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STUDYING LINKS BETWEEN

Statistical Mechanics AND Nonlinear Dynamics
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Classical simplification of 1D Heat conduction
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Questions:

e Existence of thermodynamic limit for statistical properties of a
dynamical system?

e Lquipartition threshold in nonlinear Hamiltonian systems

e Role of localized excitations in these systems
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Distribution of characteristic exponents in the thermodynamic
limit
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Abstract. The existence of the thermodynamic limit for the spectrum of the Lyvapunoy
characieristic exponents is numerically investigated for the Fermi-Pasta-LUlam 8 model
We show that the shape of the spectrum for energy density well above the eguipanmition
threshold ¢, allows the Kolmogorov-Sinal entropy to be expressed simply in terms of the
maximum exponent X,,,. The presence of a power-law behaviour «” |s investigated. The
analogies with similar results obtained from the dynamics of symplectic random matrices
seem to indicate the possibility of interpreting chaotic dvnamics in terms of some ‘universal’
propertics,




DISTRIBUTION OF CHARACTERISTIC
LYAPUNOV EXPONENTS IN THE
THERMODYNAMIC LIMIT
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Figure 1. A(i/ N, N) plotted against i i
3 nst
®. 40; 4, 80) and ¢ - 26.4 gainst i/ N for different values of N (S, 5; 4, 10; x, 20,




Article 2
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Clustering and relaxation in Hamiltonian long-range dynamics
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We study the dynamics of a fully coupled network of NV classical rotators, which can also be
viewed as a mean-field XY Heisenberg (HMF) model, in the attractive (ferromagnetic) and repulsive
(antiferromagnetic) cases. The exact free energy and the spectral properties of a Vlasov-Poisson
equation give hints on the values of dynamical observables and on time relaxation properties. At
high energy (high temperature T') the system relaxes to Maxwellian equilibrium with vanishing
magnetization, but the relaxation time to the equilibrivm momentum distribuotion diverges with
as NT? in the ferromagnetic case and as NT*? in the antiferromagnetic case. The N dependence
of the relaxation time is suggested by an analogy of the HMF model with gravitational and charged
sheets dynamics in one dimension, and is wverified in npumerical simulations. Below the critical
temperature the ferromagnetic HMF model shows a collective phenomenon where the rotators form
a drifting cluster; we argue that the drifting speed vanishes as N~!/? but increases as one approaches
the critical point (a manifestation of critical slowing down). For the antiferromagnetic HMF model a
two-cluster drifting state with zero magnetization forms spontaneously at very small temperatures;
at larger temperatures an initial density modulation produces this state, which relaxes very slowly.
This suggests the possibility of exciting magnetized states in & mean-field antiferromagnetic system.




MoDEL: HAMILTONIAN MEAN-FIELD (HMF)

Simplification of:
e 1D charged sheets model, 1D gravitation

e Hamiltonian for plasma-wave, or Free Electron Laser

‘ Simple model, Mean Field,

1 - N
Introducing m = N Z "’ one obtains H = K — 5 im|”

n




CALORIC CURVE

— Equilibrium
O N=500 QSS
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Solid line: Canonical results at equilibrium

Circles: Microcanonical numerical simulations

ENSEMBLE INEQUIVALENCE 7




At Equilibrium




Article 3
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Inequivalence of Ensembles in a System with Long-Range Interactions
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We study the global phase diagram of the mfinite-range Blume-Emery-Griffiths model both in the
cangnical and in the microcanonical ensembles. The canonical phase diagram shows first-order and
contimeous ransition lines separated by a tricritical point. We find that below the wicritical point, when
the canonical transition is first order. the phase diagrams of the two ensembles disagree. In this region
the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps
at ransition energies. These results can be extended to weakly decaying nonintegrable interactions.




Ensemble inequivalence: BEG model

N N 2
i=1 i=1

simple model, mean-field, with phase transition, on a lattice.
Ferromagnetic states: S; = 1,Vi, or S; = —1,Vi = Er = (A — J/2)N
Paramagnetic states: S; = 0, Vs = Ep =0

A defines the energy difference between ferro. and para states.

Canonical ensemble:

minimization F'=F — TS at T' = 0 — minimization of F

Paramagnetic state is the most favorable if Fr > Ep = A > J/2,
Phase transition (PT) at A = J/2, which is first order since there is a

sudden jump of magnetization from ferro. to para. state.
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Elementary features of the phase diagram

N N 2
H = AZS? _ % (Zs)
1=1 =1

Ferromagnetic state Paramagnetic state




Elementary features of the phase diagram

N 7 N 2
H=A [ — Si
> st - 5y ()

15t order PT

1
A

J
2

Ferromagnetic state Paramagnetic state

For vanishingly small A, one recovers the Curie-Weiss Hamiltonian.




Curie-Weiss Hamiltonian

1=1

EXTENSIVITY: For a given intensive magnetization m = ZZ Si/N, if one
doubles the number of spins the energy doubles.

1

ADDITIVITY:

- 2(N/2)

__J (_
2(N/2)
= E_|_ + B _ 75 FE

(3-4)"=0

This model is extensive but non additive.




Curie-Weiss Hamiltonian

Such a system has a second order phase transition when T, = 2.J/3

A

L 9”4 order PT

15 order PT

1
A

J
2

Ferromagnetic state Paramagnetic state

PT of different orders on the T" and A axis, one expects a transition line

separating the low T’ ferro phase from the high 1" para phase.




Ensemble inequivalence: BEG model

N
HAZSE(ZS) with S; = +1,0
1=1

simple model, mean-field, with phase transition, on a lattice.

e Microcanonical: Nty +N_+ Nog=N
N

Q (N, N_,No) = Vv v T 5= ke

Ny — N- Ny + N- E = (Aq—zmQ)N

— d —
m N an q N 5

Equilibrium state: maximization of S(F, m) with respect to m.

e Canonical: Z (8, m) ZQ q,m o~ BE(am)

Equilibrium state: m1n1m1zat10n of F (8, m) with respect to m.

Barré, Mukamel, Ruffo, Phys. Rev. Lett. 87, 030601 (2001).




Caloric Curve

TEMPERATURE
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Branches with negative specific heat correspond to local maxima of

-
-
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-
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F(B,m), that the constraint of constant energy stabilize in the

microcanonical ensemble.




Inequivalence of ensemble

Landau Theory of Phase Transition

Microcanonical ensemble (Power serie expansion of S)

Tricritical point is A, = 0.4624... and 5. = 3.0272.
Canonical ensemble (Power serie expansion of F)
Tricritical point is A, = 1n4/3=0.4621... and 5. = 3.

e Both points although very close do not coincide. The microcanonical

critical line extends beyond the canonical one.

e This feature which is a clear indication of ensemble inequivalence was
first found in the BEG model (Barré, Mukamel, Ruffo 2001) and later

confirmed for gravitational models (Chavanis 2002)

e The non coincidence of microcanonical and canonical tricritical points

is a generic feature as proven by Bouchet and Barré (2005)




A wide range of models

Model

Variable

Ensemble

Inequivalence

Negative

?)
4

Ergodicity
Breaking

BEG

Discrete

Y

..<

3 states Potts

Discrete

Ising LL4S

Discrete

a-Ising

Discrete

HMF

Continuous

XY L+S

Continuous

a-HMF

Continuous

Generalized XY

Continuous

Mean-Field ¢%

Continuous

Colson-Bonifacio

Continuous

Point vortex

Continuous

Quasi-geostrophic

Continuous

SGR

Continuous
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Stefano was

involved in all related studies of these models.




A wide range of models
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Stefano: chairman of the HMF club.




A wide range of models

Model Variable Ensemble Negative Ergodicity
Inequivalence
BEG Discrete Y
3 states Potts Discrete Y

Ising L4S Discrete Y

Breaking

¢}
4

..<

..<

a-Ising Discrete
HMF Continuous

XY L+S Continuous

a-HMF Continuous

Z
Q)

Generalized XY Continuous

Mean-Field qb4 Continuous

Colson-Bonifacio Continuous

Point vortex Continuous

Quasi-geostrophic Continuous

SGR Continuous

<=l =lz <=2 ]~
<=l =lzlz|=|2|<|2|2|<]|=|~
<l =z =] =] =]

No ensemble inequivalence for the HMF model?




CALORIC CURVE

— Equilibrium
O N=500 QSS
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Solid line: Microcanonical and Canonical results at equilibrium

Circles: Microcanonical numerical simulations

ORIGIN OF THE PARADOX 7




Dynamics matters




NUMERICAL SIMULATIONS

Evolution of the order parameter for different N-values

0.35 . .

03 < Boltzmann Equilibrium

Non trivial scaling law

tQSS -~ Nl.?

+ Quasi-stationary state
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(Questions to be addressed

e Can we explain theoretically these numerical facts 7
— Dynamical ensemble inequivalence
— Order of limits

— Algebraic Relaxation

e Is usual statistical mechanics sufficient 7




KINETIC THEORY
For LRI, the single particle time-dependent density function:

fa(0,p,t) = 259 ©; ()0 (p— P;(t)),

0,p : Eulerian coordinates of the phase space and
©,, P; : Lagrangian coordinates of the /N-particles

% % — @% = 0. Klimontovich Eq.

ot P76 " 90 ap
where  v(f.t) = N / A0'dp’ V(O — 0 Fa(0 0/ 1)

e Derivation is ezact, even for a finite number of particles V.

e This equation contains the information about the orbit of every
single particle which is far more than necessary but is a useful

starting point for approximations.




VLASOV EQUATION

Consider a large number of initial conditions, close to the same

macroscopic state.

Fal0.9.0) = (1009 0) + =0/ (0.p.0).

fO(eapat)

ot P09 "0 op N

Ofy . Ofo 0{v)dfo 1<85?}85f>

00 Op

e For short-range interactions, the r.h.s. leads to the collision term

of the Boltzmann equation, while the third term is negligible.

e For long-range interactions, the r.h.s is of order 1/N (finite N

effects), while the third term is the leading term (collective effects).

2N ODE are thus replaced by only 1 PDE.




NEXT ORDER: LENARD-BALESCU EQUATION

Restricting to homogeneous fj, a stable stationary solution of the

Vlasov equation, we get

Ofp 1 JOévddf
ot N \ 00 Op

At the level 1/N, the r.h.s can be determined using solutions for dv

and J f of the collisionless dynamics, i.e. linearized Viasov equation.

e For any 1D LRI, Vlasov stable homogeneous distribution
functions do not evolve on timescales of order smaller or equal to N

e Explanation of the dynamical ensemble inequivalence




Typical Behavior for Long-Range Systems

Initial Condition

Violent

relaxation

T, = O(1)

Y

Vlasov’s Equilibrium

Collisional 5
. 7. =N° (N/InN)
relaxation

\

Boltzmann’s Equilibrium




Article 4
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Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise
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We study the dvnamics of o svstem of coupled oscillators of distributed namral frequencies. by mcluding the
features of both thermal noise, paametrized by a temperature, and inertial terms, parametrized by a moment
of inertia. For a general unimodal frequency distribution. we report here the complete phase diagram of the
model in the space of dimensionless moment of inertia. temperature. and width of the frequency distribution.
We demonstrate that the system undergoes a noneguilibrivm fivst-order phase transition from a synchronized
phase st low porameter values to sn incobevent phase at high values. We provide strong numerical evidence for
the existence of both the svnchronized and the incoherent phase, teating the latter analvtically to obtain the
corresponding linear stability threshold that bounds the first-order wransition point from below. In the limit of zero
noise and inertin, when the dynamics reduces to the one of the Kuramoto model, we recover the associated known
conlinuous tansition. At finite noise and inertia but in the sbsence of natural frequencies, the dynamics becomes
that of a well-studied model of long-range intersctions, the Hamiltonian mean-field model. Close to the first-order
phase tansition, we show that the escape time out of metastable states scales exponentially with the number of
oscillators, which we explain to be stemming from the long-range nature of the interaction between the oscillators,




NON-EQUILIBRIUM 1% ORDER PT

do; |
m i (V)
d‘Ui

m—, —yv; + Krsin(y — 60;) + yw; + /vy ni(1)

in which z

n(t) (Gaussian noise Kuramoto model
L transition point

w; :distribution of frequencies

Sakaguchi model

T": Temperature transition line
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Always young people around him




Always young people around him




MODESTY
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Sometimes 1t 1s more difficult not to be seen




Stefano is an excellent Cook




hday Stetan

Life begins at 60, Tino Rossi
Thank you very much, Stefano !




