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Einstein’s interpretation of Boltzmann
Annalen der Physik 33, 1275 (1910)

“Boltzmann principle can be expressed by the equation

S =
R

N
lnW + const. (1)

where S is the entropy, R the gas constant, N Avogadro’s
number, W is customarily designated as the “probability” of the
state with which the entropy value is associated. W is commonly
equated with the number of possible ways (complexions) in which
the state considered can conceivably be realized. In order to be
able to calculate W one needs a complete theory of the system
under consideration....... Considered from a phenomenological
point of view equation (1) appears devoid of content.”



Unpublished manuscript of a conference given by Einstein
on November 2, 1910 at the Zürich Physical Society
Seminaire Poincaré, 1 (2005) 213. French translation by B. Duplantier

“La signification principale de la formule de Boltzmann ne réside
cependant pas, à mon avis, en ce qu’on puisse grace à elle calculer
l’entropie en présence d’une representation moléculaire connue. La
manière la plus importante de l’utiliser consiste bien plus en ce
qu’à l’inverse, à partir de la function entropie déterminée
empiriquement, on puisse déterminer la probabilité statistique des
états individuels à l’aide de la formule de Boltzmann. On acquiert
ainsi une possibilité de jauger de combien devie le comportement
du système par rapport au comportement requis par la
thermodynamique.”



Exemple. Particule en suspension dans un fluide, et qui est
un peu plus lourde que le fluide qu’elle deplace

“Une telle particule devrait, d’après la thermodynamique, couler au
fond du récipient et y rester. D’après la formule de Boltzmann
cependant, une probabilité W va être associée a chaque hauteur z
au dessus du fond...... Soient µ la masse de la particule, µ0 celle
du fluide deplacé par elle. ..... De la formule de Boltzmann s’ensuit

W = const e−
N
RT

(µ−µ0)gz (2)

Cette relation a été testée, et s’est trouvée confirmée, par Perrin.”



La loi du mouvement brownien

“La loi du mouvement brownien peut être deduite très facilement
de cette relation ....... à cause de sa densité plus grande la
particule tombe d’après la loi de Stokes de D = g(µ−µ0)

6πηP τ dans le
temps τ , ou η représente le coefficient de viscosité du fluide et P
le rayon de la particule. ..... Une particule qui, à l’orée du temps τ
se trouve à la hauteur z, est à l’issue de ce temps τ á la hauteur
z −D + ∆ = z′ [∆ déplacement brownien]. Comme la loi de
distribution d’une particule ne doit pas dépendre du temps, la
valeur moyenne de z2 doit être égale à celle de z′2, donc
(z −D + ∆)2 = z2, ou encore, pour τ assez petit pour pouvoir
négliger D2, et z∆ = z∆ = D∆ = 0

∆2 = 2zD =
RT

N

1

3πηP
τ (3)

”



Einstein’s theory of deviations in the spatial distribution of
fluids from a uniform distribution
Annalen der Physik 33, 1275 (1910)

Start from the general formula

dW = const · e−
N
R

(S−S0)dλ1....dλn (4)

For a closed system the elementary work to produce a deviation is
dA = −T0dS where T0 is the equilibrium temperature. Therefore
S − S0 = 1

T 0
A. Let ρ0 the mean density of a homogeneous

substance in a cube of side L. Because of the irregularity of the
thermal motion the density ρ at a point will generally differ from
ρ0. Putting ρ = ρ0 + ∆ we can develop ∆ in fourier series. The
statistics underlying its fourier coefficients ∆k,l,m is obtained from
(4). Write A =

∫
ρφdv, where φ is the work per unit of mass. A

calculation in gaussian approximation gives

L3

8ρ3

∂2φ

∂(1
ρ)2

)∆2
k,l,m =

RT0

N
(5)



“It should be noted that the omission of the term with ∆3 etc. is
permissible only if ∂2φ

∂( 1
ρ

)2
) for the ideal thermodynamic equilibrium

is not too small or even vanishes. The latter case occurs in the
case of fluids or liquid mixtures that are exactly in the critical
state. ..... However there is no difficulty, in principle, in completing
the theory by taking into consideration the terms of higher order in
the coefficients. ”

Here is the comment of Ornstein and Zernike, Proc. Acad. Sci.
(Amsterdam) 17, 793 (1914)

“The remark of Einstein that there would be no principal difficulty
in extending his deduction to a further approximation, is therefore
mistaken. On the contrary, the consideration of higher terms so
long as the independence is made use of, will not lead to
anything.”



Transform a notion which is not directly accessible
phenomenologically into a definition or a principle

From the 1905 article On the electrodynamics of moving bodies

“It is known that Maxwell’s electrodynamics - as usually
understood at this time - when applied to moving bodies, leads to
asymmetries which do not appear to be inherent in the
phenomena. Take, for example, the reciprocal electrodynamic
action of a magnet and a conductor. The observable phenomenon
here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction
between the two cases in which either the one or the other is in
motion.”



“Examples of this sort, together with the unsuccessful attempts to
discover any motion of the earth relatively tothe ’light medium’,
suggest that the phenomena of electrodynamics as well as
mechanics possess no properties corresponding to the idea of
absolute rest. ...... we shall raise this conjecture to the status of a
postulate .... .”



Einstein theory of equilibrium fluctuations

In Landau-Lifshitz book on statistical mechanics one finds the
following formula for the probability of a fluctuation in a system in
contact with an environment

P ' e−
Rmin
kT0 (6)

where
Rmin = ∆E − T0∆S + P0∆V (7)

is the minimal work necessary to produce the fluctuation with a
reversible transformation and ∆E,∆S,∆V are the corresponding
variations of energy, entropy and volume. T0, P0 are the
temperature and pressure of the environment.



Nonequilibrium

Einstein’s theory of equilibrium fluctuations is, I believe, the first
example in physics of a large deviation estimate. A leading idea in
recent research on nonequilibrium has been the extension of this
type of estimates to fluctuations in stationary states with the aim
of defining analogues of thermodynamic functionals. The notion of
minimal work to create a fluctuation is meaningful also in
stationary states. However we may expect a more complex
entanglement of the variables describing the system and those
related to the environment so that it is unlikely that quantities like
U , S can be defined.



We consider a system connected to several reservoirs (the
environment), possibly distributed continuously on the surface of
the system, characterized by their chemical potentials. The
reservoirs are assumed to be much larger than the system so that
their state will be essentially constant in time. When the system is
put in contact with the environment, after an initial stage we
expect that a description in terms of diffusive processes may apply
for a wide class of microscopic dynamics.



Out of equilibrium dynamics plays a major role. In fact what
distinguishes non-equilibrium is the presence of currents flowing
through the system which have to be considered together with the
usual thermodynamic variables. To make any progress we thus
have to introduce dynamical equations for the macroscopic
variables.

Hydrodynamic equations have been derived from models of
microscopic dynamics. Ideally we should start from molecules
interacting with realistic forces and evolving with Newtonian
dynamics. This is beyond the reach of present day mathematical
tools and much simpler models have to be adopted in the
reasonable hope that some essential features are adequately
captured.



Generalized “Boltzmann Principle”
Bertini, De Sole, Gabrielli, J-L, Landim, 2005

The following formula has been proved for a wide class of particle
systems. J(ρ) denotes the hydrodynamic current.

P
(
(ρ(t), j(t)) , t ∈ [T0, T1]

)
� exp

{
− ε−dR[T0,T1](ρ, j)

}
,

(8)

where
R[T0,T1](ρ, j) = V (ρ(T0)) + I[T0,T1](ρ, j) . (9)

and

I[T0,T1](ρ, j)

=
1

4

∫ T1

T0

dt

∫
Λ
dx [j − J(t, ρ)] · χ(ρ)−1[j − J(t, ρ)].

(10)

The interpretation of this formula is quite intuitive. The cost of
the fluctuation (ρ(t), j(t)) , t ∈ [T0, T1] is given by the work
necessary to create the initial condition and is proportional to the
total energy dissipated by the extra current j(t)− J(t, ρ).
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