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Here, we consider the large deviation function (LDF) for the PDF in the long time limit.
=> Use the saddle point method.

h(gq) = lim, o (In P(gy))/t
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Origin for the LDF transition

LDF transition occurs in positive tail or rare event region
(dominated by exponentially rarely high energetic particles).

Generation mechanism of high energetic particle

- high energetic particle can be generated by kicks of a random force of a
heat bath

- high energetic particle can exist from the initial distribution

B-dependence is determined by which one is dominant mechanism.
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Summary of Part |  rre87,020104R (2013)

- We studied an equilibration process of a Brownian particle.

- Heat — Two heat flows: dissipated and injected powers

- Transition of LDF of the dissipated power occurs at . = 1/2.

- Transition of LDF of the injected power occurs at . = 1/4.

* probability of high energetic particles produced by kick of heat bath
random force
* probability of high energetic particles come from the initial distribution

* when a random force is applied to a system  sabhapandic PRE 85,021108 (2012)
* when a Brownian particle is dragged by a harmonic potential

Van Zon & Cohen PRL 91 110601 (2003)
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Generating function

generating function associated with P(g; 7) is defined as

Gh7) = (), = / de Ple;7)e

P(e; 1) :inverse Fourier transform
Pe;T) = —_— d\ G(\;7)e’™e ~ / d\ p(\)e™HOe)
27-(-7/ —100 T C
for large ©

C: steepest descent contour passing through a conventional saddle point Xj(¢)
solution of H'(\;e) = 0 with H' = dH/d\

Gaussian integration

P(e;T) ~ \/ | ”2(7;\* I d(N)ePem A5 where H" = d*H/d)?
T|H ;€
° o0 :angle b.t.w. contour path and real axis

When ¢(\) = o LiO)\\L)a with a >0 and \;(cp) = Ap

—> P diverges due to the prefactor.

—> incorrect finite-time correction near the singular point



Physical Examples

|) van Zon and Cohen, PRL 91, 110601 (2003)
Heat flow from a heat bath to a brownian particle in a dragged harmonic
potential

P.(Q.) : PDF of heat at time t
(e~ 10ry = [ " dQe 1P (Q,) = P(iA)

— 00

2 _e—T2

<€_/\QT> = [1 — (1 _ €_ZT)A2]3/2 3/2 POIG (for 3 dlm)

2) Sabhapandit, EPL 96,20005 (201 1)

Work done by a random force to brownian particle in a harmonic potential

P(W;) : PDF of work at time t

“+1200
POW,) = —— / Z00 1) M d

—100

T 2 2n(A)
Z()\,T)Ng()\)e H(A) Where 9()‘): 1—|—77()\)—204)\ X 1+77()\)‘|‘204)\

simple pole (for | dim.)



Physical Examples
3) Our work, PRE 87,020104 (2013)

dissipated and injected energy of a brownian particle

P(eq) : PDF of dissipated energy at time t

- A tEa
P(gq) = Z—m/ d\ mi(yA/2D) exp [7 2d ]

~

1+ A/

—1/2
Ta(A\) = eVt/? (cosh nyt + sinh nfyt> |/2 pole (for | dim.)



Obijective

How to calculate the integral

Q(A) H(\;
P(e; g/ d\ TH(%)
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How to calculate the integral

Q(A) H(\;
P(e; g/ A\ TH(e)
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al, PRE 87 022138 (2013)
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modified saddle point equation:

“arago, |, Stat. Phys. 107 781 (2002)
al, PRE 87 022138 (2013)

leading contribution is obtained at
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modified saddle point solution of

modified saddle point equation:

“arago, |, Stat. Phys. 107 781 (2002)
al, PRE 87 022138 (2013)

leading contribution is obtained at

>< : saddle point fixation
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modified saddle point solution of

modified saddle point equation:

rarago, |. Stat. Phys. 107 781 (2002)
al, PRE 87 022138 (2013)

finite-time correction

In the conventional method, contour should detour the branch cut.
One needs to calculate the integral for all segments C,, Cy, C3,and Ca.



Obijective

How to calculate the integral

modified saddle point solution of

modified saddle point equation:

rarago, |. Stat. Phys. 107 781 (2002)
al, PRE 87 022138 (2013)

finite-time correction
In the conventional method, contour should detour the branch cut.

One needs to calculate the integral for all segments C,, Cy, C3,and Ca.

In the modified method, one needs to calculate only one saddle point
integration near —> much simpler




Objective
Comparison between LDF and LDF with finite-time correction

Dissipated power

Red circles: numerical calculation results at finite time
Black line: LDF only
blue line: LDF with finite-time correction



Summary of Part ||

|.When there is a singularity in the prefactor function,

conventional Gaussian integration gives incorrect result.

2. Modified saddle point , Which is the solution of

makes the integral much simpler.

3. If you are interested in the detailed calculation,
see |. Stat. Mech.P11002 (2013).



Thank you for your attention!



What kind of particle leads to the high dissipated power !

Two sources of high energy particle
|) particle with high initial energy — For g < 1/2
2) high energy particle due to injected energy from the heat bath — For g > 1/2

Probability to find a particle to (large) dissipated energy Qq4 from source 2)

Probability to find a particle to (large) dissipated energy Qq4 from source |)
0= —yv+¢§

l In the long time limit, initial energy is fully dissipated.

When - —> heat bath dominant phase
When — — initial condition dominant phase




B-dependence for total heat

total heat

[-dependence

[-independent /()



