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STOCHASTIC PROCESSES OF INTEREST

Semi-Markovian property

Bauer & Cornu : First passage FR & cycle affinities Semi-Markovian processes



1.1 Example of processes of interest : a bacterial ratchet

motor Di Leonardo & al. PNAS, 107 9541 (2010)
e Experiment : asymmetric gear (diameter : 48 pm, thickness 10 um)
in active bath of self-propelling bacteriae.
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3 "\I ] 73 ? (%> = 1 revolution per minute

reorients bacteria motion

. Ny
N - - - e either bacteria slides to corner
w\ — gets stuck — torque

or bacteria slides away from corner
— no torque

g .. v ’ e perpendicular wall reaction

white "head" : self-propulsion direction
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1.2 Modelization by a finite state semi-Markovian process

e Finite number of configurations C,, :
discretized values of angle « of black spot position : Cp, = apy = m2w/M
e Semi-Markovian process (or generalized renewal sequence) :
History : ((CO, ), (C, T+ 7),(C", 70+ 7+ 7'),.. )

After a waiting time 7 distributed with probability Pc(7),
system jumps from C to C’ with probability (C'|P|C)
(P stochastic matrix with quantum mechanics convention for sense of evolution)
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1.2 Modelization by a finite state semi-Markovian process

e Finite number of configurations C,, :
discretized values of angle « of black spot position : Cp, = apy = m2w/M

e Semi-Markovian process (or generalized renewal sequence) :
History : ((CO, ), (C, T+ 7),(C", 70+ 7+ 7'),.. )
After a waiting time 7 distributed with probability Pe(7),

system jumps from C to C’ with probability (C'|P|C)
(P stochastic matrix with quantum mechanics convention for sense of evolution)

e Graph representation :
configuration C
vertex e :
weight for waiting time at C :
- P2(7) if C initial configuration of history
- Pc(7) otherwise

bond — : probability (C’|P|C) to jump from C to C’
when a jump is known to occur
and probability (C|P|C’) of reverse jump
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1.3 Questions

1) Probability that the cycle be performed at least once in positive (negative)
sense in a infinite time interval 7

2) Fluctuation relation for first passage time at winding number +1 or -1 ?

winding number = number of revolutions in the positive sense minus number of
revolutions in the opposite sense

Answers use affinity concept
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AFFINITY and ENTROPY PRODUCTION RATE

Known results for Markovian processes
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2.1 Specific case : Markovian processes

e Markov property : specific form for probability of waiting time 7 in
configuration C : exponential

Pe(7) = r(C)e™ €)™
r(C) escape rate from C = inverse mean waiting time at C

e From a Markov chain to a Markov process :
(C'|P|C) probability to jump from C to C’ knowing that system jumps out of C
—(C'|W|C)dt probability to jump from C to C’ during dt

e Master equation for evolution of probability P(C;t) of configuration C at t

dPCt

=Y [([C[W[C")P(C';t) — (C'|W|C)P(C; t)]

c'#£C

e Microreversibility hypothesis : (C'|W|C) A0 < (C|W|C')#0
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2.2 Shannon-Gibbs entropy evolution and irreversibility
e Dimensionless Shannon-Gibbs entropy (k; = 1)
SEP(t)] = - Z P(C; t)In P(C; t)
c

dss , _ P(C; t)
o _(;(c |W|C)P(C; t) In 1)
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2.2 Shannon-Gibbs entropy evolution and irreversibility
e Dimensionless Shannon-Gibbs entropy (k; = 1)
S*[P(t)] == _ P(Cit)InP(C; 1)
c

dss ) _ P(C; t)
" _(;(c |W|C)P(C; t) In 1)

e Analogy with phenomenological thermodynamics of irreversible processes

dS% 4o S o G5 [Schnakenberg 1976]
__ Yexch + irr

dt dt dt

dexch 5%
dt

/
= _ Z(C'|W|C)P(C? t)In m with no definite sign
c.cr

(C'IWIC)P(C; t)
(CIWICr)P(C’; t)

[(C'[W|C)P(C; t) — (CIW|C)P(C'; t)] In >0

. irreversible entropy production rate
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2.3 Comparison with kinetic theory : affinity of a chemical
reaction (a)

e In a vessel with walls at inverse temperature § and exerting pressure P,
one introduces species A and B prepared separately at (3, P)

reversible reaction : A= B

e Phenomenological thermodynamics of irreversible processes

h =B
dir SP _ dnp
p” = B(pka — 1s) X ot
—_——
entropy production rate affinity Ay—p reaction extent rate Jy_—g

i chemical potential (i = A, B, n; : molecule concentration for species /)
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2.3 Comparison with kinetic theory : affinity of a chemical
reaction (a)

e In a vessel with walls at inverse temperature § and exerting pressure P,
one introduces species A and B prepared separately at (3, P)

reversible reaction : A= B

e Phenomenological thermodynamics of irreversible processes

h =B
dir SP _ dnp
p” = B(pka — 1s) X ot
—_——
entropy production rate affinity Ay—p reaction extent rate Jy_—g

i chemical potential (i = A, B, n; : molecule concentration for species /)

A=B
e Kinetic theory : St = kpana — kac—pnp with k;_; : kinetic constants

e Thermodynamics of ideal solutli(ons :onjoc e and pSt = —
B—ANA
Blua = pg) = In ==
A—BNB
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2.3 Comparison with kinetic theory : affinity of a chemical
reaction (b)

e Correspondance:
concentration n;(t) — P(C; t) configuration probability

kinetic constant kj.; — (C'|W|C) transition rate

— Rewriting di S 1

== Z JeecrAc=cr
g 24

bond current  Je—c: = (C'|W|C)P(C; t) — (C|[WI|C")P(C’; t)

(C'WIC)P(C; t)

bond affinity Ac—c =In -2~ — "~
ond affinity Ac—c n(C|W|C’)P(C’;t)
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2.4 Affinity for a master equation corresponding to a graph
made of a single cycle

¢ Representation of a master equation by a graph
Graph G : vertex e : configuration C

bond — : transtion rates (C'|W|C) and (C|W|C")

e Case where graph G is a cycle C of M vertices.

Fixed orientation along C with Cpr1 = C
M
cycle affinity  Ac = Z Ac,—c,., with Ac _c écﬁlwxﬁ%cmﬁ)

myl =

In(

=1In H Cm+1|W|C m) independent from P(C, t)

L1 ¢, [wicm.)
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2.4 Affinity for a master equation corresponding to a graph
made of a single cycle

¢ Representation of a master equation by a graph
Graph G : vertex e : configuration C
bond — : transtion rates (C'|W|C) and (C|W|C")

e Case where graph G is a cycle C of M vertices.
Fixed orientation along C with Cpr1 = C
M

cycle affinity  Ac = Z Ac,=c,.. With Ac —c. . =In (éCmT\WXE?L%Cmﬂ)

=In H C’"T@Tgili independent from P(C, t)

m:l

e Property of stationary state P (C)
Cycle current : Jc[Pst] = Jey—c,[Pst] = Jey—cs[Pst] = - -

i S5

Entropy production rate: pm

= Jc[Pst] Ac
Py
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2.5 Affinity class in graph theory

e Exchange processes in configuration jumps < antisymmetric matrices
- S for the exchange entropy variation
- A for the affinity variation

C'\W|C
(C'ISIC) = In EC||VV||C’; and (C'|APNC) =1n

(C'W|C)P(C; t)

(CIW[C)P(Cr 1) — e=¢
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2.5 Affinity class in graph theory

e Exchange processes in configuration jumps < antisymmetric matrices
- S for the exchange entropy variation
- A for the affinity variation

(c'fwic)
(€[wicr)

(C'W|C)P(C; t)

(CSIC) = In (cwicnp(c’; 1)

and (C'|APNC) =1n =Accr

e Forany P(C;t) (C'|APl|C) — (C'IS|C) = —In P(C") + In P(C)

— For any P(C; t), A"l in cohomology class of S :
set of antisymmetric Q such that "integration" along any cycle subgraph C
gives the same result as for S

S $ (Crs1|WICm)
vC Crs1|QICm) = S (Crsa|S|Com) I (Cmia =A
mZ:jl( +1|QICm) mZ:jl( S| Z o,y = e

— cohomology class of S called "affinity class"
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AFFINITY CLASS INVARIANCE

under probabilistic constructions

Bauer & Cornu : First passage FR & cycle affinities Affinity class invariance



3.1 From a Markov process to a Markov chain

e Hypothesis : G connected :
— no absorption configuration : r(C) = > c,_o(C'|W|C) # 0 for all C

(C'|W|C)dt probability to jump from C to C’ during dt
— (C'|P|C) probability to jump from C to C’ knowing that system jumps out of C

for C'#C (C'|P|IC) = (C’J(‘?’;C)
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3.1 From a Markov process to a Markov chain

e Hypothesis : G connected :
— no absorption configuration : r(C) = > c,_o(C'|W|C) # 0 for all C
(C'|W|C)dt probability to jump from C to C’ during dt

— (C'|P|C) probability to jump from C to C’ knowing that system jumps out of C

(c'wic)

for C'#C (C'|P|IC) = 0

e Comparison of cycle affinities

T Cona[WIC)
cycle affinity for process W Ac[W] = In Cm+1
= mT:I Cnl W Co1)

T CmialPIC)
cycle affinity for chain P Ac[P] = In H Cmi1
m—=1 m|P|Cm+1

Ac[W] = Ac[P]

Invariance under description change from Markov process to Markov chain
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3.2 From a Markov process to processes defined on a
subgraph (a)

e Generic connected graph G. Consider red subgraph H (a cycle here)

transition rate (C'|W|C)

e Initial process with L -
waiting time probability Pc(7)

Markov property Pe(7) = r(C)e="(©)"
e Derived process only between configurations of H

with transition rate (C’|W|C)
waiting time probability P¢(7)

e Examples of derived processes such that, if H is a cycle C, then AC[W] = Ac[W]
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3.2 From a Markov process to processes defined on a
subgraph (b)

e 1) restriction to a subgraph H :
Markov process for different histories where
system jumps only along red bonds with same transition rates

- (C'WrestC) = (C'W|C) — different escape rate r"***(C) = >, oy (C'|WIC)

-If His a cycle C Ac[W'] = Ac[W]
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3.2 From a Markov process to processes defined on a
subgraph (b)

e 1) restriction to a subgraph H :
Markov process for different histories where
system jumps only along red bonds with same transition rates

- (C'WrestC) = (C'W|C) — different escape rate r"***(C) = >, oy (C'|WIC)

-IfHisacycle C Ac[W™t = Ac[W]

e 2) Conditionning
Only histories where system jumps along red bonds are retained

- — Markov process with (c'werd|e) = g(¢')(C'[W|C) [g(C)]

-IfHis acycle C Ac[Werd] = Ac[W]
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3.2 Processes defined on a subgraph (c)

e 3) Drag and drop
A box is bound to move on the subgraph.
All histories are considered but only the following events are retained :
a walker meets the box on a red site
and then jumps through a red bond while carrying the box along

The box moves according to a semi-Markovian process with
- probability to jump from C to C’ : (C'|PU|C) = (C'|P™t|C)
- waiting time probability ﬁc(’]’) not exponential
-IfHis acycle C Ac[P¥] = Ac[P]
- Example :
* graph G : positions of a complex inside a cell
* subgraph H : heteropolymer

* box : a ligand bound to move along the heteropolymer when carried by the
complex
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Drag and Drop
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AFFINITY AND FLUCTUATION RELATIONS at fixed time
Exchange Markovian processes

Known results
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4.1 Exchange processes : cumulative currents

e Exchange observable Q : (antisymmetric) (C'|Q|C) = —(C|Q|C")

e Process C; — Exchange cumulative process

X2 =) (Clalce.-)

s€]0,t]

e Example : ( microreversibility hyp.: (C'|W|C) #0 <& (C|WI|C’) #0)
Stochastic exchange entropy variation along a history :
Lebowitz-Spohn action functional (1999) : X5 = Z (CsIS|Cs-)

s€]0,t]
For a history from Cq to Cpy in time interval [0, t]

X In (Cn[WICn—1)(Cn-1|W[Ch—2) - - - (C:|W]|Co)
(Co|W[C1) -+ (Cn—2[W[Cn-1) - - - (Ch—1|W[Cn)
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4.2 Fluctuation relation for X° at fixed time

e Extra hypothesis : graph G connected = unique stationary P;(C)

e Large deviation function fyxs(7) for cumulative current 7, = X5/t

lim ! “InP (X—S €J, J+dJ]> = fxs(J)

t—+o0o t

e Fluctuation relation obeyed by fxs(7) [Lebowitz and Spohn (1999)]

fxs(T) — be(=T) =T
Other “sloppy” formulation

P(X; = tJ)

Nt 7 - tJ
P(Xf=-tJ) oo ©
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4.3 Case of a graph made of a single cycle : fluctuation
relation for the cycle current at fixed time

e X{™ :number of passages through the bond (Cp,C1) of cycle C during [0, t] in
the positive sense minus the number of passages in the negative sense
with Ny, defined by

- (CuINp|Cy) = +1

- (C1|Nm[Cm) = —1

- (C’'INgIC) =0if {C,C'} # {1, M}

e Fluctuation relation for the cycle current at fixed time

special case of more general results in Gaspard & Andrieux (2007)

P (X =)
= etVAc
p (XtNM _ ftV) t—+00

Bauer & Cornu : First passage FR & cycle affinities Known results : Fluctuation relations Firenze, 2014/05/30 22 /30



FLUCTUATION RELATIONS FOR FIRST PASSAGE TIMES
AT INTEGER WINDING NUMBERS

Semi-Markovian processes
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5.1 Cycle graph and winding number

e Only jumps between successive configurations
on the cycle
with probability knowing that a jump occurs :

(Cm:I:1|]P|Cm)
e Probability for waiting time 7 at site m :
Pm(7)

e V; : winding number around the cycle C during [0, t] : number of
clockwise jumps minus number of anticlockwise jumps divided by M

W, = XM with Vm=1=..-=M

1

and (CnNw|Cimy1) = ——

1
(Cm+1|NW|Cm) =+ M

M
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5.2 Probability for winding number £1 to be reached

e Cycle affinity in the clockwise sense
M
(Cm+1|P|Cm)
Ac=1In —_—
c ;T (Cm-1PICm)

e Method : generating function. Probabilistic arguments and strong Markov
property — recursive relations

P(3t € [0,+o0[ suchthat W,=-1)
P(3t € [0,+oo[ suchthat W;=+1)

—Ac

More precisely, if Ac >0

- winding number +1 is reached with probability 1
- winding number —1 is never reached with finite probability 1 — e~*¢
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5.3 Fluctuation relation for first passage time at winding
number 1

e T : first passage time at winding number £1

Method : Laplace transform (e=*7+) = / e MP(T, €[t, t + dt])
te[0,00[

(e*7)

(e727-)

— Radon-Nikodym derivative

P(Ty €[t t+ dt]) Ac

P(T_ €[t t+dt])

The ratio is independent from the various distributions of waiting times P¢, (7)
along the cycle

Result : e’c
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5.3 Fluctuation relation for first passage time at winding
number 1
e T : first passage time at winding number £1

Method : Laplace transform (e *7+) = / e MP(T, €[t, t + dt])
te[0,00[

<e7/\T+> B
(e7A7T-)
— Radon-Nikodym derivative
P(Tyelt,t+dt[) A
P(T_ € [t, t+ dt])

The ratio is independent from the various distributions of waiting times P¢, (7)
along the cycle

Result : e’c

e Comparison with dual relation for a history corresponding to winding number
+1 (without restriction of first passage)

P (hiStOryWith W:+1)

— eXS[hiStOWWith w=i1] — gAc
P (time—reversed history,,ith szl)
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5.4 Fluctuation relation for large winding numbers (a)

T+, first passage time at winding number +w with w integer
e If the first waiting time plays no role,

semi-Markov (or renewal) property — (e=*T-w) = (e7AT-)w

(e A7)

— eWAc

Remarks :

1) valid for any finite winding number w

2) valid for any cycle in a more general graph of transitions as long as
the procedure to define the process of the cycle preserves the affinity class
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5.4 Fluctuation relation for large winding numbers (b)

e |If the first passage time plays a special role (case of drag-and-drop construction)

law of large numbers — (e AT-w)1/w o (e7AT-)
|w|—+o0

i LT
w—too [<e,,\7—_w>]l/w

Ac
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5.4 Fluctuation relation for large winding numbers (b)

e |If the first passage time plays a special role (case of drag-and-drop construction)

law of large numbers — (e AT-w)1/w o (e7AT-)
|w|—+o0

M Ckiad) R
w—s+o0 [<ef/\T,W>]1/W

Ac

e Comparison with fluctuation relations at fixed time
W; : winding number : number of clockwise jumps minus number of
anticlockwise jumps divided by M

~Y
|We|—+o00

XN - number of passages through the bond (Cm, 1) of cycle C during [0, t] in
the positive sense minus the number of passages in the negative sense

P(W; =tV) ~  etVAc
P(Wt = —tV) t—+4o0
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5.5 Mean first passage time at winding number 1

e T,, is a sum of w independent random variables with mean (T )
strong law of large numbers —

Tiw

lim = (Ty) with probability 1
w— 400 w
W,

thoo Tt = 7 with probability 1

In the long time limit fluctuations are suppressed and cycle is performed at
velocity 1/(T™)

M M _
Dome1 2okl ( H1§i<k P;+f> Tm+k ( Hk<j§M pm+j)
M M
(Hm:l P$ - Hm:l Pm)

with pf = (Cm41|PCim), Pm = (Cm—1|P|Cm), T mean waiting time in Cp,.

(T7) =
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Conclusion

e Robustness of cycle affinities when edges are discarded by conditioning or drag
and drop

— properties for a single cycle are also valid for a cycle embedded in a more
generic pattern of transitions
e In out-of-equilibrium state a current associated to winding number flows

through cycle

Fluctuation relations for first-passage time at winding number £w are ruled by
cycle affinity

Bauer & Cornu, J. Stat. Phys. (2014) 155 703
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