.



Harmonic chain with bulk noise

• A proof of such predictions starting from stochastic Euler equa-

tions or from Hamiltonian microscopic dynamics are out of the

range of actual mathematical techniques.

• Following ideas of [Olla-Varadhan-Yau’93] and [Fritz-Funaki-

Lebowitz’94] we consider chains of oscillators perturbed by a

bulk stochastic noise such that in the hyperbolic time scale Eu-

ler equations are valid.



• We start with a harmonic chain {(rx(t), px(t)) ; x ∈ Z} and we

use an equivalent dynamical variable {ηx(t) ; x ∈ Z} defined by

η2x = px , η2x+1 = rx .

• Newton’s equations are

dηx = (ηx+1 − ηx−1)dt, x ∈ Z.

• Noise: On each bond {x , x + 1} we have a Poisson process

(clock). All are independent. When the clock of {x , x + 1}

rings, ηx is exchanged with ηx+1. The dynamics between two

successive rings of the clocks is given by the Hamiltonian dy-

namics.



• We obtain in this way a Markov process which conserves the

total energy

H =
∑
x∈Z

ex =
∑
x∈Z

η2
x =

∑
x∈Z

{
p2
x
2 + r2

x
2

}
.

• The noise destroys the conservation of the momentum and the

conservation of the compression field.

• Nevertheless, the “volume” field
∑

x ηx is conserved.



• The energy
∑

x η
2
x and the volume

∑
x ηx are the only conserved

quantities of the model (in a suitable sense which can be made

precize).

• The Gibbs equilibrium measures 〈·〉τ,β are parameterized by two

parameters (τ, β) ∈ R× [0,∞) and are product of Gaussians

〈·〉τ,β ∼ exp{−β
∑
x

(η2
x + τηx)}dη.



Theorem (B., Stoltz’11)

In the Euler time scale, the empirical volume field v(t, x) and the

empirical energy field e(t, x) evolve according to
∂tv = 2∂xv,

∂te = ∂xv
2.

The theorem is clearly false without the presence of the noise.



• We define

St(x) =
〈(
η0(0)2 − 1

β

)(
ηt(x)2 − 1

β

)〉
τ=0,β

• The case τ 6= 0 can be recovered by considering the dynamics

η̃t(x) = ηt(x)− τ.



Theorem (B., Gonçalves, Jara’14)

We have that for any x ∈ R

lim
n→∞

Stn3/2([nx ]) = 2
β2 Pt(x),

where {Pt(x); x ∈ R, t ≥ 0} is the fundamental solution of the

skew fractional heat equation

∂tu = − 1√
2

{
(−∆)3/4 −∇(−∆)1/4}u.



• In fact, we can prove more: the limit of the energy fluctua-

tion field is given by an infinite dimensional fractional Ornstein

Uhlenbeck (Gaussian) process:

∂tE = LEdt +
√
2T
(
−∆

)3/8
∂tW

L = 1√
2

{
(−∆)3/4 −∇(−∆)1/4}.

• These results confirm the predictions of the NFH/MCT for this

particular case. The
√
2 is not available in the NFH but it is in

the MCT.



• The proof can be adapted to chains of harmonic oscillators with

a noise consisting to exchange n.n. momenta at independent

random exponential times (3 conserved quantities; Basile, B.,

Olla’06 model).

• Then, the skew fractional Laplacian has to be replaced by the

fractional Laplacian. This is because the two sound modes have

opposite velocities and the two drift terms ±∇(−∆)1/4 annihi-

late each other.



Related works

• Fractional diffusion has been obtained starting from a linear

kinetic phonons equation (Basile-Olla-Spohn’08, Jara-Komorowski-

Olla’09).

• Delfini-Lepri-Livi-Mejia-Monasteiro-Politi ’08 ... obtained also a

fractional Laplacian by considering the NESS of a system of

harmonic oscillators with energy conserving noise.

• More recently, Jara, Komorowski and Olla obtained similar re-

sults by a very different method (Wigner function). They don’t

have access to the fractional OU process but their method also

work out of equilibrium.



We want to prove

Theorem (B., Gonçalves, Jara’14)

We have that for any x ∈ R

lim
n→∞

Stn3/2([nx ]) = 2
β2 Pt(x),

where {Pt(x); x ∈ R, t ≥ 0} is the fundamental solution of the

skew fractional heat equation

∂tu = − 1√
2

{
(−∆)3/4 −∇(−∆)1/4}u.



Ideas of the proof (β = 1)

• The energy fluctuation field is defined as

En
t (f ) =

1
√
n

∑
y∈Z

f
( y

n

)(
ηtn3/2(y)2 − 1

β

)
.

• The quadratic field is defined as

Qn
t (h) =

1

n

∑
y 6=z∈Z

h
( y

n ,
z
n

)
ηtn3/2(y)ηtn3/2(z).



By Itô calculus,

dEn
t (f ) ≈ −2Qn

t (f ′ ⊗ δ)dt + 1√
nE

n
t (f ′′)dt + martingale.

dQn
t (h) ≈ Qn

t
(
Lnh
)
dt − 2En

t
(
[e · ∇h](x , x)

)
dt

+ 2√
nQ

n
t
(
∂yh(x , x)⊗ δ

)
dt + martingale.

where (ϕ⊗ δ)(x , y) = ϕ(x)δ(x = y) (distribution) and e = (1, 1).

The linear operator Ln is defined by

Lnh = n−1/2∆h + 2n1/2(e · ∇)h.

Choose hn such that Lnhn = 2f ′ ⊗ δ and add the two equations.
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Up to small terms and martingale terms, we get

dEn
t (f ) ≈ −2En

t
(
[e · ∇hn](x , x)

)
dt − dQn

t (hn)

Integrate in time and use Cauchy-Schwarz inequality to show that

Qn
t (hn),Qn

0 (hn) vanish as n→∞. Then, up to small terms and

martingale terms,

En
t (f )− En

0 (f ) ≈ −2
∫ t

0
En

s
(
[e · ∇hn](x , x)

)
ds

Recall that hn := hn(f ) is the solution of

Lnhn = n−1/2∆hn + 2n1/2(e · ∇)hn = 2f ′ ⊗ δ

The equation for En
t (·) is closed.
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It remains only to show (by Fourier transform, it’s easy) that

lim
n→∞

[e · ∇hn](x , x) = 1√
2

[
(− d2

dx2 )3/4 − d
dx (− d2

dx2 )1/4
]
f .



The evanescent flip noise limit

• Consider the same Markov process (harmonic chain + exchange

noise) and add a second stochastic perturbation with intensity

γn = n−b, b > 0, which consists to flip independently on each

site at Poissonian times the variable ηx into −ηx .

• The energy is conserved but the volume
∑

x ηx is not (stricto

sensu, only if b =∞).

• We look at the system in the time scale tna, a > 0, such that

the energy field has a non-trivial limit.



We have (B., Gonçalves, Jara, Sasada, Simon’14)

a

b0
0

11/2

4/3
3/2

2
heat eq.

fract. heat eq.

No evolution

?



Conclusion

• We considered a harmonic chain with a conservative noise (dis-

crete version of the non-linear fluctuating hydrodynamics) and

we computed the scaling limit of the energy fluctuation field.

• The limit is given by the stationary solution of the infinite-

dimensional fractional Ornstein-Uhlenbeck process.

• Is this limit the same for others nonlinear models (e.g.

anharmonic chains with symmetric potentials at zero

pressure)? The answer to this question is outside the range of

the NFH/RG/MFT predictions.


