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1. Ageing phenomena
known & practically used since prehistoric times (metals, glasses)
systematically studied in physics since the 1970s Struik ’78

discovery : ageing effects reproducible & universal !

occur in widely different systems
(structural glasses, spin glasses, polymers, simple magnets, . . . )

Three defining properties of ageing :
1 slow relaxation (non-exponential !)
2 no time-translation-invariance (tti)
3 dynamical scaling without fine-tuning of parameters

Most existing studies on ‘magnets’ : relaxation towards equilibrium

Question : what can be learned about intrisically irreversible
systems by studying their ageing behaviour ?



consider a simple magnet (ferromagnet, i.e. Ising model)

1 prepare system initially at high temperature T � Tc > 0

2 quench to temperature T < Tc (or T = Tc)
→ non-equilibrium state

3 fix T and observe dynamics

competition :
at least 2 equivalent ground states
local fields lead to rapid local ordering
no global order, relaxation time ∞

formation of ordered domains, of linear size L = L(t) ∼ t1/z

dynamical exponent z



t = t1 t = t2 > t1

magnet T < Tc

−→ ordered cluster

magnet T = Tc

−→ correlated cluster

critical contact process

=⇒ cluster dilution

voter model, contact process,. . .

common feature : growing length scale L(t) ∼ t1/z

z : dynamical exponent



Two-time observables : analogy with ‘magnets’
time-dependent order-parameter φ(t, r)

two-time correlator C (t, s) := 〈φ(t, r)φ(s, r)〉 − 〈φ(t, r)〉 〈φ(s, r)〉

two-time response R(t, s) :=
δ 〈φ(t, r)〉
δh(s, r)

∣∣∣∣
h=0

=
〈
φ(t, r)φ̃(s, r)

〉
t : observation time, s : waiting time

a) system at equilibrium : fluctuation-dissipation theorem

R(t − s) =
1

T

∂C (t − s)

∂s
, T : temperature

b) far from equilibrium : C and R independent !

The fluctuation-dissipation ratio (fdr) Cugliandolo, Kurchan, Parisi ’94

X (t, s) :=
TR(t, s)

∂C (t, s)/∂s

measures the distance with respect to equilibrium : Xeq = X (t − s) = 1



Scaling regime : t, s � τmicro and t − s � τmicro

C (t, s) = s−bfC

( t
s

)
, R(t, s) = s−1−afR

( t
s

)
asymptotics : fC (y) ∼ y−λC/z , fR(y) ∼ y−λR/z for y � 1

λC : autocorrelation exponent, λR : autoresponse exponent,
z : dynamical exponent, a, b : ageing exponents

Question : in critical magnets, typically find a = b and λC = λR
* ? what can happen when relaxation towards non-equilibrium state ?
* ? are λC , λR independent of stationary exponents ?

Ex. critical contact process, initial particle density > 0 Baumann & Gambassi 07

λC = λR = d + z + β/ν⊥ , b = 2β′/ν‖

−→ stationary-state critical exponents β, β′, ν⊥, ν‖ = zν⊥



2. Interface growth

deposition (evaporation) of particles on a substrate → height profile h(t, r)
generic situation : RSOS (restricted solid-on-solid) model Kim & Kosterlitz 89

p = deposition prob.

1− p = evap. prob.

here p = 0.98

some universality classes :
(a) KPZ ∂th = ν∇2h + µ

2 (∇h)2 + η Kardar, Parisi, Zhang 86

(b) EW ∂th = ν∇2h + η Edwards, Wilkinson 82

(c) MH ∂th = −ν∇4h + η Mullins, Herring 63 ; Wolf, Villain 80

η is a gaussian white noise with 〈η(t, r)η(t ′, r′)〉 = 2νT δ(t − t ′)δ(r − r′)



Family-Viscek scaling on a spatial lattice of extent Ld : h(t) = L−d
∑

j hj(t)

Family & Viscek 85

w2(t; L) =
1

Ld

Ld∑
j=1

〈(
hj(t)− h(t)

)2
〉

= L2ζ f
(
tL−z

)
∼
{

L2ζ ; if tL−z � 1
t2β ; if tL−z � 1

β : growth exponent, ζ : roughness exponent, ζ = βz

two-time correlator : limit L→∞

C (t, s; r) =
〈(
h(t, r)−

〈
h(t)

〉) (
h(s, 0)−

〈
h(s)

〉)〉
= s−bFC

( t
s
,

r

s1/z

)
with ageing exponent : b = −2β Kallabis & Krug 96

expect for y = t/s � 1 : FC (y , 0) ∼ y−λC/z autocorrelation exponent



1D relaxation dynamics, starting from an initially flat interface

observe all 3 properties of ageing :


slow dynamics
no tti
dynamical scaling

confirm simple ageing for the 1D kpz universality class
pars pro toto

Kallabis & Krug 96 ; Krech 97 ; Bustingorry et al. 07-10 ; Chou & Pleimling 10 ; D’Aquila & Täuber 11/12 ; h.n.p. 12



extend Family-Viscek scaling to two-time responses :
analogue : TRM integrated response in magnetic systems

two-time integrated response :
* sample A with deposition rates pi = p ± εi , up to time s,
* sample B with pi = p up to time s ;
then switch to common dynamics pi = p for all times t > s

χ(t, s; r) =

∫ s

0

du R(t, u; r) =
1

L

L∑
j=1

〈
h

(A)
j+r (t; s)− h

(B)
j+r (t)

εj

〉
= s−aFχ

(
t

s
,
|r|z

s

)

with a : ageing exponent

expect for y = t/s � 1 : FR(y , 0) ∼ y−λR/z autoresponse exponent

? Values of these exponents ?



Effective action of the KPZ equation :

J [φ, φ̃] =

∫
dtdr

[
φ̃
(
∂tφ− ν∇2φ− µ

2
(∇φ)2

)
− νT φ̃ 2

]
=⇒ Very special properties of KPZ in d = 1 spatial dimension !

Exact critical exponents β = 1/3, ζ = 1/2, z = 3/2, λC = 1 kpz 86 ; Krech 97

related to precise symmetry properties :

A) tilt-invariance (Galilei-invariance) Forster, Nelson, Stephen 77

kept under renormalisation ! Medina, Hwa, Kardar, Zhang 89

⇒ exponent relation ζ + z = 2 (holds for any dimension d)

B) time-reversal invariance Lvov, Lebedev, Paton, Procaccia 93
Frey, Täuber, Hwa 96

special property in 1D, where also ζ = 1
2



Special KPZ symmetry in 1D : let v = ∂φ
∂r , φ̃ = ∂

∂r

(
p̃ + v

2T

)
J =

∫
dtdr

[
p̃∂tv −

ν

4T
(∂rv)2 − µ

2
v2∂r p̃ + νT (∂r p̃)2

]
is invariant under time-reversal

t 7→ −t , v(t, r) 7→ −v(−t, r) , p̃ 7→ +p̃(−t, r)

⇒ fluctuation-dissipation relation for t � s

TR(t, s; r) = −∂2
r C (t, s; r)

distinct from the equilibrium FDT TR(t − s) = ∂sC (t − s)

Combination with ageing scaling, gives the ageing exponents :

λR = λC = 1 and 1 + a = b + 2
z

Kallabis, Krug 96 mh, Noh, Pleimling ’12



1D relaxation dynamics, starting from an initially flat interface

confirm simple ageing in the autocorrelator
confirm expected exponents b = −2/3, λC/z = 2/3

N.B. : this confirmation is out of the stationary state
Kallabis & Krug 96 ; Krech 97 ; Bustingorry et al. 07-10 ; Chou & Pleimling 10 ; D’Aquila & Täuber 11/12 ; h.n.p. 12



relaxation of the integrated response,1D mh, Noh, Pleimling 12

observe all 3 properties of ageing :


slow dynamics
no tti
dynamical scaling

exponents a = −1/3, λR/z = 2/3, as expected from FDR

N.B. : numerical tests for 2 models in KPZ class



Simple ageing is also seen in space-time observables

correlator C (t, s; r) = s2/3FC

(
t
s ,

r3/2

s

)
integrated response χ(t, s; r) = s1/3Fχ

(
t
s ,

r3/2

s

)  confirm z = 3/2



Values of some growth and ageing exponents in 1D

model z a b λR = λC β ζ

KPZ 3/2 −1/3 −2/3 1 1/3 1/2
exp 1 ≈ −2/3† ≈ 1† 0.336(11) 0.50(5)
exp 2 1.5(2) 0.32(4) 0.50(5)

EW 2 −1/2 −1/2 1 1/4 1/2
MH 4 −3/4 −3/4 1 3/8 3/2

liquid crystals Takeuchi, Sano, Sasamoto, Spohn 10/11/12

cancer cells Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

† scaling holds only for flat interface

Two-time space-time responses and correlators consistent with
simple ageing for 1D KPZ

Similar results known for EW and MH universality classes
Roethlein, Baumann, Pleimling 06



3. Interface growth on semi-infinite substrates

properties of growing interfaces near to a boundary ?
→ crystal dislocations, face boundaries . . .

Experiments : Family-Vicsek scaling not always sufficient
Ferreira et. al. 11
Ramasco et al. 00, 06
Yim & Jones 09, . . .

→ distinct global and local interface fluctuations{
anomalous scaling, growth exponent β larger than expected
grainy interface morphology, facetting

! analyse simple models on a semi-infinite substrate !
frame co-moving with average interface deep in the bulk
characterise interface by{

height profile 〈h(t, r)〉 h→ 0 as |r| → ∞

width profile w(t, r) =
〈

[h(t, r)− 〈h(t, r)〉]2
〉1/2



specialise to d = 1 space dimensions ; boundary at x = 0, bulk x →∞

cross-over for the phenomenological growth exponent β near to boundary

EW-class Allegra, Fortin, mh 13

bulk behaviour w ∼ tβ

‘surface behaviour’ w1 ∼ tβ1 ?

cross-over, if causal interaction with
boundary

experimentally observed, e.g. for
semiconductor films

Nascimento, Ferreira, Ferreira 11

values of growth exponents (bulk & surface) :
β = 0.25 β1,eff ' 0.32 Edwards-Wilkinson class
β ' 0.32 β1,eff ' 0.35 Kardar-Parisi-Zhang class



simulations of RSOS models :
well-known bulk adsorption processes (& immediate relaxation)

description of immediate relaxation if particle is adsorbed at the boundary



explicit boundary interactions in Langevin equation h1(t) = ∂xh(t, x)|x=0(
∂t − ν∂2

x

)
h(t, x)− µ

2
(∂xh(t, x))2 − η(t, x) = ν (κ1 + κ2h1(t))δ(x)

height profile 〈h(t, x)〉 = t1/γΦ
(
xt−1/z

)
, γ =

z

z − 1
=

ζ

ζ − β
EW & exact solution, h(t, 0) ∼

√
t self-consistently KPZ



Scaling of the width profile : afh 13

EW & exact solution λ−1 = 4tx−2 KPZ

bulk boundary

same growth scaling exponents in the bulk and near to the boundary
large intermediate scaling regime with effective exponent (slopes)

agreement with rg for non-disordered, local interactions Lopéz, Castro, Gallego 05

? ageing behaviour near to a boundary ?



4. Interface growth & Arcetri model

? KPZ −→ intermediate model −→ EW ?

preferentially exactly solvable, and this in d ≥ 1 dimensions

inspiration : spherical model of a ferromagnet Berlin & Kac 52
Lewis & Wannier 52

Ising spins si = ±1 obey
∑

i s
2
i = N = # sites

spherical spins si ∈ R spherical constraint
〈∑

i s
2
i

〉
= N

hamiltonian H = −J
∑

(i ,j) si sj − λ
∑

i s
2
i Lagrange multiplier λ{

gives critical point Tc > 0 for d > 2
exponents non-mean-field for 2 < d < 4



kinetic spherical model : write Langevin equation

∂tφ = −D δH[φ]

δφ
+ z(t)φ+ η

η is the standard white noise : 〈η(t, r)〉 = 0,
〈η(t, r)η(t, r)〉 = 2DT δ(t − t ′)δ(r − r′)

with Lagrange multiplier z(t), fixed by spherical constraint

auxiliary function g(t) = exp
(
−2
∫ t

0 dτ z(τ)
)

, satisfies Volterra equation

g(t) = f (t) + 2T

∫ t

0
dτ g(τ)f (t − τ) , f (t) :=

(
e−4t I0(4t)

)d
* all equilibrium and ageing exponents exactly known,

for both T < Tc and T = Tc Godrèche & Luck ’00

* for d = 3 : same universality class as ‘spherical spin glass’
Cugliandolo & Dean ’95



consider RSOS-adsorption process :

use not the heights hn(t) ∈ N on a discrete lattice,

but rather the slopes un(t) = 1
2 (hn+1(t)− hn−1(t))

? can one let un(t) ∈ R, but impose a spherical constraint ?

? consequences of the ‘hardening’ of a soft EW-interface by a ‘spherical
constraint’ on the un ?



since u(t, x) = ∂xh(t, x) : go from KPZ to Burgers’ equation, and
replace its non-linearity by a mean spherical condition

∂tun(t) = ν (un+1(t) + un−1(t)− 2un(t)) + z(t)un(t)

+
1

2
(ηn+1(t)− ηn−1(t))∑

n

〈
un(t)2

〉
= N

Extension to d ≥ 1 dimensions :
define gradient fields ua(t, r) := ∇ah(t, r), a = 1, . . . , d :

∂tua(t, r) = ν∇r · ∇rua(t, r) + z(t)ua(t, r) +∇aη(t, r)
d∑

a=1

〈
ua(t, r)2

〉
= Nd

interface height : ûa(t,p) = i sin pa ĥ(t,p) in Fourier space



exact solution :

ĥ(t,p) = ĥ(0,p)e−2tω(p)g(t)−1/2+

∫ t

0
dτ η̂(τ,p)

√
g(τ)

g(t)
e−2(t−τ)ω(p)

in terms of the auxiliary function g(t) = exp
(
−2
∫ t

0 dτ z(τ)
)

,

satisfies Volterra equation

g(t) = f (t)+2T

∫ t

0
dτg(τ)f (t−τ) , f (t) := d

e−4t I1(4t)

4t

(
e−4t I0(4t)

)d−1

* for d = 1, identical to ‘spherical spin glass’, with T = 2TSG :
hamiltonian H = −1

2

∑
i ,j Jijsi sj ; Jij random matrix, its eigenvalues

distributed
according to Wigner’s semi-circle law Cugliandolo & Dean 95

* correspondence spherical spins si ↔ slopes un.
* kinetics of heights hn(t) is driven by phase-ordering of the spherical

spin glass = 3D kinetic spherical model



phase transition : long-range correlated surface growth for T ≤ Tc

1

Tc(d)
=

d

2

∫ ∞
0

dt e−dtt−1I1(t)I0(t)d−1 ; Tc(1) = 2,Tc(2) =
π

π − 2

Some results : upper critical dimension d∗ = 2

1. T = Tc , d < 2 : sub-diffusive interface motion 〈h(t)〉 ∼ t(2−d)/4

interface width w(t) = t(2−d)/4 =⇒ β = 2−d
4

ageing exponents a = b = d
2 − 1, λR = λC = 3d

2 − 1, z = 2

2. T = Tc , d > 2 :
interface width w(t) = cste. =⇒ β = 0
ageing exponents a = b = d

2 − 1, λR = λC = d , z = 2

3. T < Tc , d < 2 :

sub-diffusive interface motion 〈h(t)〉 ∼ (1− T/Tc)t(d+2)/4

interface width w(t) = (1− T/Tc)t =⇒ β = 1
2

ageing exponents a = b = d
2 − 1, λR = λC = d−2

2 , z = 2



5. Conclusions

physical ageing occurs naturally in many irreversible systems
relaxing towards non-equilibrium stationary states
considered here : absorbing phase transitions & surface growth

scaling phenomenology analogous to simple magnets

but finer differences in relationships between non-equilibrium
exponents

surprises in scaling near a boundary : height/width profiles

the Arcetri model captures at least some qualitative
properites of KPZ :

sub-diffusive motion of the interface
interface becomes more smooth as d → d∗ = 2
at T = Tc , the stationary exponents (β, z) are those of EW,
but the ageing exponents are different
new kind of behaviour at T < Tc

studies of the ageing properties, via two-time observables, might
become a new tool, also for the analysis of complex systems !


