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Stefano Ruffo

Adventures of a long-range walker, born 13th May 1954

60th birthday
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Studying Links between

Statistical Mechanics and Nonlinear Dynamics

Fermi-Pasta-Ulam-Tsingou Problem

H =
N∑

i=1

p2i
2

+
1

2
(xi − xi+1)

2 +
β

12
(xi − xi+1)
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Classical simplification of 1D Heat conduction

Questions:

• Existence of thermodynamic limit for statistical properties of a

dynamical system?

• Equipartition threshold in nonlinear Hamiltonian systems

• Role of localized excitations in these systems
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Article 1
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Distribution of characteristic
Lyapunov exponents in the

thermodynamic limit
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Article 2
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Model: Hamiltonian Mean-Field (HMF)

H =
N∑

i=1

p2i
2
− 1

2N

N∑

i,j=1

cos(θi − θj)

Simplification of:

• 1D charged sheets model, 1D gravitation

• Hamiltonian for plasma-wave, or Free Electron Laser

Simple model, Mean Field,

Introducing m =
1

N

∑

n

eiθn , one obtains H = K −
N

2
|m|2
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Caloric curve
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Solid line: Canonical results at equilibrium

Circles: Microcanonical numerical simulations

Ensemble Inequivalence ?
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At Equilibrium
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Article 3
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Ensemble inequivalence: BEG model

H = ∆

N∑

i=1

S2
i −

J

2N

(
N∑

i=1

Si

)2

with Si = ±1, 0

simple model, mean-field, with phase transition, on a lattice.

Ferromagnetic states: Si = 1, ∀i, or Si = −1,∀i ⇒ EF = (∆− J/2)N

Paramagnetic states: Si = 0, ∀i ⇒ EP = 0

∆ defines the energy difference between ferro. and para states.

Canonical ensemble:

minimization F = E − TS at T = 0 → minimization of E

Paramagnetic state is the most favorable if EF > EP ⇒ ∆ > J/2,

Phase transition (PT) at ∆ = J/2, which is first order since there is a

sudden jump of magnetization from ferro. to para. state.
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Elementary features of the phase diagram

H = ∆

N∑

i=1

S2
i −

J

2N

(
N∑

i=1

Si

)2

Ferromagnetic state Paramagnetic state
J
2

∆1st order PT
0

T

✲

✻

✻
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For vanishingly small ∆, one recovers the Curie-Weiss Hamiltonian.

13



Curie-Weiss Hamiltonian

H = − J

2N

(
N∑

i=1

Si

)2

Extensivity: For a given intensive magnetization m =
∑

i
Si/N , if one

doubles the number of spins the energy doubles.

Additivity:

E+ = − J
2(N/2)

(
+N

2

)2
= − JN

4

E
−
= − J

2(N/2)

(
−N

2

)2
= − JN

4

and ⇒ E+ + E
−
6= E

E = − J
2N

(
N
2
− N

2

)2
= 0

This model is extensive but non additive.
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Curie-Weiss Hamiltonian

Such a system has a second order phase transition when Tc = 2J/3

Ferromagnetic state Paramagnetic state
J
2

2J/3

∆1st order PT
0

T

2nd order PT

✲

✻

✻

✲

PT of different orders on the T and ∆ axis, one expects a transition line

separating the low T ferro phase from the high T para phase.
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Ensemble inequivalence: BEG model

H = ∆

N∑

i=1

S2
i −

J

2N

(
N∑

i=1

Si

)2

with Si = ±1, 0

simple model, mean-field, with phase transition, on a lattice.

• Microcanonical: N+ +N
−
+N0 = N

Ω(N+, N−
, N0) =

N !

N+!N−
!N0!

⇒ S = kB lnΩ

m =
N+ −N

−

N
and q =

N+ +N
−

N
⇒ E =

(

∆q −
J

2
m2
)

N

Equilibrium state: maximization of S(E,m) with respect to m.

• Canonical: Z(β,m) =
∑

q

Ω(q,m) e−βE(q,m)

Equilibrium state: minimization of F (β,m) with respect to m.

Barré, Mukamel, Ruffo, Phys. Rev. Lett. 87, 030601 (2001).
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Caloric Curve

Branches with negative specific heat correspond to local maxima of

F (β,m), that the constraint of constant energy stabilize in the

microcanonical ensemble.
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Inequivalence of ensemble
Landau Theory of Phase Transition

Microcanonical ensemble (Power serie expansion of S)

Tricritical point is ∆c = 0.4624... and βc = 3.0272.

Canonical ensemble (Power serie expansion of F )

Tricritical point is ∆c = ln 4/3=0.4621... and βc = 3.

• Both points although very close do not coincide. The microcanonical

critical line extends beyond the canonical one.

• This feature which is a clear indication of ensemble inequivalence was

first found in the BEG model (Barré, Mukamel, Ruffo 2001) and later

confirmed for gravitational models (Chavanis 2002)

• The non coincidence of microcanonical and canonical tricritical points

is a generic feature as proven by Bouchet and Barré (2005)
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A wide range of models

Model Variable Ensemble Negative Ergodicity Comput.

Inequivalence cv Breaking Entropy

BEG Discrete Y Y Y Y

3 states Potts Discrete Y Y N Y

Ising L+S Discrete Y Y Y Y

α-Ising Discrete Y N N∗ Y

HMF Continuous N N N Y

XY L+S Continuous Y Y Y Y

α-HMF Continuous N N N∗ N

Generalized XY Continuous Y Y Y Y

Mean-Field φ4 Continuous Y N N∗ Y

Colson-Bonifacio Continuous N N N Y

Point vortex Continuous Y Y Y Y

Quasi-geostrophic Continuous Y Y Y Y

SGR Continuous Y Y Y Y

Stefano was involved in all related studies of these models.
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A wide range of models

Model Variable Ensemble Negative Ergodicity Comput.

Inequivalence cv Breaking Entropy

BEG Discrete Y Y Y Y
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α-Ising Discrete Y N N∗ Y

HMF Continuous N N N Y

XY L+S Continuous Y Y Y Y
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Colson-Bonifacio Continuous N N N Y

Point vortex Continuous Y Y Y Y

Quasi-geostrophic Continuous Y Y Y Y

SGR Continuous Y Y Y Y

Stefano: chairman of the HMF club.
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A wide range of models

Model Variable Ensemble Negative Ergodicity Comput.

Inequivalence cv Breaking Entropy

BEG Discrete Y Y Y Y

3 states Potts Discrete Y Y N Y

Ising L+S Discrete Y Y Y Y

α-Ising Discrete Y N N∗ Y

HMF Continuous No N N Y

XY L+S Continuous Y Y Y Y

α-HMF Continuous N N N∗ N

Generalized XY Continuous Y Y Y Y

Mean-Field φ4 Continuous Y N N∗ Y

Colson-Bonifacio Continuous N N N Y

Point vortex Continuous Y Y Y Y

Quasi-geostrophic Continuous Y Y Y Y

SGR Continuous Y Y Y Y

No ensemble inequivalence for the HMF model?
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Caloric curve
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Phys Rev. E 1995

Solid line: Microcanonical and Canonical results at equilibrium

Circles: Microcanonical numerical simulations

Origin of the paradox ?
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Dynamics matters
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Numerical Simulations

Evolution of the order parameter for different N -values
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Non trivial scaling law

tQSS ∼ N1.7

lim
t→∞
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N→∞

6= lim
N→∞
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t→∞
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Questions to be addressed

• Can we explain theoretically these numerical facts ?

– Dynamical ensemble inequivalence

– Order of limits

– Algebraic Relaxation

• Is usual statistical mechanics sufficient ?
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Kinetic Theory

For LRI, the single particle time-dependent density function:

fd (θ, p, t) =
1

N

N∑

j=1

δ (θ −Θj (t)) δ (p− Pj (t)) ,

θ, p : Eulerian coordinates of the phase space and

Θj , Pj : Lagrangian coordinates of the N -particles

∂fd
∂t

+ p
∂fd
∂θ
− ∂v

∂θ

∂fd
∂p

= 0. Klimontovich Eq.

where v(θ, t) = N

∫

dθ′dp′ V (θ − θ′)fd(θ′, p′, t) ,

• Derivation is exact, even for a finite number of particles N .

• This equation contains the information about the orbit of every

single particle which is far more than necessary but is a useful

starting point for approximations.
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Vlasov equation

Consider a large number of initial conditions, close to the same

macroscopic state.

fd(θ, p, t) = 〈fd(θ, p, t)〉
︸ ︷︷ ︸

f0(θ,p,t)

+
1√
N
δf(θ, p, t).

∂f0
∂t

+ p
∂f0
∂θ
− ∂〈v〉

∂θ

∂f0
∂p

=
1

N

〈
∂δv

∂θ

∂δf

∂p

〉

.

• For short-range interactions, the r.h.s. leads to the collision term

of the Boltzmann equation, while the third term is negligible.

• For long-range interactions, the r.h.s is of order 1/N (finite N

effects), while the third term is the leading term (collective effects).

2N ODE are thus replaced by only 1 PDE.
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Next Order: Lenard-Balescu Equation

Restricting to homogeneous f0, a stable stationary solution of the

Vlasov equation, we get

∂f0
∂t

=
1

N

〈
∂δv

∂θ

∂δf

∂p

〉

At the level 1/N , the r.h.s can be determined using solutions for δv

and δf of the collisionless dynamics, i.e. linearized Vlasov equation.

• For any 1D LRI, Vlasov stable homogeneous distribution

functions do not evolve on timescales of order smaller or equal to N

• Explanation of the dynamical ensemble inequivalence
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Typical Behavior for Long-Range Systems

Initial Condition

Vlasov’s Equilibrium

Boltzmann’s Equilibrium

τv = O(1)

τc = Nδ (N/lnN)

Violent

relaxation

Collisional

relaxation

❄

❄

29



Article 4
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Non-Equilibrium 1st order PT

m
dθi
dt

= vi (1)

m
dvi
dt

= −γvi +Kr sin(ψ − θi) + γωi +
√
γ ηi(t) (2)

in which

ηi(t): Gaussian noise

ωi :distribution of frequencies

T : Temperature

r exp(iψ(t)) = 1
N

N∑

ℓ=1

eiθi
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Stefano’s
three main qualities
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Memory
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Memory
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Memory

Adventures of a
Long-Range Walker
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Always young people around him
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Always young people around him
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Modesty
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Modesty
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Sometimes it is more difficult not to be seen
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Stefano is an excellent Cook
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Happy Birthday Stefano

Life begins at 60, Tino Rossi

Thank you very much, Stefano !
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