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Abstract 

The transition from a non-equilibrium state to an equilibrium state is 

characterized not only by the disappearance of the entropy production, but 

mainly by the disappearance of the organized currents, due to the gradients 

present in a non-equilibrium system. Their disappearance is necessary to obtain 

maximum entropy in the equilibrium state. 

 

 In this note we consider the transition from an equilibrium system to a non-equilibrium   

system, and vice versa. While in an equilibrium system there is entropy, a measure of the 

disorder of the particles in the system, in a non-equilibrium system there is no entropy and only 

entropy production due to the dissipative processes occurring in non-equilibrium systems, such 

as e.g., viscous friction, thermal conduction, and particle diffusion. Because of the Second Law 

of Thermodynamics, these processes are necessarily accompanied by a dissipation of energy in 

the form of a non-zero entropy production. 



 Here we will consider fluids near thermal equilibrium, which are in a local equilibrium state. 

Then local thermodynamic quantities can be defined: a local number density, n(r, t), a local 

temperature T(r, t), and a local mean velocity u(r, t). Here r denotes a position in the system and 

t is the time. This state is the basis of Non-Equilibrium or Irreversible Thermodynamics [1]. 
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 In [1], when an equilibrium system makes a transition to a non-equilibrium system, only the 

appearance of a non-zero entropy production, which vanishes in the equilibrium system, is 

considered. However, this does not take into account that this transition also involves an 

organization of the non-equilibrium system. When external forces are applied to bring a system 

from a homogeneous equilibrium state to an inhomogeneous non-equilibrium state, the system 

first passes through a non-equilibrium transient state, and then to a non-equilibrium steady state. 

In the transient state, organized currents are formed because of the gradients of the local 

thermodynamic quantities, as, e.g., in the case of a heat flow or in a Poiseuille flow [2]. In the 

non-equilibrium steady state, the fully organized currents formed at the end of the transient state, 

are maintained until the external forces are removed and the system passes again through a 

transient state and returns to the equilibrium state.  

 

 This organization or ordering in a system in a non-equilibrium state leads to a loss of entropy, 

which is partly compensated by the non-negative entropy production due to dissipation. 

However, up till now, this has not been considered in Non-Equilibrium Thermodynamics.  

Consequently, there has to be a new (extra) entropic contribution, which in spite of the 

disappearance of the entropy production, guarantees a maximum of the entropy in equilibrium. 

This needed entropic contribution is provided by the organized currents, when they disintegrate 

in the non-equilibrium transient state and disappear in the equilibrium state, because of the 

disappearance of the gradients. This will randomize the system and then provide the necessary 

entropic disorder for the maximum entropy in the equilibrium state [3]. 

 

 Furthermore, in non-equilibrium thermodynamics as in [1], the entropy production, i.e. the 

dissipation, has a minimum in the non-equilibrium steady-state.  However, in our case, because 

of the gradual increase of the entropy production from the equilibrium state via the non-

equilibrium transient state to the non-equilibrium steady-state, a maximum of the entropy 

production will be reached in the non-equilibrium steady-state. Physically it seems impossible, 

that during the steady gradual organization of the currents, from the initial equilibrium state via 

the non-equilibrium transient state to the final non-equilibrium steady state, the entropy 

production would have a maximum in the non-equilibrium transient state. This is because the 
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steadily increasing currents from the equilibrium state to the non-equilibrium steady state imply 

an accompanying steadily increasing dissipation, i.e., entropy production, as shown in Table 1.   

 

 

EQUILIBRIUM STATE     NON-EQUILIBRIUM STATES 

         Transient state     Steady state 

entropy      increasing entropy production  maximum entropy production 

no currents     organizing currents    organized currents 

no entropy production  no entropy       no entropy 

 
TABLE 1. Entropy, entropy production, and currents in the equilibrium 
   and non-equilibrium states. 
 

 

 For the opposite transition from the non-equilibrium steady state to the equilibrium state, the 

organization of the currents – due to the externally induced gradients— functions as a deus ex 

machina for the retrieval of the maximum entropy when the system has reached its final 

equilibrium state. 

 

 In conclusion, the main point of this Note is to point out that the entropy of the particles of a 

fluid in thermal equilibrium is transformed by the external forces into organized currents of the 

particles in a non-equilibrium state and vice-versa. 
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 characteristic length: the mean free path in a gas or the size of the particles in a liquid. 

 

[3] The entropy loss due to the disappearance of entropy production is much smaller than the 

 entropy gain due to the disappearance of the self-organized currents, since the former are ~ to 

 the square of the gradients while the latter are ~ to the gradients. 


