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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)
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pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
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the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)

Tb / Ts = β      



Heat bath

The schematic diagram for this study

system	


(Brownian particle)

Phase transition of energy flow fluctuations during equilibration process

J.S. Lee1, Chulan. Kwon2,⇤ and Hyunggyu. Park1†
1
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

2
Department of Physics, Myongji University, Yongin, Gyeonggi-Do 449-728, Republic of Korea

(Dated: March 16, 2012)

We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
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D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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v : velocity of a particle
γ : dissipation coefficient

ξ : random noise
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.
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Tb. In such a long time limit, the initial di↵erences would
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nored compared with the ‘bulk e↵ect’ coming from the
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di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
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When the system is in thermal contact with the heat
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from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
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energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
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that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
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the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
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from the heat bath to the system. Because major con-
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show
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pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
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D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is
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from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)

Phase transition of energy flow fluctuations during equilibration process

J.S. Lee1, Chulan. Kwon2,⇤ and Hyunggyu. Park1†
1
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

2
Department of Physics, Myongji University, Yongin, Gyeonggi-Do 449-728, Republic of Korea

(Dated: March 16, 2012)

We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.
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ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
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pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.
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the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
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⌧ 0). Here, the Einstein relation holds di↵erently de-
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D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
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from the heat bath to the system. Because major con-
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
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Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
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ples of equilibration process and can be generalized as the
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is in thermal contact with a heat bath with temperature
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state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
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tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
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be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
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limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
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More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
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when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.
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the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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0
dt�v2(t), (2)
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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0
dt�v2(t), (2)
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0
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+
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)
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0
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function
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⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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0
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function
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⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =
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0
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0
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+
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)

( Tb / Ts = β )
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.

PACS numbers: 05.40.-a, 02.50.-r, 05.70.Ln

Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)

( Tb / Ts = β )
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heat bath temperature :
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =
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0
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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0
dt�v2(t), (2)
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d
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=
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( Tb / Ts = β )

initial temperature :
heat bath temperature :

Dissipated Power Probability density function (PDF)

~ exp( t h(εd) )     ( for large t )

~ exp( t h(εi) )     ( for large t )

h(ε) : large deviation function
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.

PACS numbers: 05.40.-a, 02.50.-r, 05.70.Ln

Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to

Sharp transition of LDF depending on β 
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =
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+
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where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d
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(4)

( Tb / Ts = β )

initial temperature :
heat bath temperature :

Dissipated Power Probability density function (PDF)

~ exp( t h(εd) )     ( for large t )

~ exp( t h(εi) )     ( for large t )

h(ε) : large deviation function

P( εi )

P( εd ) 

β
βc

Threshold for everlasting initial memory in equilibration processes

J.S. Lee1, Chulan Kwon2, and Hyunggyu Park1
1
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

2
Department of Physics, Myongji University, Yongin, Gyeonggi-Do 449-728, Korea

(Dated: September 26, 2012)

Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a su�ciently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory e↵ect even in the
infinite-time limit, if the system is initially prepared su�ciently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.
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Hot co↵ee gets colder and iced co↵ee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio � ⌘ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also a↵ected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a su�ciently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of �). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (�) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for ��1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can a↵ect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory e↵ect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory e↵ects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � is the dissi-
pative coe�cient, and ⇠ denotes a random white noise
satisfying h⇠(⌧)⇠(⌧ 0)i = 2D�(⌧ � ⌧ 0). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/�. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/�. And then, the thermal contact is formed
at time ⌧ = 0 between the system and the heat bath, and
maintained until final time ⌧ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ⌘
Z t

0
d⌧ �v2 and Qi ⌘

Z t

0
d⌧ ⇠v. (2)

Even if the system reaches EQ in the long-time limit,
each of hQdi and hQii increases linearly in time t indef-
initely with their di↵erence representing the system en-
ergy change h�Ei = 1

2 [hv2(t)i � hv2(0)i], which is finite
for nonzero �. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, "d ⌘ Qd/t, and later the injected power, "i ⌘
Qi/t. To calculate the PDF, P ("d), it is convenient to
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for

2

the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�t/2
 
cosh ⌘�t+

1 + e�/a
⌘

sinh ⌘�t

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�t

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�te"de�
2

!

=
�t

4i⇡

Z i1

�i1
de�e

�t
2 (e"de�+1�⌘)

✓
1 + e�2⌘�t

2

◆�1/2

⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�t

!�1/2

. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�t) or sinh(⌘�t)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��t⌘/2
�
1 + e�2⌘�t/2

��1/2
in the integrand

of the above integration becomes cos�1/2(⌘0�t), where

⌘0 =
p

�1� e�. Therefore, the first branch point (or

pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�t)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�t

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = limt!1(lnP (e"d))/t.
For a > 1/2, the pole on the negative axis becomes

�1/2 when t ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and the
large deviation function can be obtained from the expo-

nential term only (e
�t
2 (e"de�+1�⌘)) using the saddle point

approximation. Saddle point is given by

d

de�
�t

2
(e"de�+ 1� ⌘) = 0 ! e�⇤

d = �1

2

✓
1� 1

e"2d

◆
. (9)

Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠

8
<

:
� �

4e"d (e"d � 1)2
⇣
e"d < 1

1�2a

⌘

�
⇥
(a2 � a)e"d + a

⇤ ⇣
e"d > 1

1�2a

⌘ (11)

The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
(v̇v + �v2)

◆

= e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
(12)

Now, we use Eq. (6) and find

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2a

⌘
sinh ⌘�t

!�1/2

(13)

Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as

where
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows: (at time ⌧ and (0  t  ⌧)

"d =
1

⌧

Z ⌧

0
dt�v2(t), (1)

"i =
1

⌧

Z ⌧

0
d⌧⇠v =

1

⌧

Z ⌧

0
dt(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  t  ⌧) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(⌧) = v⌧
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt�v2

◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp
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⌘ coth ⌘�⌧ + 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =
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Z v(t)=vt
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✓
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Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
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⌘
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v20�
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, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1
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d⌧�v2(t), (1)

"i =
1
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0
d⌧⇠v =
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d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1
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dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
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(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+
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⌘

sinh ⌘�t
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where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for

2

the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�⌧e"de�

2

!

=
�⌧

4i⇡

Z i1

�i1
de�e

�⌧
2 (e"de�+1�⌘)

✓
1 + e�2⌘�⌧

2

◆�1/2

⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�⌧

!�1/2

. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by

d

de�
�⌧

2
(e"de�+ 1� ⌘) = 0 ! e�⇤

d = �1

2

✓
1� 1

e"2d

◆
. (9)

Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠

8
<

:
� �

4e"d (e"d � 1)2
⇣
e"d < 1

1�2a

⌘

�
⇥
(a2 � a)e"d + a

⇤ ⇣
e"d > 1

1�2a

⌘ (11)

The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt(v̇v + �v2)

◆

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�⌧ + 1 + e�

!
(12)

Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�� e�2/2a

⌘
sinh ⌘�⌧

!�1/2

(13)

Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows: (at time ⌧ and (0  t  ⌧)

"d =
1

⌧

Z ⌧

0
dt�v2(t), (1)

"i =
1

⌧

Z ⌧

0
d⌧⇠v =

1

⌧

Z ⌧

0
dt(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  t  ⌧) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(⌧) = v⌧
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt�v2

◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�⌧ + 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1
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d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =
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The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1
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��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then
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(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
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where e� = 2D�/� and ⌘ =
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perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1
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1
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The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =
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Z v(t)=vt
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[Dv]P(v) exp
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where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
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where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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the intial velocity Pin(v0) is

Pin(v0) =
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Therefore, the characteristic function is
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dv0Pin(v0)⇡d(�)v0

= e�⌧/2
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Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is
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Now, we use Eq. (6) and find
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,
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grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
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�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
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2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
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located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =
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Now, we use Eq. (6) and find
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as

using
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows: (at time ⌧ and (0  t  ⌧)

"d =
1

⌧

Z ⌧

0
dt�v2(t), (1)

"i =
1

⌧

Z ⌧

0
d⌧⇠v =

1

⌧

Z ⌧

0
dt(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  t  ⌧) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(⌧) = v⌧
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt�v2

◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�⌧ + 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =
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t
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d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d
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=

Z 1
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��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then
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where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+
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where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows:

"d =
1

t

Z t

0
d⌧�v2(t), (1)

"i =
1

t

Z t

0
d⌧⇠v =

1

t

Z t

0
d⌧(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��t"d

↵
=

Z 1

�1
d"dP ("d)e

��t"d = P̂ (�i�t),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  ⌧  t) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(t) = v0
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v(t)=vt

v(0)=v0

[Dv]P(v) exp
✓
��

Z t

0
�v2
◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�t/2
 
cosh ⌘�t+

1 + e�
⌘

sinh ⌘�t

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�t+ 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for

2

the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp
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2 (e"de�+1�⌘)
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◆�1/2

⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�⌧

!�1/2

. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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d = �1

2

✓
1� 1

e"2d

◆
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠
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e"d > 1

1�2a

⌘ (11)

The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =
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dt(v̇v + �v2)
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Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�� e�2/2a
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(13)

Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
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1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =
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Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as

using
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation: a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from the ini-
tial state and approaches to the equilibrated state which
is solely determined by the heat bath. After long time
passes, are there any critical di↵erences between the equi-
libration processes starting from di↵erent Ts? Our intu-
ition and experiences would say no. Regardless of the
initial temperature of the co↵ee, after long time passes,
we will get indistinguishable co↵ees with the almost same
heat-bath temperature.

Such intuition is true only when the averaged quanti-
ties are considered. Any averaged measurable quantities
such as temperature does not depend on the initial state
in the long time limit.

In this study
If we take into account of all the fluctuations of some

quantities, however, the initial state still a↵ects the sys-
tem in the long time limit(??). One interesting example
is reported in reference (??). In the paper, the author
studied the system consisting of the Brownian particles
which is described by the Lagevin equation v̇ = ��v+ ⇠,
where v is the velocity of the particle, � is the dissipa-
tive coe�cient, and ⇠ denotes a random noise satisfying
h⇠(t)⇠(t0)i = 2D�(t�t0). Here, Tb = D/�. When the sys-
tem is in thermal contact with the heat bath, there exist
two energy flows: dissipated energy from the system to
heat bath and injected energy from the heat bath to the
system. Because major contributions of dissipated and
injected energy come from the term �v and ⇠, respec-
tively, the author defines the dissipated "d and injected
power "i as follows: (at time ⌧ and (0  t  ⌧)

"d =
1

⌧

Z ⌧

0
dt�v2(t), (1)

"i =
1

⌧

Z ⌧

0
d⌧⇠v =

1

⌧

Z ⌧

0
dt(v̇v + �v2). (2)

The author showed that the fluctuation of the injected
power for Ts = Tb is di↵erent from that for Ts = 0 even
in the long time limit.
In this study, we will show not only that there is in-

tial temperature dependence but that the fluctuation ex-
periences the phase transition depending on the ratio
(a = Tb/Ts) between the intial temperature of the system
and the heat bath temperature.
Here, to investigate the intial temperature dependence

on the fluctuation of the dissipated and injected power,
we calculate their probability density functions. We find
that the PDF experience ’phase transition’ depending on
r due to the high energy intial particles.
To calculate the probability density function of "d

P ("d), it is convinient to compute first its characteris-
tic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(3)
where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  t  ⌧) is the probability for a given veloc-
ity path with fixed initial v(0) = v0 and final v(⌧) = v⌧
velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt�v2

◆
,

(4)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is an

average over the realizations of v such that v(0) = v0.
Following the calculation method used in the reference
[??], the above path integral can be exactly computed
and the result is given by

⇡d(�)v0 = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�⌧ + 1 + e�

!
, (5)

where e� = 2D�/� and ⌘ =
p

1 + 2e�. If the initial tem-
perature of the system is Ts, the probability density for



Calculation method (1. Dissipated power)

Definition : 

2) Inverse Fourier transform

2

the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�⌧e"de�
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tanh ⌘�⌧
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. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =
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[Dv]P(v) exp
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Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�� e�2/2a

⌘
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,
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where ⌘0 =
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Interesting branch point results from the second term⇣
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maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
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the large deviation function can be obtained from the

exponential term only (e
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Because e�⇤
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or
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when ⇣⇤ < �1/2, the term e��⌅⇥/2
�
1 + e�2⇥�⌅/2

⇥�1/2
in

the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where

⇥⌅ =
⌘
�1� ⇣⇤. Therefore, the branch point (or pole) on

the negative real axis from the consine term ⇣⇤�
1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�

1d on the neg-
ative real axis, the integrand in fact diverges, which can
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Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
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in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2
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This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as



where                        : dimensionless

Calculation method (1. Dissipated power)

Definition : 

2) Inverse Fourier transform

2

the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�⌧e"de�

2

!

=
�⌧

4i⇡

Z i1

�i1
de�e

�⌧
2 (e"de�+1�⌘)

✓
1 + e�2⌘�⌧

2

◆�1/2

⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�⌧

!�1/2

. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
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Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
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in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
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�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧
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. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
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point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt(v̇v + �v2)

◆

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2

⇥ exp

 
v20�

2D

e�2/2

⌘ coth ⌘�⌧ + 1 + e�

!
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Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�� e�2/2a

⌘
sinh ⌘�⌧

!�1/2

(13)

Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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1. Introduction

Detailed balance is satisfied in equilibrium and gives rise to the Boltzmann distribution,

which is a well established basis for equilibrium statistical mechanics. On the other

hand, nonequilibrium is characterized by the breakage of detailed balance and in turn
there appears irreversibility in dynamics. A typical consequence is the existence of

nonzero current in state space. It has been noticed that nonzero current accompanies

an incessant production of work, hence heat and entropy [1]-[9], each of which satisfies

the fluctuation theorem (FT) given at specific initial distributions [10]-[15]. Such time-

integrated quantities exhibit rare but huge fluctuations which are prominent in small

systems. The large deviation function (LDF) is the characteristic function that contains
all the information regarding complicated fluctuations in the long-time limit and has

been nowadays one of main issues in nonequilibrium statistical mechanics [16]-[22].

For a time-integrated quantity C produced from time t = 0 to t = τ , the LDF h(ε)

for its average production rate ε = C/τ is defined as

h(ε) = lim
τ→∞

1

τ
lnP (ε; τ), (1)

where P (ε; τ) is the probability density function (PDF) of rate ε for C produced up to

time τ . It provides an essential information on the asymptotic property of fluctuations
in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
or experimental tests.

The cumulant generating function associated with P (ε; τ) is defined as

G(λ; τ) = ⟨e−λτε⟩τ =
∫
dε P (ε; τ)e−λτε. (2)

In most cases [16, 23, 26, 32], it is easier to calculate the generating function than the
PDF directly. Then P (ε; τ) can be deduced by the inverse Fourier transform of the

generating function. The corresponding Fourier integral can be estimated for large τ as

P (ε; τ) =
τ

2πi

∫ i∞

−i∞
dλ G(λ; τ)eλτε ≃

∫

C
dλ φ(λ)eτH(λ;ε) (3)

where G(λ; τ) is factorized into the exponential term contributed to H(λ; ε) and the

leftover to φ(λ) for large τ . The integral path C is chosen as the steepest descent
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the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (6)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

(7)

Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�⌧e"de�
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2 (e"de�+1�⌘)

✓
1 + e�2⌘�⌧
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⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�⌧

!�1/2

. (8)

To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by

d

de�
�⌧

2
(e"de�+ 1� ⌘) = 0 ! e�⇤

d = �1

2

✓
1� 1

e"2d

◆
. (9)

Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠

8
<

:
� �

4e"d (e"d � 1)2
⇣
e"d < 1

1�2a

⌘

�
⇥
(a2 � a)e"d + a

⇤ ⇣
e"d > 1

1�2a

⌘ (11)

The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is

⇡i(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt(v̇v + �v2)

◆

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�
⌘

sinh ⌘�⌧

!�1/2
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Now, we use Eq. (6) and find

⇡i(�) = e�⌧/2
 
cosh ⌘�⌧ +

1 + e�� e�2/2a

⌘
sinh ⌘�⌧

!�1/2

(13)

Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as

Here, we consider the large deviation function (LDF) for the PDF in the long time limit. 
=> Use the saddle point method.

2

where P̂ (k) is the Fourier transform of P ("d). If
P(v(⌧), 0  t  ⌧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⌧) = v⌧ velocity, then

⇡d(�)v0 =

Z 1

�1
dv1

Z v⌧

v0

[Dv]P(v) exp
✓
��

Z ⌧

0
dt�v2

◆
,

(5)
where

R
[Dv] denotes the path integral and ⇡d(�)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by

⇡d(�)v0 = e�⌧/2
✓
cosh ⌘�⌧ +

1

⌘
sinh ⌘�⌧

◆�1/2

⇥ exp

 
�v20�

2D

e�
⌘ coth ⌘�⌧ + 1

!
, (6)

where e� = 2D�/� and ⌘ =
p
1 + 2e�. Because a = Tb/Ts,

the probability density for the intial velocity Pin(v0) is

Pin(v0) =

r
a�

2D⇡
exp

✓
�a�v20

2D

◆
. (7)

Therefore, the characteristic function is

⇡d(�) =

Z 1

�1
dv0Pin(v0)⇡d(�)v0

= e�⌧/2
 
cosh ⌘�⌧ +

1 + e�/a
⌘

sinh ⌘�⌧

!�1/2

.(8)

Now let us define the dimensionless dissipated power
e"d = "d/D and find the PDF of e"d. The inverse Fourier
transform of the characteristic function is

P (e"d) =
�⌧

4i⇡

Z i1

�i1
de�⇡d(�e�/2D) exp

 
�⌧e"de�

2

!

=
�⌧

4i⇡

Z i1

�i1
de�e

�⌧
2 (e"de�+1�⌘)

✓
1 + e�2⌘�⌧

2

◆�1/2

⇥
 
1 +

1 + e�/a
⌘

tanh ⌘�⌧

!�1/2

. (9)

To compute the above integration on the complex e�
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⌘ =
p
1 + 2e�

determines the branch point at e� = �1/2. However,
⌘ itself does not result in any branch point because
it always appears in qunatities such as cosh(⌘�⌧) or

sinh(⌘�⌧)/⌘ which are entire functions of e�. Instead,

when e� < �1/2, the term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in

the integrand of Eq. (9) becomes cos�1/2(⌘0�⌧), where

⌘0 =
p
�1� e�. Therefore, the branch point (or pole) on

the negative real axis from the consine term e��
1d appears

at e��
1d = �(1 + (⇡/2�⌧)2)/2. For all e� < e��

1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⇡d(�). We

also note that e��
1d ! �1/2 in the long time limit.

Interesting branch point comes from the second prefac-

tor
⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

pole of the second prefactor on the negative real axis e��
2d

is smaller than e��
1d. Therefore, the branch point of the

whole integrand is determined by e��
1d and the integrand

is analytic for e� � e��
1d. Note that the negative branch

point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that e��
2d becomes larger than e��

1d (the integrand is

analytic for e� > e��
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(e"d) for
P (e"d) which is defined as h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point e�⇤
d is determined

by the exponential term e
�⌧
2 (e"de�+1�⌘) for large ⌧ . Then

e�⇤
d is given by

d

de�
�⌧

2
(e"de�+ 1� ⌘) = 0 ! e�⇤

d = �1

2

✓
1� 1

e"2d

◆
. (10)

Note that e�⇤
d > �1/2 for all e"d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2

h(e"d) =
�

2
(e"de�⇤

d + 1� ⌘⇤) = � �

4e"d
(e"d � 1)2, (11)

where ⌘⇤ =
q

1 + 2e�⇤
d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, e�⇤
d could be smaller

than the branch point e��
2d depending on e"d. When

e"d < 1/(1 � 2a), e�⇤
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).

However, when e"d > 1/(1 � 2a), e�⇤
d < 2(a2 � a), so e�⇤

d
cannot be used as a saddle point since the prefactors are
no longer analytic. In this case, the branch point be-
comes the saddle point[? ? ]. Then the LDF becomes
�
2 (e"de�

�
2d + 1�

q
1 + 2e��

2d). In sum, for a < 1/2

h(e"d) ⇠
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⇣
e"d < 1
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⌘
,

�
⇥
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.
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then

⌅d(⇤)v0 =

✏ ⇧

�⇧
dv1

✏ v⇥

v0

[Dv]P(v) exp
⌥
�⇤

✏ ⌅

0
dt�v2

�
,

(5)
where

�
[Dv] denotes the path integral and ⌅d(⇤)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by

⌅d(⇤)v0 = e�⌅/2
⌥
cosh ⇥�⇧ +

1

⇥
sinh ⇥�⇧

��1/2

⇤ exp
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⌦
, (6)

where ⇣⇤ = 2D⇤/� and ⇥ =
⌘
1 + 2⇣⇤. Because a = Tb/Ts,

the probability density for the intial velocity Pin(v0) is

Pin(v0) =

◆
a�

2D⌅
exp

⌥
�a�v20

2D

�
. (7)

Therefore, the characteristic function is

⌅d(⇤) =
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dv0Pin(v0)⌅d(⇤)v0

= e�⌅/2
 
cosh ⇥�⇧ +
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.(8)

Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is

P (⇣⌃d) =
�⇧

4i⌅

✏ i⇧

�i⇧
d⇣⇤⌅d(�⇣⇤/2D) exp

 
�⇧⇣⌃d⇣⇤

2

⌦

=
�⇧

4i⌅

✏ i⇧

�i⇧
d⇣⇤e

�⇥
2 (e⇧de⇤+1�⇥)

⌥
1 + e�2⇥�⌅

2

��1/2

⇤
 
1 +

1 + ⇣⇤/a
⇥

tanh ⇥�⇧

⌦�1/2

. (9)

To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,

when ⇣⇤ < �1/2, the term e��⌅⇥/2
�
1 + e�2⇥�⌅/2

⇥�1/2
in

the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where

⇥⌅ =
⌘
�1� ⇣⇤. Therefore, the branch point (or pole) on

the negative real axis from the consine term ⇣⇤�
1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�

1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌃ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-

tor
⇧
1 + (1 + ⇣⇤/a)/⇥ tanh ⇥�⇧

⌃�1/2
. When a > 1/2, the

pole of the second prefactor on the negative real axis ⇣⇤�
2d

is smaller than ⇣⇤�
1d. Therefore, the branch point of the

whole integrand is determined by ⇣⇤�
1d and the integrand

is analytic for ⇣⇤ ⇧ ⇣⇤�
1d. Note that the negative branch

point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is

analytic for ⇣⇤ > ⇣⇤�
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point ⇣⇤⇥
d is determined

by the exponential term e
�⇥
2 (e⇧de⇤+1�⇥) for large ⇧ . Then
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2
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where ⇥⇥ =
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d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
d could be smaller

than the branch point ⇣⇤�
2d depending on ⇣⌃d. When

⇣⌃d < 1/(1 � 2a), ⇣⇤⇥
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).

However, when ⇣⌃d > 1/(1 � 2a), ⇣⇤⇥
d < 2(a2 � a), so ⇣⇤⇥

d
cannot be used as a saddle point since the prefactors are
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comes the saddle point[? ? ]. Then the LDF becomes
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the intial velocity Pin(v0) is
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Therefore, the characteristic function is
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Now let us define the dimensionless dissipated power
e"d = "/D and find the probability density function of
e"d. Then the inverse Fourier transform of the character-
istic function is

P (e"d) =
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To compute the above integration on the complex e�
plane, one should consider the branch points of the inte-

grand. At first glance, it seems that ⌘ =
p
1 + 2e� deter-

mines the branch point at e� = �1/2. However, ⌘ itself
does not result in any branch point because it always
appears in qunatities such as cosh(⌘�⌧) or sinh(⌘�⌧)/⌘

which are entire functions of e�. Instead, when e� < �1/2,

the first term e��⌧⌘/2
�
1 + e�2⌘�⌧/2

��1/2
in the inte-

grand of the above integration becomes cos�1/2(⌘0�⌧),

where ⌘0 =
p

�1� e�. Therefore, the first branch point
(or pole) on the negative real axis e�� appears at e�� =

�(1 + (⇡/2�⌧)2)/2. For all e� < e�� on the negative
real axis, the integrand in fact diverges which can be
confirmed from the direct calculation of integration in
Eq. (7). We also note that e�� ! �1/2 in the long time
limit.

Interesting branch point results from the second term⇣
1 + (1 + e�/a)/⌘ tanh ⌘�⌧

⌘�1/2
. When a > 1/2, the

maximum-pole location of the second term on the nega-
tive real axis is smaller than that of the first term. There-
fore, the branch point is determined only by the first
term, or does not depend on a. However, when a < 1/2,
the pole position of the second term becomes larger than
e� and approaches to the value 2(a2 � a) in the long time
limit. Because the negative pole of the characteristic
function determines the exponential tail behaviors of the
probability density function, this a-dependent feature of
the characteristic function implies the ‘phase transition’
of the energy fluctuation depending on the intial temper-
ature.

To show such phase transition, we first calculate the
large deviation function h(e"d) for the probability den-
sity function of the dissipated power which is defined as
h(e"d) = lim⌧!1(lnP (e"d))/⌧ .
For a > 1/2, the pole on the negative axis becomes

�1/2 when ⌧ ! 1. In this case the first and the second
prefactor in the integrand of Eq. (14) are ignored and
the large deviation function can be obtained from the

exponential term only (e
�⌧
2 (e"de�+1�⌘)) using the saddle

point approximation. Saddle point is given by
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Because e�⇤
d > �1/2 for all e"d, the saddle point is always

located in analytic range. Therefore the large deviation
function becomes for a > 1/2

h(e"d) = � �

4e"d
(e"d � 1)2 (10)

This function is determined only by the heat bath prop-
erties. So from now on we call this function as a char-
acteristic curve. On the other hand, e�⇤

d could be smaller
than the pole 2(a2 � a) depending on e"d for a < 1/2.
Specifically, when e"d < 1/(1 � 2a) the saddle is large
than 2(a2 � a), so the large deviation function is given
same as Eq. (10). However, e"d > 1/(1 � 2a) the saddle
point becomes the pole. Therefore the large deviation
function becomes for a < 1/2

h(e"d) ⇠

8
<

:
� �

4e"d (e"d � 1)2
⇣
e"d < 1

1�2a

⌘

�
⇥
(a2 � a)e"d + a

⇤ ⇣
e"d > 1

1�2a

⌘ (11)

The above equation shows the intial temperature de-
pendence remains even in the long time limit. When
e"d > 1/(1 � 2a), the large deviation funcdtion deviates
from the characteristic curve.
Now, we calculate the PDF of injected power. Then

the characteristic function of the injected power PDF at
v(0) = v0 is
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Now, we use Eq. (6) and find
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Now we can obtain the probability density funciton of
the injected power P (e"d) from the inverse transform as
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1. Introduction

Detailed balance is satisfied in equilibrium and gives rise to the Boltzmann distribution,

which is a well established basis for equilibrium statistical mechanics. On the other

hand, nonequilibrium is characterized by the breakage of detailed balance and in turn
there appears irreversibility in dynamics. A typical consequence is the existence of

nonzero current in state space. It has been noticed that nonzero current accompanies

an incessant production of work, hence heat and entropy [1]-[9], each of which satisfies

the fluctuation theorem (FT) given at specific initial distributions [10]-[15]. Such time-

integrated quantities exhibit rare but huge fluctuations which are prominent in small

systems. The large deviation function (LDF) is the characteristic function that contains
all the information regarding complicated fluctuations in the long-time limit and has

been nowadays one of main issues in nonequilibrium statistical mechanics [16]-[22].

For a time-integrated quantity C produced from time t = 0 to t = τ , the LDF h(ε)

for its average production rate ε = C/τ is defined as

h(ε) = lim
τ→∞

1

τ
lnP (ε; τ), (1)

where P (ε; τ) is the probability density function (PDF) of rate ε for C produced up to

time τ . It provides an essential information on the asymptotic property of fluctuations
in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
or experimental tests.

The cumulant generating function associated with P (ε; τ) is defined as

G(λ; τ) = ⟨e−λτε⟩τ =
∫
dε P (ε; τ)e−λτε. (2)

In most cases [16, 23, 26, 32], it is easier to calculate the generating function than the
PDF directly. Then P (ε; τ) can be deduced by the inverse Fourier transform of the

generating function. The corresponding Fourier integral can be estimated for large τ as

P (ε; τ) =
τ

2πi

∫ i∞

−i∞
dλ G(λ; τ)eλτε ≃

∫

C
dλ φ(λ)eτH(λ;ε) (3)

where G(λ; τ) is factorized into the exponential term contributed to H(λ; ε) and the

leftover to φ(λ) for large τ . The integral path C is chosen as the steepest descent
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then

⌅d(⇤)v0 =

✏ ⇧

�⇧
dv1

✏ v⇥

v0

[Dv]P(v) exp
⌥
�⇤

✏ ⌅

0
dt�v2

�
,

(5)
where

�
[Dv] denotes the path integral and ⌅d(⇤)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by

⌅d(⇤)v0 = e�⌅/2
⌥
cosh ⇥�⇧ +

1

⇥
sinh ⇥�⇧

��1/2

⇤ exp

 
�v20�

2D

⇣⇤
⇥ coth ⇥�⇧ + 1

⌦
, (6)

where ⇣⇤ = 2D⇤/� and ⇥ =
⌘
1 + 2⇣⇤. Because a = Tb/Ts,

the probability density for the intial velocity Pin(v0) is

Pin(v0) =

◆
a�

2D⌅
exp

⌥
�a�v20

2D

�
. (7)

Therefore, the characteristic function is

⌅d(⇤) =
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= e�⌅/2
 
cosh ⇥�⇧ +

1 + ⇣⇤/a
⇥

sinh ⇥�⇧

⌦�1/2

.(8)

Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is

P (⇣⌃d) =
�⇧

4i⌅

✏ i⇧

�i⇧
d⇣⇤⌅d(�⇣⇤/2D) exp
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⇤
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1 + ⇣⇤/a
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tanh ⇥�⇧

⌦�1/2

. (9)

To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,

when ⇣⇤ < �1/2, the term e��⌅⇥/2
�
1 + e�2⇥�⌅/2

⇥�1/2
in

the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where

⇥⌅ =
⌘
�1� ⇣⇤. Therefore, the branch point (or pole) on

the negative real axis from the consine term ⇣⇤�
1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�

1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌃ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-

tor
⇧
1 + (1 + ⇣⇤/a)/⇥ tanh ⇥�⇧

⌃�1/2
. When a > 1/2, the

pole of the second prefactor on the negative real axis ⇣⇤�
2d

is smaller than ⇣⇤�
1d. Therefore, the branch point of the

whole integrand is determined by ⇣⇤�
1d and the integrand

is analytic for ⇣⇤ ⇧ ⇣⇤�
1d. Note that the negative branch

point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is

analytic for ⇣⇤ > ⇣⇤�
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point ⇣⇤⇥
d is determined

by the exponential term e
�⇥
2 (e⇧de⇤+1�⇥) for large ⇧ . Then

⇣⇤⇥
d is given by

d

d⇣⇤
�⇧

2
(⇣⌃d⇣⇤+ 1� ⇥) = 0 ⌃ ⇣⇤⇥

d = �1

2

⌥
1� 1
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�
. (10)

Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2

h(⇣⌃d) =
�

2
(⇣⌃d⇣⇤⇥

d + 1� ⇥⇥) = � �

4⇣⌃d
(⇣⌃d � 1)2, (11)

where ⇥⇥ =
✓

1 + 2⇣⇤⇥
d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
d could be smaller

than the branch point ⇣⇤�
2d depending on ⇣⌃d. When

⇣⌃d < 1/(1 � 2a), ⇣⇤⇥
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).

However, when ⇣⌃d > 1/(1 � 2a), ⇣⇤⇥
d < 2(a2 � a), so ⇣⇤⇥

d
cannot be used as a saddle point since the prefactors are
no longer analytic. In this case, the branch point be-
comes the saddle point[? ? ]. Then the LDF becomes
�
2 (⇣⌃d⇣⇤

�
2d + 1�

✓
1 + 2⇣⇤�

2d). In sum, for a < 1/2
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1d (the integrand is
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2d) and its asymtotic value in the long
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Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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d is determined
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Note that ⇣⇤⇥
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pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
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than the branch point ⇣⇤�
2d depending on ⇣⌃d. When
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where P̂ (k) is the Fourier transform of P (⌃d). If
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
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1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,
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also note that ⇣⇤�
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check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is
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P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
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Now let us define the dimensionless dissipated power
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The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point ⇣⇤⇥
d is determined
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Note that ⇣⇤⇥
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where ⇥⇥ =
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1 + 2⇣⇤⇥
d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
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Now let us define the dimensionless dissipated power
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To compute the above integration on the complex ⇣⇤
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P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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d is determined
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2
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where ⇥⇥ =
✓
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d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
d could be smaller

than the branch point ⇣⇤�
2d depending on ⇣⌃d. When

⇣⌃d < 1/(1 � 2a), ⇣⇤⇥
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).
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the LDF is

h(e"d) =
⇢ � �

4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
p

(e"d+1)((2��1)e"d+1)
e�

�t
4e"d

(e"d�1)2 (A)

(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p

e"d�1/(1�2�)
e���t[(1��)e"d�1] (C)

(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit

β
β
β
β
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then
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where
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[Dv] denotes the path integral and ⌅d(⇤)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,
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the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where
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1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�
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ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌃ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-
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is analytic for ⇣⇤ ⇧ ⇣⇤�
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Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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d is determined
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2
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pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).
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2d depending on ⇣⌃d. When
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analytic range, so the LDF becomes the same as Eq. (11).
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comes the saddle point[? ? ]. Then the LDF becomes
�
2 (⇣⌃d⇣⇤

�
2d + 1�

✓
1 + 2⇣⇤�

2d). In sum, for a < 1/2

h(⇣⌃d) =

↵
�

�
� �

4e⇧d (⇣⌃d � 1)2
⇧
⇣⌃d < 1

1�2a

⌃
,

�
⇤
(a2 � a)⇣⌃d + a

⌅ ⇧
⇣⌃d > 1

1�2a

⌃
.

(12)

2

where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then
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where
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[Dv] denotes the path integral and ⌅d(⇤)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by
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where ⇣⇤ = 2D⇤/� and ⇥ =
⌘
1 + 2⇣⇤. Because a = Tb/Ts,

the probability density for the intial velocity Pin(v0) is
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Therefore, the characteristic function is
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is

P (⇣⌃d) =
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,

when ⇣⇤ < �1/2, the term e��⌅⇥/2
�
1 + e�2⇥�⌅/2

⇥�1/2
in

the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where

⇥⌅ =
⌘
�1� ⇣⇤. Therefore, the branch point (or pole) on

the negative real axis from the consine term ⇣⇤�
1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�

1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌥ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-

tor
⇧
1 + (1 + ⇣⇤/a)/⇥ tanh ⇥�⇧

⌃�1/2
. When a > 1/2, the

pole of the second prefactor on the negative real axis ⇣⇤�
2d

is smaller than ⇣⇤�
1d. Therefore, the branch point of the

whole integrand is determined by ⇣⇤�
1d and the integrand

is analytic for ⇣⇤ ⇧ ⇣⇤�
1d. Note that the negative branch

point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is

analytic for ⇣⇤ > ⇣⇤�
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point ⇣⇤⇥
d is determined

by the exponential term e
�⇥
2 (e⇧de⇤+1�⇥) for large ⇧ . Then
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2
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where ⇥⇥ =
✓

1 + 2⇣⇤⇥
d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
d could be smaller

than the branch point ⇣⇤�
2d depending on ⇣⌃d. When

⇣⌃d < 1/(1 � 2a), ⇣⇤⇥
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).

However, when ⇣⌃d > 1/(1 � 2a), ⇣⇤⇥
d < 2(a2 � a), so ⇣⇤⇥

d
cannot be used as a saddle point since the prefactors are
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⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,

when ⇣⇤ < �1/2, the term e��⌅⇥/2
�
1 + e�2⇥�⌅/2

⇥�1/2
in

the integrand of Eq. (9) becomes cos�1/2(⇥⌅�⇧), where

⇥⌅ =
⌘
�1� ⇣⇤. Therefore, the branch point (or pole) on

the negative real axis from the consine term ⇣⇤�
1d appears

at ⇣⇤�
1d = �(1 + (⌅/2�⇧)2)/2. For all ⇣⇤ < ⇣⇤�

1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌃ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-

tor
⇧
1 + (1 + ⇣⇤/a)/⇥ tanh ⇥�⇧

⌃�1/2
. When a > 1/2, the

pole of the second prefactor on the negative real axis ⇣⇤�
2d

is smaller than ⇣⇤�
1d. Therefore, the branch point of the

whole integrand is determined by ⇣⇤�
1d and the integrand

is analytic for ⇣⇤ ⇧ ⇣⇤�
1d. Note that the negative branch

point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is

analytic for ⇣⇤ > ⇣⇤�
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
method to Eq. (9)[? ]. When the two (· · · )�1/2 prefactors

in Eq. (9) are analytic, the saddle point ⇣⇤⇥
d is determined

by the exponential term e
�⇥
2 (e⇧de⇤+1�⇥) for large ⇧ . Then

⇣⇤⇥
d is given by

d

d⇣⇤
�⇧

2
(⇣⌃d⇣⇤+ 1� ⇥) = 0 ⌃ ⇣⇤⇥

d = �1

2

⌥
1� 1

⇣⌃2d

�
. (10)

Note that ⇣⇤⇥
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erties (� and D). So from now on we call this LDF as
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2d depending on ⇣⌃d. When
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analytic range, so the LDF becomes the same as Eq. (11).
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the LDF is

h(e"d) =
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4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
p

(e"d+1)((2��1)e"d+1)
e�

�t
4e"d

(e"d�1)2 (A)

(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p

e"d�1/(1�2�)
e���t[(1��)e"d�1] (C)

(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit

β
β
β
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or
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1d appears
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ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
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Interesting branch point comes from the second prefac-
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1d (the integrand is
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2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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d is determined
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Note that ⇣⇤⇥
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erties (� and D). So from now on we call this LDF as
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then
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Now let us define the dimensionless dissipated power
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To compute the above integration on the complex ⇣⇤
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ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
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point for a > 1/2 in the long time limit does not depend
on a but is �1/2. However, when a < 1/2, it can be

check that ⇣⇤�
2d becomes larger than ⇣⇤�

1d (the integrand is

analytic for ⇣⇤ > ⇣⇤�
2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
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d is determined
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees
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d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).

For a < 1/2, on the other hand, ⇣⇤⇥
d could be smaller

than the branch point ⇣⇤�
2d depending on ⇣⌃d. When

⇣⌃d < 1/(1 � 2a), ⇣⇤⇥
d is larger than 2(a2 � a) or is in the

analytic range, so the LDF becomes the same as Eq. (11).

However, when ⇣⌃d > 1/(1 � 2a), ⇣⇤⇥
d < 2(a2 � a), so ⇣⇤⇥
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cannot be used as a saddle point since the prefactors are
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
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1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,
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also note that ⇣⇤�
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1d (the integrand is
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2d) and its asymtotic value in the long

time limit becomes 2(a2 � a).
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calculate the large deviation function (LDF) h(⇣⌃d) for
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Note that ⇣⇤⇥
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Definition : 

The LDF of εd does not depend on β	


but depends only on the heat bath properties (γ, D).
=> Heat bath characteristic curve 
The initial memory does not remain in the t = ∞ limit for 2Tb > Ts .

cold initial system 
(Ts < 2Tb)

Analytic and Numerical Results (1. Dissipated power)

Heat bath characteristic curve 

3

the LDF is

h(e"d) =
⇢ � �

4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
p

(e"d+1)((2��1)e"d+1)
e�

�t
4e"d

(e"d�1)2 (A)

(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p

e"d�1/(1�2�)
e���t[(1��)e"d�1] (C)

(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
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P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
nal v(⇧) = v⌅ velocity, then

⌅d(⇤)v0 =

✏ ⇧

�⇧
dv1

✏ v⇥

v0

[Dv]P(v) exp
⌥
�⇤

✏ ⌅

0
dt�v2

�
,

(5)
where

�
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
the LDF becomes for a > 1/2

h(⇣⌃d) =
�

2
(⇣⌃d⇣⇤⇥

d + 1� ⇥⇥) = � �

4⇣⌃d
(⇣⌃d � 1)2, (11)

where ⇥⇥ =
✓

1 + 2⇣⇤⇥
d. This LDF has no initial or a de-
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Now let us define the dimensionless dissipated power
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⇥ itself does not result in any branch point because
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the LDF is

h(e"d) =
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4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1
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2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
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⌘
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Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
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for all �, while e��
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where P̂ (k) is the Fourier transform of P (⌃d). If
P(v(⇧), 0 ⌅ t ⌅ ⇧) is the probability density for a
given velocity path with fixed initial v(0) = v0 and fi-
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where
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[Dv] denotes the path integral and ⌅d(⇤)v0 is the

characteristic function with fixed v(0) = v0. Following
the calculation method used in the reference [??], the
above path integral can be exactly computed and the
result is given by
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
it always appears in qunatities such as cosh(⇥�⇧) or

sinh(⇥�⇧)/⇥ which are entire functions of ⇣⇤. Instead,
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1d on the neg-
ative real axis, the integrand in fact diverges, which can
be confirmed from the direct calculation of ⌅d(⇤). We

also note that ⇣⇤�
1d ⌃ �1/2 in the long time limit.

Interesting branch point comes from the second prefac-
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Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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Note that ⇣⇤⇥
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d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).
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than the branch point ⇣⇤�
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2
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where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p
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p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
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for all �, while e��
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4 and e��
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By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).
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the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1
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Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1
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ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c
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2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1
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solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
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denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as
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Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).
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peratures (� < 1
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the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1
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Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c
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2 , which might be a coincidence.
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all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as
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Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).
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i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.
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�)
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4 and e��
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p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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Now let us define the dimensionless dissipated power
⇣⌃d = ⌃d/D and find the PDF of ⇣⌃d. The inverse Fourier
transform of the characteristic function is
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To compute the above integration on the complex ⇣⇤
plane, one should consider the branch points of the in-

tegrand. At first glance, it seems that ⇥ =
⌘
1 + 2⇣⇤

determines the branch point at ⇣⇤ = �1/2. However,
⇥ itself does not result in any branch point because
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Using the branch-point structure discussed above, we

calculate the large deviation function (LDF) h(⇣⌃d) for
P (⇣⌃d) which is defined as h(⇣⌃d) = lim⌅⇤⇧(lnP (⇣⌃d))/⇧ .
The LDF can be obtained by applying the saddle point
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Note that ⇣⇤⇥
d > �1/2 for all ⇣⌃d, which always guarantees
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d. This LDF has no initial or a de-

pendence but is determined only by the heat bath prop-
erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).
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Now let us define the dimensionless dissipated power
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d > �1/2 for all ⇣⌃d, which always guarantees

the analyticity of the two prefactors when a > 1/2. So
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1 + 2⇣⇤⇥
d. This LDF has no initial or a de-
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erties (� and D). So from now on we call this LDF as
the heat-bath characteristic curve (HBCC).
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the LDF is

h(e"d) =
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4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2
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where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p
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p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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the LDF is
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1
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where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
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2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +
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for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
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By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1
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is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
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� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.
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for all �, while e��
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By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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the LDF is
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4e"d (e"d � 1)2, e"d < 1
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��� [(1� �)e"d � 1] , e"d > 1
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1
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The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1
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FIG. 2. (Color online) (a) and (b) are the LDF’s of the dis-
sipated power for � > 1/2 and � < 1/2, respectively. The
solid line is the HBCC (see Eq. (10)). In (a) ⇥, ⇤, �, and ⌅
are numerical data for � = 3/4, 1, 2, and 4, respectively. (c)
and (d) are the LDF’s of the injected power for � > 1/4 and
� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
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By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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the LDF is

h(e"d) =
⇢ � �

4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
p

(e"d+1)((2��1)e"d+1)
e�

�t
4e"d

(e"d�1)2 (A)

(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p

e"d�1/(1�2�)
e���t[(1��)e"d�1] (C)

(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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� < 1/4, respectively. In (c) ⇥, ⇤, �, and ⌅ are numerical
data for � = 1/2, 1, 2, and 4, respectively. Each dashed line
denotes the analytic line for each �. All numerical results are
obtained at t = 100.

change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +
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�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit

LDF transition occurs in positive tail or rare event region 	


(dominated by exponentially rarely high energetic particles).

Generation mechanism of high energetic particle	


- high energetic particle can be generated by kicks of a random force of a 
heat bath	


- high energetic particle can exist from the initial distribution	


"
β-dependence is determined by which one is dominant mechanism.
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Probability density function of εi (for large t) (Tb / Ts = a)     
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Note that the LDF for �⌥d > 1/(1� 2a) deviates from the
HBCC and has a dependence.

Now, we calculate the PDF of injected power. The
calculation method is similar to that of the dissipated
power. The characteristic function of the injected power
PDF at v(0) = v0 is

⇧i(⇤)v0 =

↵ ⇤

�⇤
dv1

↵ v⇥

v0

[Dv]P(v) exp
⇤
�⇤

↵ ⌅

0
dt⌅v

⌅

= e�⌅/2
⇧
cosh ⇥�⌃ +

1 + �⇤
⇥

sinh ⇥�⌃

⌃�1/2

⇥ exp

⇧
v20�

2D

�⇤2/2

⇥ coth ⇥�⌃ + 1 + �⇤

⌃
. (13)

Using Eq. (8), we integrate ⇧i(⇤)v0 over v0 and obtain

⇧i(⇤) = e�⌅/2
⇧
cosh ⇥�⌃ +

1 + �⇤� �⇤2/2a

⇥
sinh ⇥�⌃

⌃�1/2

.(14)

We can obtain the PDF of the dimensionless injected
power P (�⌥i), where �⌥i ⇤ ⌥i/D, from the inverse Fourier
transform of ⇧i(⇤) as shown in Eq. (9):

P (�⌥i) =
�⌃

4i⇧

↵ i⇤

�i⇤
d�⇤e

�⇥
2 (e⇧ie⇤+1�⇥)

⇤
1 + e�2⇥�⌅

2

⌅�1/2

⇥
⇧
1 +

1 + �⇤� �⇤2/2a

⇥
tanh ⇥�⌃

⌃�1/2

. (15)

In the above integrand the branch point from the first
prefactor �⇤�

1i is the same as �⇤�
1d. Only the di⇥erence be-

tween Eq. (9) and Eq. (15) is the second prefactor, which
implies the di⇥erent branch-point structure. Firstly, the
second prefactor always gives a branch point (or pole)

on the positive real axis �⇤+
2i. It is easy to check that

�⇤+
2i ⌅ 2(a +

⌥
a) when ⌃ ⌅ ⇧. Secondly, the second

prefactor also gives the branch point on the negative real
axis �⇤�

2i. When a > 1/4, �⇤�
2i < �⇤�

1i. So the negative

branch point is �⇤�
1i. When a < 1/4, �⇤�

2i >
�⇤�
1i. So the �⇤�

2i
is the branch point in this case. It is also easy to check
that �⇤�

2i ⌅ 2(a�
⌥
a) when ⌃ ⌅ ⇧. In sum, the analytic

ranges at ⌃ ⌅ ⇧ are �1/2 < �⇤ < 2(a+
⌥
a) for a > 1/4

and 2(a�
⌥
a) < �⇤ < 2(a+

⌥
a) for a < 1/4.

This branch point structure transforms the LDF of
P (�⌥i) compared with that of P (�⌥d). As obtained in
Eq. (10), the saddle point from the exponential term

e
�⇥
2 (e⇧ie⇤+1�⇥) is �⇤⇥

i = �(1 � 1/�⌥2i )/2. Then, for a > 1/4
the two prefactors are analytic when 1/(2

⌥
a + 1) < �⌥i,

so that the LDF of �⌥i is the same as the HBCC. How-
ever, when 1/(2

⌥
a + 1) > �⌥i, the prefactors are not

analytic with �⇤⇥
i . Therefore the LDF of �⌥i is given by

�
2 (�⌥d�⇤

+
2i + 1�

�
1 + 2�⇤+

2i). In sum, for a > 1/4 the LDF
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is

h(�⌥i) =

⌥
 

�
� [(a+

⌥
a)�⌥i �

⌥
a] ,

�
�⌥i < 1

1+2
⌅
a

⇥

� �
4e⇧i (�⌥i � 1)2.

�
�⌥i > 1

1+2
⌅
a

⇥ (16)

For a < 1/4, the negative branch point becomes �⇤�
2i.

Then the prefactors are not analytic with �⇤⇥
i for �⌥i >

1/(1 � 2
⌥
a). Therefore, for �⌥i > 1/(1 � 2

⌥
a) the LDF

of �⌥i is given by �
2 (�⌥d�⇤

�
2i + 1 �

�
1 + 2�⇤�

2i). Then, for

a < 1/4 the LDF is

h(�⌥i) =

⌥
⌦⌦⌦ 

⌦⌦⌦�

� [(a+
⌥
a)�⌥i �

⌥
a]

�
�⌥i < 1

1+2
⌅
a

⇥

� �t
4e⇧i (�⌥i � 1)2

�
1

1+2
⌅
a
< �⌥i < 1

1�2
⌅
a

⇥

� [�(
⌥
a� a)�⌥i +

⌥
a]

�
�⌥i > 1

1�2
⌅
a

⇥
(17)

To confirm Eqs. (11), (12), (16), and (17), we per-
form the numerical simulations of the Langevin equation
Eq. (1). In these simulations, we use � = D = 1, and
time gap �⌃ = 10�3.
Figure 1(a) shows the simulalted h(�⌥d) at ⌃ = 100

for a > 1/2. Regardless of a, the all simulation results
well collapse to the HBCC as expected from Eq. (11).
Slight deviation between the simulation results and the
HBCC comes from the finite time e⇥ect. We also per-
formed simulations up to ⌃ = 104 and confirmed that

cold initial system (Ts < 4Tb)

4

and through a similar algebra, we find for � > 1
4

h(e"i) =
(

��
p
�
⇥
1� (1 +

p
�)e"i

⇤
, e"i < 1

1+2
p
�

� �
4e"i (e"i � 1)2, e"i > 1

1+2
p
�

.

(15)

Note that h(e"i) is defined for all e"i. The negative tail
of P (e"i) is a↵ected by the initial condition and the non-
analyticity of h(e"i) is present even in the EQ process at
� = 1. For � < 1

4 , the LDF becomes

h(e"i) =

8
><

>:

��
p
�
⇥
1� (1 +

p
�)e"i

⇤
, e"i < 1

1+2
p
�

� �
4e"i (e"i � 1)2, 1

1+2
p
�
< e"i < 1

1�2
p
�

��
p
�
⇥
(1�p

�)e"i � 1
⇤
, e"i > 1

1�2
p
�

(16)

Our results read that the negative tail always depends
on the initial condition, but the positive tail shows the
threshold at �c

i = 1
4 where the initial condition depen-

dence starts to appear. Note that the threshold value
varies with the quantity interested. The leading finite-
time correction is rather complicated, which will appear
elsewhere [12].

To confirm our analytic calculations in Eqs. (10), (11),
(15), and (16), we performed numerical integrations of
the Langevin equation, Eq. (1). Here, we set � = D = 1,
and integration time interval �t = 10�3. Figure 2(a)
displays numerical data for h(e"d) at t = 100 for various
values of � > 1/2. Regardless of �, all numerical results
collapse well onto the HBCC as expected from Eq. (10).
Slight deviation from the analytic HBCC comes from the
finite-time e↵ect. We confirmed that the LDF with lead-
ing finite-time correction (see Eq. (12)) perfectly agrees
with the numerical data at t = 100 (not shown here).
Figure 2(b) shows h(e"d) for � < 1/2. Numerical results
also agree well with our analytic results in Eq. (11). Fig-
ure 2(c) and (d) show the LDF of the injected power for
� > 1/4 and � < 1/4, respectively. In Fig. 2(c) the LDF
for e"i < (1+2

p
�)�1 does not appear simply because the

region is outside of the plot range. Meanwhile, the three
regions are clearly seen in Fig. 2(d), as expected from
Eq. (16).

To understand better the origin of the threshold �c di-
viding di↵erent phases, we introduce a simple toy model.
In order to examine the correlation between the initial en-
ergy and the average power, we define a function Et(e")
which is the average initial energy of a particle whose
average (dissipated or injected) power until time t is
given by e". It is convenient to use the normalized func-
tion e(e") ⌘ E(e")/hEi0, with hEi0 the average initial en-
ergy without any constraint on its power. In Fig. 3(a),
e(e"d) approaches the constant 1 for large t, which im-
plies no correlation between the initial energy and the
corresponding dissipation power. Thus, there will be no
initial condition dependence on the PDF for large e"d.
In contrast, Fig. 3(b) shows divergence of e(e"d) in time,
which indicates that high initial energy is responsible for
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FIG. 3. (Color online) (a) and (b) show the correlation in
time between the initial energy and the dissipated power for
� > 1/2 and � < 1/2, respectively. (c) and (d) show the
correlation between the initial energy and the injected power
at time ⌧ for � > 1/4 and � < 1/4, respectively. M, ⌃, and �
are data for ⌧ = 1, 10, and 100, respectively.

large e"d. Thus, the tail of the PDF, P (e"d), should be
dominated by a particle with high initial energy which
is generated by the initial high-temperature distribution.
This causes the deviation of h(e"d) from the HBCC for
e"d > (1 � 2�)�1 when � < 1

2 (higher initial tempera-
tures). Figure 3(c) shows e(e"i) approaches 1 for � > 1/4,
while Figure 3(d) shows its divergence for � < 1/4.

In summary, we consider the equilibration process of
a Brownian particle system, staring from various initial
temperatures di↵erent from the heat bath temperature.
We calculate the LDF of time-integrated quantities like
the dissipated energy and the injected energy due to the
heat bath. Remarkably, we find a finite threshold for the
initial temperature, only beyond which the LDF contains
everlasting initial memory. We argue that this is due to
the competition of highly energetic particles originated
from the heat bath and from the initial distribution.
Our simple toy model analysis supports this argument by
showing that large dissipated energy is generated domi-
nantly by particles with high initial energy, rather than
by highly energetic particles randomly generated by the
heat bath, when the initial temperature is su�ciently
high enough with respect to the heat bath temperature.
We expect that our results are applicable to general equi-
libration or nonequilibrium processes, which implies that
the rare-event measurements for time-integrated quan-
tities should be carefully carried out because the initial
memory may survive forever.

This research was supported by the NRF grant
No. 2011-35B-C00014 (JSL) and by Mid-career Re-
searcher Program through NRF grant No. 2010-0026627
(CK,HP) funded by the MEST .
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the LDF is

h(e"d) =
⇢ � �

4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
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(e"d+1)((2��1)e"d+1)
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�t
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(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p
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(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
The prefactors depend on the initial condition (�) for
all cases, as expected, but their power-law exponent in
terms of e"d changes abruptly from �2 to � 1

2 as e"d in-
creases. It is interesting to note that this exponent
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change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit
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Note that the LDF for �⌥d > 1/(1� 2a) deviates from the
HBCC and has a dependence.

Now, we calculate the PDF of injected power. The
calculation method is similar to that of the dissipated
power. The characteristic function of the injected power
PDF at v(0) = v0 is

⇧i(⇤)v0 =

↵ ⇤

�⇤
dv1

↵ v⇥

v0

[Dv]P(v) exp
⇤
�⇤

↵ ⌅

0
dt⌅v

⌅

= e�⌅/2
⇧
cosh ⇥�⌃ +

1 + �⇤
⇥

sinh ⇥�⌃

⌃�1/2

⇥ exp

⇧
v20�

2D

�⇤2/2

⇥ coth ⇥�⌃ + 1 + �⇤

⌃
. (13)

Using Eq. (8), we integrate ⇧i(⇤)v0 over v0 and obtain

⇧i(⇤) = e�⌅/2
⇧
cosh ⇥�⌃ +

1 + �⇤� �⇤2/2a

⇥
sinh ⇥�⌃

⌃�1/2

.(14)

We can obtain the PDF of the dimensionless injected
power P (�⌥i), where �⌥i ⇤ ⌥i/D, from the inverse Fourier
transform of ⇧i(⇤) as shown in Eq. (9):

P (�⌥i) =
�⌃

4i⇧

↵ i⇤

�i⇤
d�⇤e

�⇥
2 (e⇧ie⇤+1�⇥)

⇤
1 + e�2⇥�⌅

2

⌅�1/2

⇥
⇧
1 +

1 + �⇤� �⇤2/2a

⇥
tanh ⇥�⌃

⌃�1/2

. (15)

In the above integrand the branch point from the first
prefactor �⇤�

1i is the same as �⇤�
1d. Only the di⇥erence be-

tween Eq. (9) and Eq. (15) is the second prefactor, which
implies the di⇥erent branch-point structure. Firstly, the
second prefactor always gives a branch point (or pole)

on the positive real axis �⇤+
2i. It is easy to check that

�⇤+
2i ⌅ 2(a +

⌥
a) when ⌃ ⌅ ⇧. Secondly, the second

prefactor also gives the branch point on the negative real
axis �⇤�

2i. When a > 1/4, �⇤�
2i < �⇤�

1i. So the negative

branch point is �⇤�
1i. When a < 1/4, �⇤�

2i >
�⇤�
1i. So the �⇤�

2i
is the branch point in this case. It is also easy to check
that �⇤�

2i ⌅ 2(a�
⌥
a) when ⌃ ⌅ ⇧. In sum, the analytic

ranges at ⌃ ⌅ ⇧ are �1/2 < �⇤ < 2(a+
⌥
a) for a > 1/4

and 2(a�
⌥
a) < �⇤ < 2(a+

⌥
a) for a < 1/4.

This branch point structure transforms the LDF of
P (�⌥i) compared with that of P (�⌥d). As obtained in
Eq. (10), the saddle point from the exponential term

e
�⇥
2 (e⇧ie⇤+1�⇥) is �⇤⇥

i = �(1 � 1/�⌥2i )/2. Then, for a > 1/4
the two prefactors are analytic when 1/(2

⌥
a + 1) < �⌥i,

so that the LDF of �⌥i is the same as the HBCC. How-
ever, when 1/(2

⌥
a + 1) > �⌥i, the prefactors are not

analytic with �⇤⇥
i . Therefore the LDF of �⌥i is given by

�
2 (�⌥d�⇤

+
2i + 1�

�
1 + 2�⇤+

2i). In sum, for a > 1/4 the LDF
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is

h(�⌥i) =

⌥
 

�
� [(a+

⌥
a)�⌥i �

⌥
a] ,

�
�⌥i < 1

1+2
⌅
a

⇥

� �
4e⇧i (�⌥i � 1)2.

�
�⌥i > 1

1+2
⌅
a

⇥ (16)

For a < 1/4, the negative branch point becomes �⇤�
2i.

Then the prefactors are not analytic with �⇤⇥
i for �⌥i >

1/(1 � 2
⌥
a). Therefore, for �⌥i > 1/(1 � 2

⌥
a) the LDF

of �⌥i is given by �
2 (�⌥d�⇤

�
2i + 1 �

�
1 + 2�⇤�

2i). Then, for

a < 1/4 the LDF is

h(�⌥i) =

⌥
⌦⌦⌦ 

⌦⌦⌦�

� [(a+
⌥
a)�⌥i �

⌥
a]

�
�⌥i < 1

1+2
⌅
a

⇥

� �t
4e⇧i (�⌥i � 1)2

�
1

1+2
⌅
a
< �⌥i < 1

1�2
⌅
a

⇥

� [�(
⌥
a� a)�⌥i +

⌥
a]

�
�⌥i > 1

1�2
⌅
a

⇥
(17)

To confirm Eqs. (11), (12), (16), and (17), we per-
form the numerical simulations of the Langevin equation
Eq. (1). In these simulations, we use � = D = 1, and
time gap �⌃ = 10�3.
Figure 1(a) shows the simulalted h(�⌥d) at ⌃ = 100

for a > 1/2. Regardless of a, the all simulation results
well collapse to the HBCC as expected from Eq. (11).
Slight deviation between the simulation results and the
HBCC comes from the finite time e⇥ect. We also per-
formed simulations up to ⌃ = 104 and confirmed that

cold initial system (Ts < 4Tb)

hot initial system (Ts > 4Tb)
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and through a similar algebra, we find for � > 1
4

h(e"i) =
(

��
p
�
⇥
1� (1 +

p
�)e"i

⇤
, e"i < 1

1+2
p
�

� �
4e"i (e"i � 1)2, e"i > 1

1+2
p
�

.

(15)

Note that h(e"i) is defined for all e"i. The negative tail
of P (e"i) is a↵ected by the initial condition and the non-
analyticity of h(e"i) is present even in the EQ process at
� = 1. For � < 1

4 , the LDF becomes

h(e"i) =

8
><

>:

��
p
�
⇥
1� (1 +

p
�)e"i

⇤
, e"i < 1

1+2
p
�

� �
4e"i (e"i � 1)2, 1

1+2
p
�
< e"i < 1

1�2
p
�

��
p
�
⇥
(1�p

�)e"i � 1
⇤
, e"i > 1

1�2
p
�

(16)

Our results read that the negative tail always depends
on the initial condition, but the positive tail shows the
threshold at �c

i = 1
4 where the initial condition depen-

dence starts to appear. Note that the threshold value
varies with the quantity interested. The leading finite-
time correction is rather complicated, which will appear
elsewhere [12].

To confirm our analytic calculations in Eqs. (10), (11),
(15), and (16), we performed numerical integrations of
the Langevin equation, Eq. (1). Here, we set � = D = 1,
and integration time interval �t = 10�3. Figure 2(a)
displays numerical data for h(e"d) at t = 100 for various
values of � > 1/2. Regardless of �, all numerical results
collapse well onto the HBCC as expected from Eq. (10).
Slight deviation from the analytic HBCC comes from the
finite-time e↵ect. We confirmed that the LDF with lead-
ing finite-time correction (see Eq. (12)) perfectly agrees
with the numerical data at t = 100 (not shown here).
Figure 2(b) shows h(e"d) for � < 1/2. Numerical results
also agree well with our analytic results in Eq. (11). Fig-
ure 2(c) and (d) show the LDF of the injected power for
� > 1/4 and � < 1/4, respectively. In Fig. 2(c) the LDF
for e"i < (1+2

p
�)�1 does not appear simply because the

region is outside of the plot range. Meanwhile, the three
regions are clearly seen in Fig. 2(d), as expected from
Eq. (16).

To understand better the origin of the threshold �c di-
viding di↵erent phases, we introduce a simple toy model.
In order to examine the correlation between the initial en-
ergy and the average power, we define a function Et(e")
which is the average initial energy of a particle whose
average (dissipated or injected) power until time t is
given by e". It is convenient to use the normalized func-
tion e(e") ⌘ E(e")/hEi0, with hEi0 the average initial en-
ergy without any constraint on its power. In Fig. 3(a),
e(e"d) approaches the constant 1 for large t, which im-
plies no correlation between the initial energy and the
corresponding dissipation power. Thus, there will be no
initial condition dependence on the PDF for large e"d.
In contrast, Fig. 3(b) shows divergence of e(e"d) in time,
which indicates that high initial energy is responsible for
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FIG. 3. (Color online) (a) and (b) show the correlation in
time between the initial energy and the dissipated power for
� > 1/2 and � < 1/2, respectively. (c) and (d) show the
correlation between the initial energy and the injected power
at time ⌧ for � > 1/4 and � < 1/4, respectively. M, ⌃, and �
are data for ⌧ = 1, 10, and 100, respectively.

large e"d. Thus, the tail of the PDF, P (e"d), should be
dominated by a particle with high initial energy which
is generated by the initial high-temperature distribution.
This causes the deviation of h(e"d) from the HBCC for
e"d > (1 � 2�)�1 when � < 1

2 (higher initial tempera-
tures). Figure 3(c) shows e(e"i) approaches 1 for � > 1/4,
while Figure 3(d) shows its divergence for � < 1/4.

In summary, we consider the equilibration process of
a Brownian particle system, staring from various initial
temperatures di↵erent from the heat bath temperature.
We calculate the LDF of time-integrated quantities like
the dissipated energy and the injected energy due to the
heat bath. Remarkably, we find a finite threshold for the
initial temperature, only beyond which the LDF contains
everlasting initial memory. We argue that this is due to
the competition of highly energetic particles originated
from the heat bath and from the initial distribution.
Our simple toy model analysis supports this argument by
showing that large dissipated energy is generated domi-
nantly by particles with high initial energy, rather than
by highly energetic particles randomly generated by the
heat bath, when the initial temperature is su�ciently
high enough with respect to the heat bath temperature.
We expect that our results are applicable to general equi-
libration or nonequilibrium processes, which implies that
the rare-event measurements for time-integrated quan-
tities should be carefully carried out because the initial
memory may survive forever.

This research was supported by the NRF grant
No. 2011-35B-C00014 (JSL) and by Mid-career Re-
searcher Program through NRF grant No. 2010-0026627
(CK,HP) funded by the MEST .
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Our results read that the negative tail always depends
on the initial condition, but the positive tail shows the
threshold at �c

i = 1
4 where the initial condition depen-

dence starts to appear. Note that the threshold value
varies with the quantity interested. The leading finite-
time correction is rather complicated, which will appear
elsewhere [12].

To confirm our analytic calculations in Eqs. (10), (11),
(15), and (16), we performed numerical integrations of
the Langevin equation, Eq. (1). Here, we set � = D = 1,
and integration time interval �t = 10�3. Figure 2(a)
displays numerical data for h(e"d) at t = 100 for various
values of � > 1/2. Regardless of �, all numerical results
collapse well onto the HBCC as expected from Eq. (10).
Slight deviation from the analytic HBCC comes from the
finite-time e↵ect. We confirmed that the LDF with lead-
ing finite-time correction (see Eq. (12)) perfectly agrees
with the numerical data at t = 100 (not shown here).
Figure 2(b) shows h(e"d) for � < 1/2. Numerical results
also agree well with our analytic results in Eq. (11). Fig-
ure 2(c) and (d) show the LDF of the injected power for
� > 1/4 and � < 1/4, respectively. In Fig. 2(c) the LDF
for e"i < (1+2
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�)�1 does not appear simply because the

region is outside of the plot range. Meanwhile, the three
regions are clearly seen in Fig. 2(d), as expected from
Eq. (16).

To understand better the origin of the threshold �c di-
viding di↵erent phases, we introduce a simple toy model.
In order to examine the correlation between the initial en-
ergy and the average power, we define a function Et(e")
which is the average initial energy of a particle whose
average (dissipated or injected) power until time t is
given by e". It is convenient to use the normalized func-
tion e(e") ⌘ E(e")/hEi0, with hEi0 the average initial en-
ergy without any constraint on its power. In Fig. 3(a),
e(e"d) approaches the constant 1 for large t, which im-
plies no correlation between the initial energy and the
corresponding dissipation power. Thus, there will be no
initial condition dependence on the PDF for large e"d.
In contrast, Fig. 3(b) shows divergence of e(e"d) in time,
which indicates that high initial energy is responsible for
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are data for ⌧ = 1, 10, and 100, respectively.

large e"d. Thus, the tail of the PDF, P (e"d), should be
dominated by a particle with high initial energy which
is generated by the initial high-temperature distribution.
This causes the deviation of h(e"d) from the HBCC for
e"d > (1 � 2�)�1 when � < 1

2 (higher initial tempera-
tures). Figure 3(c) shows e(e"i) approaches 1 for � > 1/4,
while Figure 3(d) shows its divergence for � < 1/4.

In summary, we consider the equilibration process of
a Brownian particle system, staring from various initial
temperatures di↵erent from the heat bath temperature.
We calculate the LDF of time-integrated quantities like
the dissipated energy and the injected energy due to the
heat bath. Remarkably, we find a finite threshold for the
initial temperature, only beyond which the LDF contains
everlasting initial memory. We argue that this is due to
the competition of highly energetic particles originated
from the heat bath and from the initial distribution.
Our simple toy model analysis supports this argument by
showing that large dissipated energy is generated domi-
nantly by particles with high initial energy, rather than
by highly energetic particles randomly generated by the
heat bath, when the initial temperature is su�ciently
high enough with respect to the heat bath temperature.
We expect that our results are applicable to general equi-
libration or nonequilibrium processes, which implies that
the rare-event measurements for time-integrated quan-
tities should be carefully carried out because the initial
memory may survive forever.
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the LDF is

h(e"d) =
⇢ � �

4e"d (e"d � 1)2, e"d < 1
1�2�

��� [(1� �)e"d � 1] , e"d > 1
1�2�

.

(11)

Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1

2

P (e"d) =

8
>><

>>:

p
�tcd(�)

e"d
p

(e"d+1)((2��1)e"d+1)
e�

�t
4e"d

(e"d�1)2 (A)

(�t)3/4r(�)e���t[(1��)e"d�1] (B)p
�ts(�)p

e"d�1/(1�2�)
e���t[(1��)e"d�1] (C)

(12)
where there are three regions: (A) (1 � 2�)�1 � e"d �
(�t)�1/2; (B) |e"d � (1� 2�)�1| ⌧ (�t)�1/2; (C) e"d � (1�
2�)�1 � (�t)�1/2. Three constants are given as cd(�) =p

�/⇡, r(�) =
p
2�(1� 2�)7/4�

�
1
4

�
/(4⇡

p
1� �), and

s(�) =
p
�(1� 2�)/

p
⇡(1� �). For � > 1

2 , the PDF
is given by the same one in (A) of Eq. (12) for all e"d > 0.
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change is very similar to what was found dynamically
for the PDF of nonequilibrium work in simple linear dif-
fusion systems [13].

Now, we turn to the injected power, "i = Qi/t. The
calculation method is almost the same as before. We
obtain the generating function of the injected power as

⇡i(�) = e�t/2
 
cosh ⌘�t+

1 + e�� e�2/2�

⌘
sinh ⌘�t

!�1/2

.(13)

Compared to Eq. (4), there is only a parametric di↵er-
ence in the coe�cient of the hyperbolic sine term. We
can obtain the PDF of the dimensionless injected power,
P (e"i) with e"i ⌘ "i/D, by performing the inverse Fourier
transform of ⇡i(�).

Similar to the case of the dissipated power, the branch
points are determined by the equation

0 = cosh ⌘�t+
1 + e�� e�2/2�

⌘
sinh ⌘�t. (14)

We find two relevant solutions of Eq. (14); one is on the

positive real axis, e�+
i , and the other is on the negative

real axis, e��
i , as shown in Figs. 1(c) and (d), respectively.

In the t ! 1 limit, one can show that e�+
i = 2(� +

p
�)

for all �, while e��
i = � 1

2 for � > 1
4 and e��

i = �2(
p
���)

for � < 1
4 .

By defining the LDF, h(e"i), for e"i in the t ! 1 limit

3

the LDF is

h(e"d) =
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4e"d (e"d � 1)2, e"d < 1
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��� [(1� �)e"d � 1] , e"d > 1
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Note that the LDF for large e"d is deformed from the
HBCC and has the initial condition (�) dependence, see
Figs. 2(a) and (b).

Our results show that, for su�ciently high initial tem-
peratures (� < 1

2 ), the initial memory survives forever in
the large e"d region of the LDF and completely vanishes
below the threshold of the initial temperature (� > 1

2 ).
Large dissipated energy Qd is generated by the decay
of highly energetic particles with energy ⇠ Qd. There
are two distinct sources for highly energetic particles; (a)
heat bath and (b) initial Boltzmann distribution, which
compete each other. We estimate the probability Pa and
Pb to find a particle to dissipate energy Qd from each
source, respectively. From the HBCC in Eqs. (7) and
(10), we find Pa ⇠ exp[�Qd/(4Tb)] for large e"d. On the
other hand, we assume that a particle with high initial
energy decays by the deterministic dynamics of v̇ = ��v.
In this case, it is easy to show that the dissipated energy
Qd = v2(0) in the long-time limit. Thus, we estimate
Pb ⇠ exp[�Qd/(2Ts)] = exp[��Qd/(2Tb)] from the ini-
tial Boltzmann distribution at temperature Ts. As a re-
sult, the HBCC Pa dominates over Pb for � > 1

2 or the
initial memory dominates, otherwise. Our simple argu-
ment predicts not only the existence of the threshold for
everlasting initial memory in the LDF, but also its exact
value �c

d = 1
2 , which might be a coincidence.

We also calculate the leading finite-time correction of
ht(e"d) in Eq. (7). As the leading correction is O(ln t/t), it
yields a power-law type prefactor to the exponential form
of the PDF, P (e"d). For � < 1

2 , it is tricky to calculate
this correction because the saddle point is very close to
the branch point. In fact, it cannot be obtained through
a conventional Gaussian integral. Here, we just report
our result without presenting details [12] for � < 1
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Summary of Part 1

- LDF transition occurs due to the competition between	


     * probability of high energetic particles produced by kick of heat bath 	


	

   random force	


     * probability of high energetic particles come from the initial distribution

- Transition of LDF of the dissipated power occurs at βc = 1/2. 

- Transition of LDF of the injected power occurs at βc = 1/4. 

- We studied an equilibration process of a Brownian particle.

- Heat —› Two heat flows: dissipated and injected powers

- β-dependence is general feature in non-equilibrium phenomena	
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         * when a Brownian particle is dragged by a harmonic potential  	
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Generating function

generating function associated with P(ε; τ) is defined as

2

1. Introduction

Detailed balance is satisfied in equilibrium and gives rise to the Boltzmann distribution,

which is a well established basis for equilibrium statistical mechanics. On the other

hand, nonequilibrium is characterized by the breakage of detailed balance and in turn
there appears irreversibility in dynamics. A typical consequence is the existence of

nonzero current in state space. It has been noticed that nonzero current accompanies

an incessant production of work, hence heat and entropy [1]-[9], each of which satisfies

the fluctuation theorem (FT) given at specific initial distributions [10]-[15]. Such time-

integrated quantities exhibit rare but huge fluctuations which are prominent in small

systems. The large deviation function (LDF) is the characteristic function that contains
all the information regarding complicated fluctuations in the long-time limit and has

been nowadays one of main issues in nonequilibrium statistical mechanics [16]-[22].

For a time-integrated quantity C produced from time t = 0 to t = τ , the LDF h(ε)

for its average production rate ε = C/τ is defined as

h(ε) = lim
τ→∞

1

τ
lnP (ε; τ), (1)

where P (ε; τ) is the probability density function (PDF) of rate ε for C produced up to

time τ . It provides an essential information on the asymptotic property of fluctuations
in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
or experimental tests.

The cumulant generating function associated with P (ε; τ) is defined as

G(λ; τ) = ⟨e−λτε⟩τ =
∫
dε P (ε; τ)e−λτε. (2)

In most cases [16, 23, 26, 32], it is easier to calculate the generating function than the
PDF directly. Then P (ε; τ) can be deduced by the inverse Fourier transform of the

generating function. The corresponding Fourier integral can be estimated for large τ as

P (ε; τ) =
τ

2πi

∫ i∞

−i∞
dλ G(λ; τ)eλτε ≃

∫

C
dλ φ(λ)eτH(λ;ε) (3)

where G(λ; τ) is factorized into the exponential term contributed to H(λ; ε) and the

leftover to φ(λ) for large τ . The integral path C is chosen as the steepest descent
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contour passing through the saddle point, which is usually taken as the solution of

H ′(λ; ε) = 0 with H ′ = dH/dλ. We call this saddle point as a conventional saddle

point, denoted by λ∗
0(ε). The Gaussian integration for equation (3) near λ∗

0(ε), which

will be called the conventional saddle-point method, yields

P (ε; τ) ≃
√

2π

τ |H ′′(λ∗
0; ε)|

φ(λ∗
0)e

iδeτH(λ∗

0
;ε), (4)

where H ′′ = d2H/dλ2 and δ is an angle between the steepest descent path and

the horizontal axis at λ̃∗
0. When there is no singularity in the prefactor φ(λ),

the above result leads to the correct LDF h(ε) in equation (1) and its finite-time
correction. However, there are many examples where the prefactor has a power-law

type singularity [16, 28, 29, 30, 31]. If the prefactor has a singularity at λ = λB and

λ∗
0(ε) passes through λB at ε = εB as ε varies, the conventional saddle-point method

gives rise to the δ-function type divergence in the PDF [16] at ε = εB, which is physically

unreasonable. This problem was carefully treated very recently in [32] and [33] when

the prefactor has a simple or square-root pole, respectively. However, in those works,
the conventional saddle points were still used to construct the steepest descent contour,

thus the calculation of the LDF near ε = εB demands rather complicated algebra as

well as composite deformed contours.

In this study, we take a different saddle point, denoted by λ∗(ε), which is the

solution of d[H(λ; ε)+ τ−1 lnφ(λ)]/dλ = 0. This saddle point is τ -dependent, but never

passes through the singularity. It approaches the singularity only asymptotically in the
long-time limit. This feature simplifies the analysis to obtain the LDF as well as its

finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
equilibration process is introduced in brief. In Sec. 4, we calculate the LDF’s for the

dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed

calculation results are presented for finite-time corrections of the LDF’s. We also

perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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contour passing through the saddle point, which is usually taken as the solution of

H ′(λ; ε) = 0 with H ′ = dH/dλ. We call this saddle point as a conventional saddle

point, denoted by λ∗
0(ε). The Gaussian integration for equation (3) near λ∗

0(ε), which

will be called the conventional saddle-point method, yields

P (ε; τ) ≃
√

2π

τ |H ′′(λ∗
0; ε)|

φ(λ∗
0)e

iδeτH(λ∗

0
;ε), (4)

where H ′′ = d2H/dλ2 and δ is an angle between the steepest descent path and

the horizontal axis at λ̃∗
0. When there is no singularity in the prefactor φ(λ),

the above result leads to the correct LDF h(ε) in equation (1) and its finite-time
correction. However, there are many examples where the prefactor has a power-law

type singularity [16, 28, 29, 30, 31]. If the prefactor has a singularity at λ = λB and

λ∗
0(ε) passes through λB at ε = εB as ε varies, the conventional saddle-point method

gives rise to the δ-function type divergence in the PDF [16] at ε = εB, which is physically

unreasonable. This problem was carefully treated very recently in [32] and [33] when

the prefactor has a simple or square-root pole, respectively. However, in those works,
the conventional saddle points were still used to construct the steepest descent contour,

thus the calculation of the LDF near ε = εB demands rather complicated algebra as

well as composite deformed contours.

In this study, we take a different saddle point, denoted by λ∗(ε), which is the

solution of d[H(λ; ε)+ τ−1 lnφ(λ)]/dλ = 0. This saddle point is τ -dependent, but never

passes through the singularity. It approaches the singularity only asymptotically in the
long-time limit. This feature simplifies the analysis to obtain the LDF as well as its

finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
equilibration process is introduced in brief. In Sec. 4, we calculate the LDF’s for the

dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed

calculation results are presented for finite-time corrections of the LDF’s. We also

perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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1. Introduction

Detailed balance is satisfied in equilibrium and gives rise to the Boltzmann distribution,

which is a well established basis for equilibrium statistical mechanics. On the other

hand, nonequilibrium is characterized by the breakage of detailed balance and in turn
there appears irreversibility in dynamics. A typical consequence is the existence of

nonzero current in state space. It has been noticed that nonzero current accompanies

an incessant production of work, hence heat and entropy [1]-[9], each of which satisfies

the fluctuation theorem (FT) given at specific initial distributions [10]-[15]. Such time-

integrated quantities exhibit rare but huge fluctuations which are prominent in small

systems. The large deviation function (LDF) is the characteristic function that contains
all the information regarding complicated fluctuations in the long-time limit and has

been nowadays one of main issues in nonequilibrium statistical mechanics [16]-[22].

For a time-integrated quantity C produced from time t = 0 to t = τ , the LDF h(ε)

for its average production rate ε = C/τ is defined as

h(ε) = lim
τ→∞

1

τ
lnP (ε; τ), (1)

where P (ε; τ) is the probability density function (PDF) of rate ε for C produced up to

time τ . It provides an essential information on the asymptotic property of fluctuations
in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
or experimental tests.

The cumulant generating function associated with P (ε; τ) is defined as

G(λ; τ) = ⟨e−λτε⟩τ =
∫
dε P (ε; τ)e−λτε. (2)

In most cases [16, 23, 26, 32], it is easier to calculate the generating function than the
PDF directly. Then P (ε; τ) can be deduced by the inverse Fourier transform of the

generating function. The corresponding Fourier integral can be estimated for large τ as

P (ε; τ) =
τ

2πi

∫ i∞

−i∞
dλ G(λ; τ)eλτε ≃

∫

C
dλ φ(λ)eτH(λ;ε) (3)

where G(λ; τ) is factorized into the exponential term contributed to H(λ; ε) and the

leftover to φ(λ) for large τ . The integral path C is chosen as the steepest descent

P(ε; τ) : inverse Fourier transform
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contour passing through the saddle point, which is usually taken as the solution of

H ′(λ; ε) = 0 with H ′ = dH/dλ. We call this saddle point as a conventional saddle

point, denoted by λ∗
0(ε). The Gaussian integration for equation (3) near λ∗

0(ε), which

will be called the conventional saddle-point method, yields

P (ε; τ) ≃
√

2π

τ |H ′′(λ∗
0; ε)|

φ(λ∗
0)e

iδeτH(λ∗

0
;ε), (4)

where H ′′ = d2H/dλ2 and δ is an angle between the steepest descent path and

the horizontal axis at λ̃∗
0. When there is no singularity in the prefactor φ(λ),

the above result leads to the correct LDF h(ε) in equation (1) and its finite-time
correction. However, there are many examples where the prefactor has a power-law

type singularity [16, 28, 29, 30, 31]. If the prefactor has a singularity at λ = λB and

λ∗
0(ε) passes through λB at ε = εB as ε varies, the conventional saddle-point method

gives rise to the δ-function type divergence in the PDF [16] at ε = εB, which is physically

unreasonable. This problem was carefully treated very recently in [32] and [33] when

the prefactor has a simple or square-root pole, respectively. However, in those works,
the conventional saddle points were still used to construct the steepest descent contour,

thus the calculation of the LDF near ε = εB demands rather complicated algebra as

well as composite deformed contours.

In this study, we take a different saddle point, denoted by λ∗(ε), which is the

solution of d[H(λ; ε)+ τ−1 lnφ(λ)]/dλ = 0. This saddle point is τ -dependent, but never

passes through the singularity. It approaches the singularity only asymptotically in the
long-time limit. This feature simplifies the analysis to obtain the LDF as well as its

finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
equilibration process is introduced in brief. In Sec. 4, we calculate the LDF’s for the

dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed

calculation results are presented for finite-time corrections of the LDF’s. We also

perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
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The cumulant generating function associated with P (ε; τ) is defined as
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contour passing through the saddle point, which is usually taken as the solution of

H ′(λ; ε) = 0 with H ′ = dH/dλ. We call this saddle point as a conventional saddle

point, denoted by λ∗
0(ε). The Gaussian integration for equation (3) near λ∗

0(ε), which

will be called the conventional saddle-point method, yields

P (ε; τ) ≃
√

2π

τ |H ′′(λ∗
0; ε)|

φ(λ∗
0)e

iδeτH(λ∗

0
;ε), (4)

where H ′′ = d2H/dλ2 and δ is an angle between the steepest descent path and

the horizontal axis at λ̃∗
0. When there is no singularity in the prefactor φ(λ),

the above result leads to the correct LDF h(ε) in equation (1) and its finite-time
correction. However, there are many examples where the prefactor has a power-law

type singularity [16, 28, 29, 30, 31]. If the prefactor has a singularity at λ = λB and

λ∗
0(ε) passes through λB at ε = εB as ε varies, the conventional saddle-point method

gives rise to the δ-function type divergence in the PDF [16] at ε = εB, which is physically

unreasonable. This problem was carefully treated very recently in [32] and [33] when

the prefactor has a simple or square-root pole, respectively. However, in those works,
the conventional saddle points were still used to construct the steepest descent contour,

thus the calculation of the LDF near ε = εB demands rather complicated algebra as

well as composite deformed contours.

In this study, we take a different saddle point, denoted by λ∗(ε), which is the

solution of d[H(λ; ε)+ τ−1 lnφ(λ)]/dλ = 0. This saddle point is τ -dependent, but never

passes through the singularity. It approaches the singularity only asymptotically in the
long-time limit. This feature simplifies the analysis to obtain the LDF as well as its

finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
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dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed
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perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
equilibration process is introduced in brief. In Sec. 4, we calculate the LDF’s for the

dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed

calculation results are presented for finite-time corrections of the LDF’s. We also

perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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1. Introduction

Detailed balance is satisfied in equilibrium and gives rise to the Boltzmann distribution,

which is a well established basis for equilibrium statistical mechanics. On the other

hand, nonequilibrium is characterized by the breakage of detailed balance and in turn
there appears irreversibility in dynamics. A typical consequence is the existence of

nonzero current in state space. It has been noticed that nonzero current accompanies

an incessant production of work, hence heat and entropy [1]-[9], each of which satisfies

the fluctuation theorem (FT) given at specific initial distributions [10]-[15]. Such time-

integrated quantities exhibit rare but huge fluctuations which are prominent in small

systems. The large deviation function (LDF) is the characteristic function that contains
all the information regarding complicated fluctuations in the long-time limit and has

been nowadays one of main issues in nonequilibrium statistical mechanics [16]-[22].

For a time-integrated quantity C produced from time t = 0 to t = τ , the LDF h(ε)

for its average production rate ε = C/τ is defined as

h(ε) = lim
τ→∞

1

τ
lnP (ε; τ), (1)

where P (ε; τ) is the probability density function (PDF) of rate ε for C produced up to

time τ . It provides an essential information on the asymptotic property of fluctuations
in the long-time limit [3, 6, 16, 17, 23, 24, 25, 26].

Experimental or numerical confirmation for a theoretically obtained LDF is a very

difficult task because the LDF tail is determined by extremely rare events. Van Zon

and Cohen [16] studied heat production of a Brownian particle trapped in the harmonic

potential moving with a constant velocity and found that the heat production PDF

exhibits a deviation from the conventional FT in the tail region. Their numerical
simulation data, however, did not seem to show good accordance with the theoretical

LDF due to an insufficient number of samples. There were also experimental attempts

in the electric circuit and mechanical pendulum setups [27]. However, it also seemed

not clear that the experimental data are fully consistent with the theoretical estimates

in the tail region. Therefore, it is desirable to calculate the finite-time correction of the

LDF so as to confirm the validity of the theory from the finite-time data in numerical
or experimental tests.

The cumulant generating function associated with P (ε; τ) is defined as

G(λ; τ) = ⟨e−λτε⟩τ =
∫
dε P (ε; τ)e−λτε. (2)

In most cases [16, 23, 26, 32], it is easier to calculate the generating function than the
PDF directly. Then P (ε; τ) can be deduced by the inverse Fourier transform of the

generating function. The corresponding Fourier integral can be estimated for large τ as

P (ε; τ) =
τ

2πi

∫ i∞

−i∞
dλ G(λ; τ)eλτε ≃

∫

C
dλ φ(λ)eτH(λ;ε) (3)

where G(λ; τ) is factorized into the exponential term contributed to H(λ; ε) and the

leftover to φ(λ) for large τ . The integral path C is chosen as the steepest descent

P(ε; τ) : inverse Fourier transform

for large τ
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contour passing through the saddle point, which is usually taken as the solution of

H ′(λ; ε) = 0 with H ′ = dH/dλ. We call this saddle point as a conventional saddle

point, denoted by λ∗
0(ε). The Gaussian integration for equation (3) near λ∗

0(ε), which

will be called the conventional saddle-point method, yields

P (ε; τ) ≃
√

2π

τ |H ′′(λ∗
0; ε)|

φ(λ∗
0)e

iδeτH(λ∗

0
;ε), (4)

where H ′′ = d2H/dλ2 and δ is an angle between the steepest descent path and

the horizontal axis at λ̃∗
0. When there is no singularity in the prefactor φ(λ),

the above result leads to the correct LDF h(ε) in equation (1) and its finite-time
correction. However, there are many examples where the prefactor has a power-law

type singularity [16, 28, 29, 30, 31]. If the prefactor has a singularity at λ = λB and

λ∗
0(ε) passes through λB at ε = εB as ε varies, the conventional saddle-point method

gives rise to the δ-function type divergence in the PDF [16] at ε = εB, which is physically

unreasonable. This problem was carefully treated very recently in [32] and [33] when

the prefactor has a simple or square-root pole, respectively. However, in those works,
the conventional saddle points were still used to construct the steepest descent contour,

thus the calculation of the LDF near ε = εB demands rather complicated algebra as

well as composite deformed contours.

In this study, we take a different saddle point, denoted by λ∗(ε), which is the

solution of d[H(λ; ε)+ τ−1 lnφ(λ)]/dλ = 0. This saddle point is τ -dependent, but never

passes through the singularity. It approaches the singularity only asymptotically in the
long-time limit. This feature simplifies the analysis to obtain the LDF as well as its

finite-time correction. We also develop a saddle-point integration method to treat a

non-Gaussian integration near this modified saddle point λ∗(ε), especially when λ∗(ε)

asymptotically approaches the singular point. To illustrate our method explicitly, we

revisited the equilibration process [34] as an example. In this case, the prefactor φ(λ) has

a square-root singularity with a branch cut. However, our modified method is applicable
to general power-law type singularity (see equation (5)) and it would be straightforward

to generalize to any type of singularities including an essential singularity. We show

all mathematical details of our modified saddle-point method to obtain the LDF’s and

their leading finite-time corrections.

This paper is organized as follows. In Sec. 2, we introduce the modified saddle

point method and discuss its advantage over the conventional method. In Sec. 3, the
equilibration process is introduced in brief. In Sec. 4, we calculate the LDF’s for the

dissipated and injected powers of heat in the long-time limit. In Sec. 5, detailed

calculation results are presented for finite-time corrections of the LDF’s. We also

perform numerical simulations to confirm our results. Numerical data are in excellent

agreement with the analytic results. Finally, we summarize our work in Sec. 6. In the

Appendix A, the details of the modified saddle-point method are presented.
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Appendix A, the details of the modified saddle-point method are presented.

 δ : angle b.t.w. contour path and real axis

4

2. Modified saddle point due to a singularity

Consider the case when the prefactor has a singularity such that

φ(λ) =
g(λ)

(λ− λB)α
with α > 0 (5)

Then, equation (3) becomes

P (ε; τ) ≃
∫

C
dλ

g(λ)

(λ− λB)α
eτH(λ;ε) =

∫

C
dλ eτH(λ;ε)−α ln(λ−λB)+ln g(λ), (6)

where g(λ) andH(λ; ε) are analytic functions of λ. Suppose that the conventional saddle

point λ∗
0(ε) satisfying H ′(λ; ε) = 0, passes through λB at ε = εB, i.e. λ∗

0(εB) = λB. The

modified saddle point λ∗(ε) is determined by the equation, τH ′(λ; ε) − α/(λ − λB) +

g′(λ)/g(λ) = 0. Here, the last term is always negligible for large τ , thus can be ignored.

However, the second term can become comparable to the first term when the saddle
point is in the vicinity of λB, and thus, should be taken into account. Hence the saddle

point equation becomes

S(λ; ε) ≡ H ′(λ; ε)−
α

τ

1

λ− λB
= 0. (7)

In contrast to λ∗
0(ε), the solution λ∗(ε) does not pass through λB but asymptotically

approaches it for large τ . In order to illustrate this feature clearly in an example,

we assume that λB and λ∗
0(ε) are located on a real axis and H ′(λ; ε) is a real and

monotonically increasing function of λ on a real axis. Figs. 1(a), 1(b), and 1(c) show
the plots for S, H ′, and −α/[τ(λ − λB)] versus real λ for λ∗

0 > λB, λ∗
0 = λB, and

λ∗
0 < λB cases, respectively. As shown in the figures, there are always two solutions

satisfying S(λ; ε) = 0; λ∗
− and λ∗

+ which are located on the left and right side of

λB respectively, due to the singularity even though there is only one solution λ∗
0 for

H ′(λ; ε) = 0. Furthermore, λ∗
− and λ∗

+ cannot pass through λB as ε (or λ∗
0) varies,

while λ∗
0(ε) can. Instead, λ∗

− and λ∗
+ asymptotically approach λB or λ∗

0(ε) for large τ
depending on the location of λ∗

0(ε):
{

λ∗
− → λB and λ∗

+ → λ∗
0(ε) when λ∗

0(ε) > λB,

λ∗
− → λ∗

0(ε) and λ∗
+ → λB when λ∗

0(ε) ≤ λB.
(8)

These modified saddle points, λ∗
− and λ∗

+, make the integration of equation (6) much
simpler compared to the case using a conventional one λ∗

0. For general non-integer α > 0,

non-analytic branch cuts appear in the complex plane of λ, which becomes a nuisance

because the integration path should be chosen not to cross them. With the two modified

saddle points, it is always possible to choose one of them, of which the steepest descent

path does not cross the branch cuts. In contrast, this is not always possible with a single

conventional saddle point. This is a big advantage of our modified saddle point method
over the conventional one.

Consider the case of λ∗
0 < λB in Fig. 1(c) with a branch cut on a real axis for

λ < λB as in Fig. 2. With the choice of λ∗
+ as the saddle point, one can construct

the steepest descent path not crossing the branch cut in Fig. 2(b). Hence, the leading

—› incorrect finite-time correction near the singular point 

—› P diverges due to the prefactor.
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where êe!p" is the Legendre transform of e!!":

êe!p" # max
!

$e!!" % !p&: (14)

For a class of models, Lebowitz and Spohn proved the
symmetry relation

e!!" # e!1% !": (15)

From this, using Eqs. (11), (13), and (14), one sees that
lim"!1f"!p" # p, i.e., the conventional SSFT holds [5].

Our numerical results suggest, however, that for our
model the conventional SSFT for the heat does not hold.
We therefore expect Eq. (15) to be violated. Indeed, the
following calculation of e!!" shows this to be the case.

The Fourier transform P̂P"!q" in Eq. (10) determines
e!!". First, from Eq. (8), we have

he%!Q"i '
Z 1

%1
dQe%!Q"P"!Q"" # P̂P"!i!"; (16)

Thus, we need the analytic continuation of P̂P" to imagi-
nary arguments. This poses no difficulty as long as P̂P"
remains analytic. One finds from Eqs. (10) and (16)

he%!Q"i #
exp$%w!!1% !"f"( 2!2!1%e%""2

1%!1%e%2""!2g&
$1% !1% e%2""!2&3=2

: (17)

Clearly, there are divergences at the singular points ! #
)!1% e%2""%1=2, where the right-hand side (r.h.s.) of
Eq. (16) is no longer analytic, so that Eq. (17) only holds
for values of ! in between those. Using Eqs. (12) and (17),
we have

e!!" # !!1% !" for j!j< 1; (18)

where, taking " ! 1 as in Eq. (12), moves the singular-
ities to )1. This e!!" satisfies Eq. (15) for 0< !< 1.

However, as ! approaches the singularities, the func-
tion in Eq. (17) diverges. Beyond the singularities at
)!1% e%2""%1=2, the r.h.s. of Eq. (17) becomes purely
imaginary, and multivalued due to the denominator. But
the left-hand side of Eq. (17) remains real. Clearly, we
cannot use Eq. (17) for j!j > !1% e%2""%1=2. To deter-
mine he%!Qi in that case, we first need to know why the
integral in Eq. (16) diverges as ! ! )!1% e%2""%1=2. As
we will argue next, this happens because P" has expo-
nential tails. Since P"!Q"" is a normalized distribution
and e%!Q" a regular function, the divergence in Eq. (16)
can only be due to the behavior of the integrand at )1. In
fact, for ! > 0 any divergence must be due to the behavior
at negative Q" and, for !< 0 it must be due to the
behavior at positive Q". Now, for !< 0, if the distribution
function P"!Q"" fell off faster than exponential for large
positive Q", the factor e%!Q" could not make the integral
diverge. As it does diverge, we conclude that the distri-
bution function falls off exponentially or slower. On the
other hand, if it did fall off slower than exponential, then
the exponential factor e%!Q" would always dominate the
distribution function for large positive Q" and the inte-

gral would diverge for all !< 0. Since there are negative
values of ! for which the integral converges, the function
P" cannot fall off slower than exponential. Hence, it must
fall off exponential for large Q". Considering ! > 0, one
deduces along similar lines that it must also fall off
exponentially for large negative values of Q".

In fact, the integral in Eq. (16) diverges for all j!j *
!1% e%2""%1=2. If the function P"!Q"" falls off exponen-
tially for large positive Q", say as e%aQ" , the integral in
(16) diverges for all ! + %a. Likewise, given that the
P"!Q"" falls off similar to eaQ" for large negative Q",
the integral diverges for all ! * a. Hence, for j!j *
!1% e%2""%1=2, the quantity on the r.h.s of Eq. (12), of
which the limit is taken, is minus infinity for all ", so that
e!!" # %1. Thus, Eq. (18) becomes

e!!" #
!

!!1% !" for j!j< 1
%1 otherwise:

(19)

This e!!" does not satisfy the symmetry relation in
Eq. (15), e.g., for ! # %1=2, e!!" # %3=4, whereas
e!1% !" # %1. The fact that Eq. (15) is not satisfied
means that the conventional SSFT does not hold. To make
this more precise, we use Eqs. (14) and (19) to find

êe!p" #
8

<

:

%p for p <%1
!p% 1"2=4 for % 1 + p + 3
p% 2 for p > 3:

(20)

Note that via Eq. (13), the large jpj behavior is indeed
exponential [18]. Using Eqs. (11), (13), and (20), we find

lim
"!1

f"!p" #
8

<

:

p for 0 + p < 1
p% !p% 1"2=4 for 1 + p < 3
2 for p * 3:

(21)

For negative p, we have f"!%p" # %f"!p". Equation (21)
is an extension of the conventional SSFT. It coincides
with it for the middle region %1< p< 1 [19], but differs
from it for other p values. Most notably, for p * 3, it
attains a constant value of 2.

If we compare the exact prediction of Eq. (21) (plotted
as the bold solid line) with the numerical results (bold
dashed line) in Fig. 1, a clear discrepancy emerges: The
curve of f" keeps increasing with increasing p, whereas
Eq. (21) predicts that it should level off to a value of 2.
This turns out to be a finite " effect. To prove this, we need
a better treatment for large but not infinite ". This can be
obtained from a saddle-point method applied to e!!",
which we will present in a future publication [20]. The
saddle-point method gives reliable results for sufficiently
large ", as can be verified by a comparison to our numeri-
cal results [20]. The asymptotic behavior for large " is
then given by

f"!p" #
(

p( h!p"="(O!"%2" for p < 1

2(
""""""""""""""""""""""""

8!p% 3"="
p

(O!"%1" for p > 3;

(22)
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Heat flow from a heat bath to a brownian particle in a dragged harmonic 
potential

quantity, given by [15]

W! ! v" #
Z !

0
$%&xt % x"

t '(dt: (3)

Here, the time t ) 0 denotes the initial time of an interval
of length ! in the stationary state. W! is a linear function
of the positions xt and, since those have a Gaussian
probability distribution function, so does W!. When the
mean and variance of the probability distribution func-
tion PW

! are computed [using the stationary solution and
Green’s function of Eq. (2)], one finds [10]

lim
!!1

1

w!
ln
!
PW
! &pw!'

PW
! &%pw!'

"

) p: (4)

Here, p is a scaled value of W!, defined as p ) W!=hW!i,
such that hpi ) 1. We also wrote

hW!i ) w!; (5)

with w the average work rate, which is independent of ! in
the stationary state. In the current units, w ) jv"j2.
Equation (4) is, for the work fluctuations, a more careful
formulation of the SSFT in Eq. (1). A work-related TFT
also holds [10,12,13].

We now turn to the heat SSFT. The heat Q! is that part
of the work W! that goes into the fluid. Some work is also
stored in the potential, so

Q! ! W! %!U!; (6)

where !U! is the change in potential energy of the
particle in a time !,

!U! ! U! %U0; (7)

with Ut ! 1
2 jxt % x"

t j2. This form of Ut makes Q! non-
linear in xt. As a result, the probability distribution func-
tion P!&Q!' of Q! need not be Gaussian. Nonetheless, it is
possible to compute its Fourier transform.

The Fourier transform of P!&Q!', defined as

P̂P !&q' !
Z 1

%1
dQ! eiqQ!P!&Q!'; (8)

is computed by writing P! as [using Eqs. (6) and (7)]

P!&Q!' )
ZZ

dx0 dx! P
W!;x0;x!
! &Q! *!U!;x0;x!'; (9)

where PW!;x0;x!
! is the joint distribution of the work W!, the

positions x0 and x! at the beginning and at the end of the
time interval !, respectively. This distribution is Gaussian
because W!, x0, and x! are all linear in xt. When Eq. (9)
is inserted into Eq. (8), a seven-dimensional Gaussian
integral is left, which after some algebra yields

P̂P !&q' )
expfwq&i% q'$!% 2q2&1%e%!'2

1*&1%e%2!'q2(g
$1* &1% e%2!'q2(3=2

: (10)

Once P̂P!&q' has been transformed back, one considers

f!&p' !
1

w!
ln
!
P!&pw!'
P!&%pw!'

"

: (11)

Here, p is a scaled value of Q!, defined as p ) Q!=hQ!i,
i.e., hpi ) 1.We also used hQ!i ) hW!i% h!U!i ) w! by
Eq. (5), since h!U!i ) 0 in the stationary state. The
scaled logarithmic ratio f!&p' should be equal to p for
! ! 1 when the conventional SSFT holds.

As far as we know, there is no exact result for the
inverse Fourier transform of P̂P!&q' in Eq. (10) in terms
of known functions. Therefore, a completely analytic
treatment did not seem feasible. Instead, we used first a
numerical method, the fast Fourier transform algorithm
[16], to invert Eq. (10). The resulting probability distribu-
tion function P! as well as the corresponding f! have
been plotted in Fig. 1. These results do not agree very well
with the straight line with slope 1, which should be
approached for large ! if the conventional SSFT were to
hold. One might think that this is due to ! not being large
enough. However, we found that deviations of f!&p' from
p for large p are generic, while the straight line is
approached only for p values of smaller magnitudes
(jpj & 1). Nonetheless, we cannot say anything conclu-
sive about the large !, large p behavior because the
distribution gets very peaked and, hence, becomes
smaller for large deviations, which makes the numerical
method unreliable.

Therefore, we used next an analytical asymptotic ap-
proach based on large deviation theory [17] similar to the
treatment by Lebowitz and Spohn [5]. One considers then

e&"' ! lim
!!1

% 1

w!
lnhe%"Q!i: (12)

This infinite-! quantity is used to reconstruct the distri-
bution function of Q! for large ! by setting

P!&Q!' + exp$%w!êe&Q!=w!'(; (13)

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1  0  1  2  3  4

f τ
 , 

P
τ

p

conventional SSFT
extension of SSFT

finite τ: fτ(p)
Pτ(pwτ)/Pτ(0)

FIG. 1 (color online). Numerically obtained f!&p' (bold
dashed line) for v" ) 1:5 and ! ) 1:3, and the (v" independent)
extension of the SSFT for ! ! 1 (bold solid line). Also plotted
are the conventional SSFT (thin solid line), and the numeri-
cally obtained distribution function P!&pw!', scaled by its
value at zero (thin dashed line).
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: PDF of heat at time t 

3/2 pole (for 3 dim.)
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Work fluctuations for a harmonic oscillator driven by an external random force

Ψ(x, v,λ) =

[
γη(λ)

√
km

2π(1+α)D

]

exp
[
−B+(λ)E(x, v)

]
, (12)

and
χ(x0, v0,λ) = exp

[
−B−(λ)E(x0, v0)

]
, (13)

where

B±(λ) =
γ
[
η(λ)± (1+2αλ)

]

2(1+α)D
, (14)

and

E(x, v) =
1

2
kx2+

1

2
mv2, (15)

is the total energy of the harmonic oscillator. Note from
eq. (11) that the largest eigenvalue satisfies the symmetry
relation µ(λ) = µ(1−λ), even though Lλ and its adjoint
L†λ do not possess the symmetry L

†
λ =L1−λ.

Using the explicit forms of eqs. (9) and (11)–(13), the
eigenvalue equation LλΨ(x, v,λ) = µ(λ)Ψ(x, v,λ) and the
normalization

∫∞
−∞
∫∞
−∞ χ(x, v,λ)Ψ(x, v,λ) dxdv= 1 can

be indeed verified. Moreover, µ(0) = 0 and χ(x0, v0, 0) = 1,
which is expected —since eq. (9) for λ= 0, corresponds to
the Fokker-Planck operator of the phase space variables,
and hence the steady-state distribution Z(λ= 0, x, v, τ →
∞|x0, v0) must be independent of the initial condition
and τ . The steady-state distribution of (x, v) is given by
Z(λ= 0, x, v, τ →∞|x0, v0) =Ψ(x, v, 0).
Now, substituting eqs. (12) and (13) in eq. (10), then

averaging over the initial variables (x0, v0) with respect to
Ψ(x0, v0, 0) and integrating over the final variables (x, v),
we find the characteristic function that is defined by eq.
(8), as

Z(λ, τ)∼ g(λ) eτµ(λ), (16)

where µ(λ) is given by eq. (11) and

g(λ) =
2

1+ η(λ)− 2αλ ×
2η(λ)

1+ η(λ)+ 2αλ
. (17)

The first factor in the above equation is due to the
averaging over the initial conditions with respect to the
the steady-state distribution and the second factor is due
to the integrating out of the final degrees of freedom.
The PDF of the work done is related to its characteristic

function by the inverse Fourier transform

P (Wτ ) =
1

2πi

∫ +i∞

−i∞
Z(λ, τ) eλWτ dλ, (18)

where the integration is done along the imaginary axis
(vertical contour through the origin) in the complex λ
plane. The large τ (≫ τγ) behavior of P (Wτ ) can be
obtained from the saddle point approximation of the above
integral while using the asymptotic form of Z(λ, τ) given
by eq. (16).
We note that η(λ), given in eq. (11), has two branch

points on the real λ line at

λ± =
1

2

[

1±
√
1+
1

α

]

, (19)

as η(λ) =
√
4α(λ+−λ)(λ−λ−). Outside the interval

[λ−,λ+] on the real λ line, η(λ) is imaginary. However,
Z(λ, τ) must be real for real values of λ, if the integral
in eq. (8) converges. Therefore, analytical continuation
of Z(λ) to the real λ is allowed only within the range
λ− < λ< λ+ —for which [η(λ)]2 > 0, and hence, µ(λ)
is real and analytic. In fact, in the whole complex λ
plane, η(λ) is real only for λ in the real interval [λ−,λ+].
Therefore, we expect the saddle to be also in that interval.
Now, in the expression of g(λ) given by eq. (17),

the denominator of the second factor is positive for λ∈
(λ−,λ+) for all α∈ (0,∞). Hence, the second factor of g(λ)
is analytic in the interval (λ−,λ+). On the other hand, the
analytic properties of the first factor in eq. (17), depends
on the value of the parameter α.
As long as α< 1/3, the denominator of the first factor

is positive for λ∈ (λ−,λ+). Therefore, in this case g(λ)
is analytic in (λ−,λ+) and hence can be neglected in the
saddle point calculation as a subleading contribution. The
saddle point calculation with Z(λ, τ)∼ eτµ(λ) relates µ(λ)
to the LDF h(w) of eq. (5), by the Legendre transform

h(w) = τγµ(λ
∗)+λ∗w, −τγµ′(λ∗) =w. (20)

In this case, the symmetry relation of the LDF as given
by eq. (7), follows directly from the symmetry µ(λ) =
µ(1−λ). The solution of the condition −τγµ′(λ∗) =w
gives the saddle point λ∗ in terms of w as

λ∗(w) =
1

2

[

1− w√
w2+α

√
1+
1

α

]

. (21)

We now consider the case α> 1/3. In this case, due to
the first factor in eq. (17), g(λ) possesses a pole at

λ0 =
2

1+α
, (22)

and λ− < 0< λ0 < λ+. Now, g(λ) is negative for λ> λ0.
However, g(λ) must be non-negative for any real λ, if the
integral in eq. (8) exists. Therefore, now the allowed range
of real λ shrinks to (λ−,λ0). It follows from eq. (21) that
λ∗(w) is a monotonically decreasing function of w, and
λ∗(w→∓∞)→ λ±. Note that λ∗ ∈ (λ−,λ+) as expected.
For any given α, as w decreases from +∞ to −∞, the
saddle point λ∗(w) moves unidirectionally from λ− to λ+.
Thus, for sufficiently large w, we have λ− < λ∗ < λ0. In
such situation, the contour of integration can be deformed
smoothly through the saddle point λ∗, and therefore, the
LDF is still given by h(w) = τγµ(λ∗)+λ∗w. However, as
one decreases w, at some particular value w=w∗, the
saddle point hits the singularity. For w<w∗, we then
have 0< λ0 < λ∗. In this case, the leading contribution
comes essentially from the pole [29], which yields h(w) =
τγµ(λ0)+λ0w. Using λ∗(w∗) = λ0 and µ′(λ∗)+w= 0, it
is easy to check that h(w) and its derivative h′(w) are
continuous at w=w∗. For α= 1/3, we have λ0 = λ+ = 3/2.
Since, λ∗→ λ+, only when w→−∞, for any finite w we
again have h(w) = τγµ(λ∗)+λ∗w, i.e., w∗ =−∞.
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Ψ(x, v,λ) =

[
γη(λ)

√
km

2π(1+α)D

]

exp
[
−B+(λ)E(x, v)

]
, (12)

and
χ(x0, v0,λ) = exp

[
−B−(λ)E(x0, v0)

]
, (13)

where

B±(λ) =
γ
[
η(λ)± (1+2αλ)

]

2(1+α)D
, (14)

and

E(x, v) =
1

2
kx2+

1

2
mv2, (15)

is the total energy of the harmonic oscillator. Note from
eq. (11) that the largest eigenvalue satisfies the symmetry
relation µ(λ) = µ(1−λ), even though Lλ and its adjoint
L†λ do not possess the symmetry L

†
λ =L1−λ.

Using the explicit forms of eqs. (9) and (11)–(13), the
eigenvalue equation LλΨ(x, v,λ) = µ(λ)Ψ(x, v,λ) and the
normalization

∫∞
−∞
∫∞
−∞ χ(x, v,λ)Ψ(x, v,λ) dxdv= 1 can

be indeed verified. Moreover, µ(0) = 0 and χ(x0, v0, 0) = 1,
which is expected —since eq. (9) for λ= 0, corresponds to
the Fokker-Planck operator of the phase space variables,
and hence the steady-state distribution Z(λ= 0, x, v, τ →
∞|x0, v0) must be independent of the initial condition
and τ . The steady-state distribution of (x, v) is given by
Z(λ= 0, x, v, τ →∞|x0, v0) =Ψ(x, v, 0).
Now, substituting eqs. (12) and (13) in eq. (10), then

averaging over the initial variables (x0, v0) with respect to
Ψ(x0, v0, 0) and integrating over the final variables (x, v),
we find the characteristic function that is defined by eq.
(8), as

Z(λ, τ)∼ g(λ) eτµ(λ), (16)

where µ(λ) is given by eq. (11) and

g(λ) =
2

1+ η(λ)− 2αλ ×
2η(λ)

1+ η(λ)+ 2αλ
. (17)

The first factor in the above equation is due to the
averaging over the initial conditions with respect to the
the steady-state distribution and the second factor is due
to the integrating out of the final degrees of freedom.
The PDF of the work done is related to its characteristic

function by the inverse Fourier transform

P (Wτ ) =
1

2πi

∫ +i∞

−i∞
Z(λ, τ) eλWτ dλ, (18)

where the integration is done along the imaginary axis
(vertical contour through the origin) in the complex λ
plane. The large τ (≫ τγ) behavior of P (Wτ ) can be
obtained from the saddle point approximation of the above
integral while using the asymptotic form of Z(λ, τ) given
by eq. (16).
We note that η(λ), given in eq. (11), has two branch

points on the real λ line at

λ± =
1

2

[

1±
√
1+
1

α

]

, (19)

as η(λ) =
√
4α(λ+−λ)(λ−λ−). Outside the interval

[λ−,λ+] on the real λ line, η(λ) is imaginary. However,
Z(λ, τ) must be real for real values of λ, if the integral
in eq. (8) converges. Therefore, analytical continuation
of Z(λ) to the real λ is allowed only within the range
λ− < λ< λ+ —for which [η(λ)]2 > 0, and hence, µ(λ)
is real and analytic. In fact, in the whole complex λ
plane, η(λ) is real only for λ in the real interval [λ−,λ+].
Therefore, we expect the saddle to be also in that interval.
Now, in the expression of g(λ) given by eq. (17),

the denominator of the second factor is positive for λ∈
(λ−,λ+) for all α∈ (0,∞). Hence, the second factor of g(λ)
is analytic in the interval (λ−,λ+). On the other hand, the
analytic properties of the first factor in eq. (17), depends
on the value of the parameter α.
As long as α< 1/3, the denominator of the first factor

is positive for λ∈ (λ−,λ+). Therefore, in this case g(λ)
is analytic in (λ−,λ+) and hence can be neglected in the
saddle point calculation as a subleading contribution. The
saddle point calculation with Z(λ, τ)∼ eτµ(λ) relates µ(λ)
to the LDF h(w) of eq. (5), by the Legendre transform

h(w) = τγµ(λ
∗)+λ∗w, −τγµ′(λ∗) =w. (20)

In this case, the symmetry relation of the LDF as given
by eq. (7), follows directly from the symmetry µ(λ) =
µ(1−λ). The solution of the condition −τγµ′(λ∗) =w
gives the saddle point λ∗ in terms of w as

λ∗(w) =
1

2

[

1− w√
w2+α

√
1+
1

α

]

. (21)

We now consider the case α> 1/3. In this case, due to
the first factor in eq. (17), g(λ) possesses a pole at

λ0 =
2

1+α
, (22)

and λ− < 0< λ0 < λ+. Now, g(λ) is negative for λ> λ0.
However, g(λ) must be non-negative for any real λ, if the
integral in eq. (8) exists. Therefore, now the allowed range
of real λ shrinks to (λ−,λ0). It follows from eq. (21) that
λ∗(w) is a monotonically decreasing function of w, and
λ∗(w→∓∞)→ λ±. Note that λ∗ ∈ (λ−,λ+) as expected.
For any given α, as w decreases from +∞ to −∞, the
saddle point λ∗(w) moves unidirectionally from λ− to λ+.
Thus, for sufficiently large w, we have λ− < λ∗ < λ0. In
such situation, the contour of integration can be deformed
smoothly through the saddle point λ∗, and therefore, the
LDF is still given by h(w) = τγµ(λ∗)+λ∗w. However, as
one decreases w, at some particular value w=w∗, the
saddle point hits the singularity. For w<w∗, we then
have 0< λ0 < λ∗. In this case, the leading contribution
comes essentially from the pole [29], which yields h(w) =
τγµ(λ0)+λ0w. Using λ∗(w∗) = λ0 and µ′(λ∗)+w= 0, it
is easy to check that h(w) and its derivative h′(w) are
continuous at w=w∗. For α= 1/3, we have λ0 = λ+ = 3/2.
Since, λ∗→ λ+, only when w→−∞, for any finite w we
again have h(w) = τγµ(λ∗)+λ∗w, i.e., w∗ =−∞.
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and
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is the total energy of the harmonic oscillator. Note from
eq. (11) that the largest eigenvalue satisfies the symmetry
relation µ(λ) = µ(1−λ), even though Lλ and its adjoint
L†λ do not possess the symmetry L

†
λ =L1−λ.

Using the explicit forms of eqs. (9) and (11)–(13), the
eigenvalue equation LλΨ(x, v,λ) = µ(λ)Ψ(x, v,λ) and the
normalization

∫∞
−∞
∫∞
−∞ χ(x, v,λ)Ψ(x, v,λ) dxdv= 1 can

be indeed verified. Moreover, µ(0) = 0 and χ(x0, v0, 0) = 1,
which is expected —since eq. (9) for λ= 0, corresponds to
the Fokker-Planck operator of the phase space variables,
and hence the steady-state distribution Z(λ= 0, x, v, τ →
∞|x0, v0) must be independent of the initial condition
and τ . The steady-state distribution of (x, v) is given by
Z(λ= 0, x, v, τ →∞|x0, v0) =Ψ(x, v, 0).
Now, substituting eqs. (12) and (13) in eq. (10), then

averaging over the initial variables (x0, v0) with respect to
Ψ(x0, v0, 0) and integrating over the final variables (x, v),
we find the characteristic function that is defined by eq.
(8), as

Z(λ, τ)∼ g(λ) eτµ(λ), (16)

where µ(λ) is given by eq. (11) and

g(λ) =
2

1+ η(λ)− 2αλ ×
2η(λ)

1+ η(λ)+ 2αλ
. (17)

The first factor in the above equation is due to the
averaging over the initial conditions with respect to the
the steady-state distribution and the second factor is due
to the integrating out of the final degrees of freedom.
The PDF of the work done is related to its characteristic

function by the inverse Fourier transform

P (Wτ ) =
1

2πi

∫ +i∞

−i∞
Z(λ, τ) eλWτ dλ, (18)

where the integration is done along the imaginary axis
(vertical contour through the origin) in the complex λ
plane. The large τ (≫ τγ) behavior of P (Wτ ) can be
obtained from the saddle point approximation of the above
integral while using the asymptotic form of Z(λ, τ) given
by eq. (16).
We note that η(λ), given in eq. (11), has two branch
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, (19)

as η(λ) =
√
4α(λ+−λ)(λ−λ−). Outside the interval

[λ−,λ+] on the real λ line, η(λ) is imaginary. However,
Z(λ, τ) must be real for real values of λ, if the integral
in eq. (8) converges. Therefore, analytical continuation
of Z(λ) to the real λ is allowed only within the range
λ− < λ< λ+ —for which [η(λ)]2 > 0, and hence, µ(λ)
is real and analytic. In fact, in the whole complex λ
plane, η(λ) is real only for λ in the real interval [λ−,λ+].
Therefore, we expect the saddle to be also in that interval.
Now, in the expression of g(λ) given by eq. (17),

the denominator of the second factor is positive for λ∈
(λ−,λ+) for all α∈ (0,∞). Hence, the second factor of g(λ)
is analytic in the interval (λ−,λ+). On the other hand, the
analytic properties of the first factor in eq. (17), depends
on the value of the parameter α.
As long as α< 1/3, the denominator of the first factor

is positive for λ∈ (λ−,λ+). Therefore, in this case g(λ)
is analytic in (λ−,λ+) and hence can be neglected in the
saddle point calculation as a subleading contribution. The
saddle point calculation with Z(λ, τ)∼ eτµ(λ) relates µ(λ)
to the LDF h(w) of eq. (5), by the Legendre transform

h(w) = τγµ(λ
∗)+λ∗w, −τγµ′(λ∗) =w. (20)

In this case, the symmetry relation of the LDF as given
by eq. (7), follows directly from the symmetry µ(λ) =
µ(1−λ). The solution of the condition −τγµ′(λ∗) =w
gives the saddle point λ∗ in terms of w as

λ∗(w) =
1

2

[

1− w√
w2+α

√
1+
1

α

]

. (21)

We now consider the case α> 1/3. In this case, due to
the first factor in eq. (17), g(λ) possesses a pole at

λ0 =
2

1+α
, (22)

and λ− < 0< λ0 < λ+. Now, g(λ) is negative for λ> λ0.
However, g(λ) must be non-negative for any real λ, if the
integral in eq. (8) exists. Therefore, now the allowed range
of real λ shrinks to (λ−,λ0). It follows from eq. (21) that
λ∗(w) is a monotonically decreasing function of w, and
λ∗(w→∓∞)→ λ±. Note that λ∗ ∈ (λ−,λ+) as expected.
For any given α, as w decreases from +∞ to −∞, the
saddle point λ∗(w) moves unidirectionally from λ− to λ+.
Thus, for sufficiently large w, we have λ− < λ∗ < λ0. In
such situation, the contour of integration can be deformed
smoothly through the saddle point λ∗, and therefore, the
LDF is still given by h(w) = τγµ(λ∗)+λ∗w. However, as
one decreases w, at some particular value w=w∗, the
saddle point hits the singularity. For w<w∗, we then
have 0< λ0 < λ∗. In this case, the leading contribution
comes essentially from the pole [29], which yields h(w) =
τγµ(λ0)+λ0w. Using λ∗(w∗) = λ0 and µ′(λ∗)+w= 0, it
is easy to check that h(w) and its derivative h′(w) are
continuous at w=w∗. For α= 1/3, we have λ0 = λ+ = 3/2.
Since, λ∗→ λ+, only when w→−∞, for any finite w we
again have h(w) = τγµ(λ∗)+λ∗w, i.e., w∗ =−∞.
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force. In such cases [6], the distributions of the work
done by the external force are Gaussian and hence the
work FTs hold somewhat trivially. On the contrary, the
distributions of the work done by an external Gaussian
stochastic force have been found to be non-Gaussian in
recent experiments on systems coupled to a thermal bath
and driven out of equilibrium by an external random
force [26]. Motivated by these experiments, in this letter,
we address the important question regarding the role of
the external stochastic forcing on the work fluctuations.
We consider one of the most basic physical systems,

namely, the harmonic oscillator. We investigate the fluctu-
ations of the work done by an externally applied Gaussian
random force on a harmonic oscillator that is also in
contact with a thermal bath. The displacement x(t) of the
harmonic oscillator from its mean position is described by
the Langevin equation

m
d2x

dt2
+ γ
dx

dt
+ kx= ζT (t)+ f0(t), (2)

where m is the mass, γ is the viscous drag coefficient
and k is the spring constant. The interaction with the
thermal bath is modeled by a Gaussian white noise
ζT (t) with zero mean ⟨ζT (t)⟩= 0. The externally applied
force f0(t) is again a Gaussian random variable with
⟨f0(t)⟩= 0, and ζT and f0 are uncorrelated. Equation (2)
is asymmetric in ζT and f0 —the fluctuation-dissipation
theorem relates the thermal fluctuation to the viscous
drag as ⟨ζT (s)ζT (t)⟩= 2Dδ(s− t), where D= γkBT with
T being the temperature of the bath and kB being
the Boltzmann constant, whereas the fluctuation of the
external force ⟨f0(s)f0(t)⟩= (δf0)2δ(s− t) is independent
of γ. As it turns out, the only relevant parameter is

α=
(δf0)2

2D
=
⟨x2⟩
⟨x2⟩eq

− 1, and α∈ (0,∞), (3)

where ⟨x2⟩ and ⟨x2⟩eq are the variance of x in the
steady state (for f0 ̸= 0) and in equilibrium (for f0 = 0),
respectively.
The quantity of interest is the work done by the external

random force f0(t) on the harmonic oscillator in a time
interval τ , in the nonequilibrium steady state. This is given
(in units of kBT ) by

Wτ =
1

kBT

∫ τ

0
f0(t)

dx

dt
dt, (4)

with the initial condition (at τ = 0) drawn from the
steady-state distribution. Evidently, Wτ is a fluctuating
quantity whose value depends on the initial condition,
the trajectories of thermal noise {ζT (t) : 0! t! τ} and
the external random force {f0(t) : 0! t! τ}, during any
particular realization.
It is clear from eq. (2) that both the displacement

x and the velocity v=dx/dt depend linearly on the
thermal noise and the external random force. Therefore,
the distribution of the phase space variables (x, v) is a

Gaussian whose covariance matrix can be easily evaluated
from eq. (2). However, due to the nonlinear dependence
of the work given by eq. (4), on the thermal noise
and the external random forcing, the PDF P (Wτ ) is
not expected to be Gaussian —although for any fixed
realizations of {f0(t)} the work fluctuation would be
Gaussian. Nonetheless, one expects the large deviation
form [27]

P (Wτ =wτ/τγ)∼ e(τ/τγ)h(w) for τ ≫ τγ , (5)

where τγ =m/γ is the viscous relaxation time and h(w) is
the large deviation function (LDF), which is defined by

h(w) = lim
(τ/τγ)→∞

1

(τ/τγ)
lnP (Wτ =wτ/τγ). (6)

The FT as given by eq. (1) is equivalent to the symmetry
relation

h(w)−h(−w) =w. (7)

Our aim is to obtain the LDF h(w) exactly, as well as the
complete asymptotic form of the PDF P (Wτ ).
We begin by considering the characteristic function

⟨e−λWτ ⟩ ≡
∫ ∞

−∞
dWτ e

−λWτP (Wτ ) =Z(λ, τ), (8)

where ⟨· · ·⟩ denotes an average over the histories of the
thermal noise and the random forcing as well as the
initial condition. The restricted characteristic function
Z(λ, x, v, τ |x0, v0) —where the expectation is taken over
all trajectories of the system that evolve from a given
initial configuration (x0, v0) to a given final configuration
(x, v) in time τ— satisfies the Fokker-Planck equation
[∂τ −Lλ]Z(λ, x, v, τ |x0, v0) = 0 with the initial condition
Z(λ, x, v, 0|x0, v0) = δ(x−x0)δ(v− v0), where the Fokker-
Planck operator is given by

Lλ = (1+α)
D

m2
∂2

∂2v
+

[
k

m
x+
γ

m
(1+2αλ)v

]
∂

∂v

−v ∂
∂x
+
αλ2γ2

D
v2+

γ

m
(1+αλ). (9)

The solution of the Fokker-Planck equation can be
formally expressed in the eigenbases of the operator Lλ
and the large-τ behavior is dominated by the term having
the largest eigenvalue. Thus, for large τ ,

Z(λ, x, v, τ |x0, v0)∼ χ(x0, v0,λ)Ψ(x, v,λ) eτµ(λ), (10)

where Ψ(x, v,λ) is the eigenfunction corresponding to the
largest eigenvalue µ(λ) and χ(x0, v0,λ) is the projection
of the initial state onto the eigenstate corresponding to
the eigenvalue µ(λ). To calculate these functions, we
follow an approach that was used recently to compute
the fluctuations of the heat transport across a harmonic
chain [28]. Skipping details [29], we find that

µ(λ) =
1

2τγ

[
1− η(λ)

]
, η(λ) =

√
1+4αλ(1−λ), (11)
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Threshold for everlasting initial memory in equilibration processes
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Conventional wisdom indicates that initial memory should decay away exponentially in time for
general (noncritial) equilibration processes. In particular, time-integrated quantities such as heat
are presumed to lose initial memory in a sufficiently long-time limit. However, we show that the
large deviation function of time-integrated quantities may exhibit initial memory effect even in the
infinite-time limit, if the system is initially prepared sufficiently far away from equilibrium. For a
Brownian particle dynamics, as an example, we found a sharp finite threshold rigorously, beyond
which the corresponding large deviation function contains everlasting initial memory. The physical
origin for this phenomenon is explored with an intuitive argument and also from a toy model analysis.

PACS numbers: 05.40.-a, 02.50.-r, 05.70.Ln

Hot coffee gets colder and iced coffee gets warmer at
room temperatures. These phenomena are the examples
of equilibration processes and can be generalized as the
following situation; a system with initial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then, the system gradually deviates from its ini-
tial state and approaches to the final equilibrium (EQ)
state which is determined by the heat bath. Here, the
initial distance from final equilibrium is parameterized
by the temperature ratio β ≡ Tb/Ts. The relaxation
process is usually exponentially fast, so the memory of
the initial temperature will be lost for average values of
most physical observables after a characteristic relaxation
time. However, the initial memory can often survive in
the tail part (rare-event region) of a probability distribu-
tion function (PDF) even in the long-time limit.

What about time-integrated quantities such as heat,
work, or entropy production, which are the key quanti-
ties for nonequilibrium (NEQ) fluctuation theorems [1–
5]? These accumulated quantities are also affected by a fi-
nite transient period, but their average values increase (or
decrease) linearly in time asymptotically in NEQ steady
state. Therefore, in a sufficiently long-time limit, our
conventional wisdom may lead us to expect that they
will lose all initial memory (independent of β). Never-
theless, in this Letter, we show rigorously that this is false
wisdom for time-integrated quantities and, in particular,
corresponding large deviation functions depend strongly
on the initial condition (β) even in the infinite-time limit.
More surprisingly, there exists a sharp threshold for β−1

in general, only beyond which the initial memory lasts
forever.

In literatures, there have been some reports that ini-
tial conditions can affect the large deviation function in
the long time limit [6–9]. For example, van Zon and
Cohen [6] showed that heat transfer Q in a driven har-
monic oscillator in contact with a heat bath violates the
fluctuation theorem even in the long-time limit, starting
initially from EQ. In contrast to work, heat is known to

satisfy the fluctuation theorem, only starting with a uni-
form distribution (infinite-temperature initial state) [10].
Thus, their finding can be interpreted as an everlasting
initial memory effect in the large deviation function for
heat.

In this Letter, we consider heat transfer during the
equilibration process of a simple Brownian particle and
investigate initial memory effects systematically in the
long-time limit. The Brownian particle dynamics is de-
scribed by the Langevin equation

v̇ = −γv + ξ, (1)

where v is the velocity of the particle, γ is the dissi-
pative coefficient, and ξ denotes a random white noise
satisfying ⟨ξ(τ)ξ(τ ′)⟩ = 2Dδ(τ − τ ′). Here, we set the
particle mass m = 1 for convenience and the heat bath
temperature Tb = D/γ. Initially, the system is prepared
in EQ state with the Boltzmann distribution at tempera-
ture Ts = Tb/β. And then, the thermal contact is formed
at time τ = 0 between the system and the heat bath, and
maintained until final time τ = t.

Time-integrated heat flow between the system and the
heat bath can be decomposed into the dissipated energy
flow Qd from the system into the heat bath and the in-
jected energy flow Qi in the other way around [7]:

Qd ≡
∫ t

0
dτ γv2 and Qi ≡

∫ t

0
dτ ξv. (2)

Even if the system reaches EQ in the long-time limit,
each of ⟨Qd⟩ and ⟨Qi⟩ increases linearly in time t indef-
initely with their difference representing the system en-
ergy change ⟨∆E⟩ = 1

2 [⟨v
2(t)⟩ − ⟨v2(0)⟩], which is finite

for nonzero β. As expected, there will be no net heat
flow at EQ.

We first study the PDF of the (average) dissipated
power, εd ≡ Qd/t, and later the injected power, εi ≡
Qi/t. To calculate the PDF, P (εd), it is convenient to

2

consider its generating function

πd(λ) =
〈
e−λtεd

〉
=

∫ ∞

−∞

dεdP (εd)e
−λtεd , (3)

which is the Fourier transform of P (εd). The generating
function can be calculated exactly by the standard path
integral method [7, 11]. With the initial Boltzmann dis-
tribution Pinit(v(0)) ∼ exp[−v2(0)/(2Ts)] at temperature
Ts = D/(γβ), we find

πd(λ) = eγt/2
(

cosh ηγt+
1 + λ̃/β

η
sinh ηγt

)−1/2

, (4)

with dimensionless parameters λ̃ = 2Dλ/γ and η =√
1 + 2λ̃.
The inverse Fourier transform of Eq. (4) yields the

PDF in terms of ε̃d ≡ εd/D as

P (ε̃d) =
γt

4πi

∫ i∞

−i∞
dλ̃ πd(γλ̃/2D) exp

[
γtε̃dλ̃

2

]

=
γt

4πi

∫ i∞

−i∞
dλ̃

exp
[
γt
2 (ε̃dλ̃+ 1)

]

√
cosh ηγt+ 1+λ̃/β

η sinh ηγt
. (5)

For large t, the above integration can be carried out by
the saddle point approximation. However, care should
be taken due to the presence of the branch cut. Here, we
take the branch cut on the real-λ̃ axis where

f ≡ cosh ηγt+
1 + λ̃/β

η
sinh ηγt (6)

becomes negative, see Fig. 1.
We locate the branch points for large t, which depend

on β. Note that η is real and positive for λ̃ > − 1
2 , while

η becomes pure imaginary for λ̃ < − 1
2 . For β > 1

2 , f > 0

and we have no branch points for λ̃ > − 1
2 . Instead, we

find them in the region of λ̃ < − 1
2 and the largest one is

denoted by λ̃−
d ≃ − 1

2 +O(t−2). In the t → ∞ limit, the

branch point λ̃−
d = − 1

2 has no β dependence. For β < 1
2 ,

in contrast, f can become negative for λ̃ > − 1
2 and we

find the branch point approaching λ̃−
d = −2β(1 − β) as

t → ∞. Locations of λ̃−
d ’s and branch cuts are shown

in Figs. 1(a) and (b). It turns out that the branch-cut
structure plays a crucial role in determining the everlast-
ing initial memory effect.
From Eq. (5), one may easily expect for large t

P (ε̃d) ≃ exp [tht(ε̃d)] (7)

with the large deviation function (LDF) h(ε̃d) ≡
limt→∞ ht(ε̃d). We first calculate the LDF using the
saddle point method in the presence of the branch-cut
structure found as above. For large t, Eq. (6) becomes
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FIG. 1. (Color online) (a) and (b) show the branch-cut struc-

ture of πd(λ) on the complex λ̃ plane for β > 1/2 and β < 1/2,
respectively. (c) and (d) show the branch-cut structure of
πi(λ) for β > 1/4 and β < 1/4, respectively. Wiggled lines
denote branch cuts. A head of an each arrow locates at its
asymptotic value of the respective branch point as t → ∞.

f ≃ 1
2e

ηγt
(
1 + 1+λ̃/β

η

)
. The saddle point λ̃∗

d is given by

the solution of the following equation:

d

dλ̃

[
γt

2
(ε̃dλ̃+ 1− η)−

1

2
ln

(

1 +
1 + λ̃/β

η

)]

= 0, (8)

where the logarithmic term is included because it may
become very large in the vicinity of λ̃ = −2β(1 − β) for
β < 1

2 .
For β > 1

2 , we find a solution (saddle point) on the

real-λ̃ axis which is outside of the branch cut as

λ̃∗
d = −

1

2

(
1−

1

ε̃2d

)
, (9)

as t → ∞. Then, the LDF for β > 1/2 becomes

h(ε̃d) =
γ

2
(ε̃dλ̃

∗
d + 1− η∗) = −

γ

4ε̃d
(ε̃d − 1)2, (10)

where η∗ =
√
1 + 2λ̃∗

d and the logarithmic term is negli-

gible. As P (ε̃d) = 0 for ε̃d ≤ 0, the LDF is defined only
for ε̃d > 0. This LDF has no β dependence but is deter-
mined only by the heat bath properties (γ, D). Thus, we
call Eq. (10) the heat-bath characteristic curve (HBCC).
For β < 1

2 , the saddle point location exhibits a non-
analytic behavior as function of ε̃d, due to the interplay
of the saddle point and the branch point. When ε̃d <
(1−2β)−1, the saddle point λ̃∗

d given by Eq. (9) is located

to the right of the branch point, λ̃∗
d > λ̃−

d = −2β(1− β),
in the t → ∞ limit. Thus, the LDF h(ε̃d) is identical
to the HBCC in Eq. (10). When ε̃d > (1 − 2β)−1, the
saddle point approaches the branch point asymptotically
from the right side, due to the divergence of the loga-
rithmic term in Eq. (8) at the branch point. However,
as this approach is not exponentially fast in time, the
dominant contribution to the LDF comes from the con-
ventional first term in Eq. (8) at the asymptotic saddle

point λ̃∗
d = λ̃−

d = −2β(1 − β). Summarizing for β < 1
2 ,
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2. Modified saddle point due to a singularity

Consider the case when the prefactor has a singularity such that

φ(λ) =
g(λ)

(λ− λB)α
with α > 0 (5)

Then, equation (3) becomes

P (ε; τ) ≃
∫

C
dλ

g(λ)

(λ− λB)α
eτH(λ;ε) =

∫

C
dλ eτH(λ;ε)−α ln(λ−λB)+ln g(λ), (6)

where g(λ) andH(λ; ε) are analytic functions of λ. Suppose that the conventional saddle

point λ∗
0(ε) satisfying H ′(λ; ε) = 0, passes through λB at ε = εB, i.e. λ∗

0(εB) = λB. The

modified saddle point λ∗(ε) is determined by the equation, τH ′(λ; ε) − α/(λ − λB) +

g′(λ)/g(λ) = 0. Here, the last term is always negligible for large τ , thus can be ignored.

However, the second term can become comparable to the first term when the saddle
point is in the vicinity of λB, and thus, should be taken into account. Hence the saddle

point equation becomes

S(λ; ε) ≡ H ′(λ; ε)−
α

τ

1

λ− λB
= 0. (7)

In contrast to λ∗
0(ε), the solution λ∗(ε) does not pass through λB but asymptotically

approaches it for large τ . In order to illustrate this feature clearly in an example,

we assume that λB and λ∗
0(ε) are located on a real axis and H ′(λ; ε) is a real and

monotonically increasing function of λ on a real axis. Figs. 1(a), 1(b), and 1(c) show
the plots for S, H ′, and −α/[τ(λ − λB)] versus real λ for λ∗

0 > λB, λ∗
0 = λB, and

λ∗
0 < λB cases, respectively. As shown in the figures, there are always two solutions

satisfying S(λ; ε) = 0; λ∗
− and λ∗

+ which are located on the left and right side of

λB respectively, due to the singularity even though there is only one solution λ∗
0 for

H ′(λ; ε) = 0. Furthermore, λ∗
− and λ∗

+ cannot pass through λB as ε (or λ∗
0) varies,

while λ∗
0(ε) can. Instead, λ∗

− and λ∗
+ asymptotically approach λB or λ∗

0(ε) for large τ
depending on the location of λ∗

0(ε):
{

λ∗
− → λB and λ∗

+ → λ∗
0(ε) when λ∗

0(ε) > λB,

λ∗
− → λ∗

0(ε) and λ∗
+ → λB when λ∗

0(ε) ≤ λB.
(8)

These modified saddle points, λ∗
− and λ∗

+, make the integration of equation (6) much
simpler compared to the case using a conventional one λ∗

0. For general non-integer α > 0,

non-analytic branch cuts appear in the complex plane of λ, which becomes a nuisance

because the integration path should be chosen not to cross them. With the two modified

saddle points, it is always possible to choose one of them, of which the steepest descent

path does not cross the branch cuts. In contrast, this is not always possible with a single

conventional saddle point. This is a big advantage of our modified saddle point method
over the conventional one.

Consider the case of λ∗
0 < λB in Fig. 1(c) with a branch cut on a real axis for

λ < λB as in Fig. 2. With the choice of λ∗
+ as the saddle point, one can construct

the steepest descent path not crossing the branch cut in Fig. 2(b). Hence, the leading
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modified saddle point solution of 
modified saddle point equation:

finite-time correction
In the conventional method, contour should detour the branch cut.	


One needs to calculate the integral for all segments C1, C2, C3, and C4.

In the modified method, one needs to calculate only one saddle point 
integration near —› much simpler

Farago, J. Stat. Phys. 107 781 (2002)	


Pal, PRE 87 022138 (2013)
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Comparison between LDF and LDF with finite-time correction

Dissipated power

Red circles: numerical calculation results at finite time	


Black line: LDF only	


blue line: LDF with finite-time correction



1. When there is a singularity in the prefactor function,

conventional Gaussian integration gives incorrect result.

2. Modified saddle point        , which is the solution of 

   makes the integral much simpler.

3. If you are interested in the detailed calculation, 	


   see J. Stat. Mech. P11002 (2013).

Summary of Part 1I



Thank you for your attention!



What kind of particle leads to the high dissipated power ?

Two sources of high energy particle

1) particle with high initial energy

2) high energy particle due to injected energy from the heat bath

Probability to find a particle to (large) dissipated energy Qd from source 2)

Probability to find a particle to (large) dissipated energy Qd from source 1)

Phase transition of energy flow fluctuations during equilibration process
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We study the system consisting of Brownian particles described by Langevins equation. Initially
(for time t < 0) the temperature of the system is Ts. At time t = 0, the thermal contact is formed
between the system and the heat bath with temperature Tb. The ratio of the two temperatures is
r = Tb/Ts. Using the path integral method, we compute the probability density functions (PDF)
of two energy flows: the injected and dissipated power [1]. Surprisingly, the calculated PDFs show
that the fluctuation of the energy flows goes through phase transition depending on r. Through the
direct numerical calculation, we can find that this unexpected phenomenon comes from the particles
with very high initial energy.

Hot co↵ee gets colder and iced co↵ee gets warmer at
the room temperature. These phenomena are the exam-
ples of equilibration process and can be generalized as the
following situation; a system with intial temperature Ts

is in thermal contact with a heat bath with temperature
Tb. Then the system gradually deviates from its initial
state and approaches to the equilibrated state which is
determined by the heat bath. After long time passes,
are there any critical di↵erences between the equilibra-
tion processes starting from di↵erent Ts? Our intuition
and experiences would say no. Regardless of the initial
temperature of the co↵ee, after long time passes, we will
get indistinguishable co↵ees with the same temperature
Tb. In such a long time limit, the initial di↵erences would
be treated as a ‘boundary e↵ect’[? ] which could be ig-
nored compared with the ‘bulk e↵ect’ coming from the
asymptotic behaviors.

In this study, we show that this boundary (initial state
di↵erence) e↵ect survives even in the infinitely long time
limit when we consier the fluctuations of energy flow be-
tween the system and the heat bath. In addition, the
fluctuations go through ‘phase transitions’ depending on
the ratio of Tb and Ts, or, a ⌘ Tb/Ts.

More specifically, we study the system consisting of the
Brownian particles governed by the Langevin equation

v̇ = ��v + ⇠, (1)

where v is the velocity of the particle, � = �(⌧) is the
dissipative coe�cient depending on the time ⌧ , and ⇠ de-
notes a random noise satisfying h⇠(⌧)⇠(⌧ 0)i = 2D(⌧)�(⌧�
⌧ 0). Here, the Einstein relation holds di↵erently de-
pending on ⌧ : Ts = D(⌧)/�(⌧) when ⌧ < 0 and Tb =
D(⌧)/�(⌧) when ⌧ � 0. For convenience, we denote
�(⌧) ⌘ � (constant) and D(⌧) ⌘ D (constant) for ⌧ � 0.
This time-dependent Einstein relation describes that the
system is in equilibrium with the intial temperature Ts

when ⌧ < 0, and then the thermal contact with the heat
bath with Tb is formed and maintained for ⌧ � 0.

When the system is in thermal contact with the heat
bath, the energy flows through the contact. Previously
most studies have considered the heat flow[? ] which is

the work done by the heat bath. The heat itself can be
decomposed into two energy flows: the dissipated energy
from the system to heat bath and the injected energy
from the heat bath to the system. Because major con-
tributions of the dissipated and the injected energy come
from the term �v and ⇠, respectively, the dissipated "d
and injected power "i can be defined as follows[? ]:

"d⌧ =

Z ⌧

0
dt�v2(t), (2)

"i⌧ =

Z ⌧

0
d⌧⇠v =

Z ⌧

0
dt(v̇v+�v2) =

v2⌧ � v20
2

+

Z ⌧

0
dt�v2,

(3)
where v⌧ = v(⌧) and v0 = v(0). As shown in Eq. (3), the
injected power has the explicit dependence on the initial
energe of a particle. Because the negative sign of "i comes
from high |v0|, the tail behavior of the injected power
probability density function (PDF), or P ("i), for "i < 0 is
determined by the existence probability of particles with
such |v0| in the initial state. In other words, the negative
tail of P ("i) depends on the initial energy distribution.
This is limitedly verified for Ts = Tb and Ts = 0 cases in
the reference[? ]. On the other hand, "d has no explicit
initial energy dependence. Therefore, the initial state
dependences of P ("d) and the positive tail of P ("i) have
not been discovered yet.
In this study, we calculate P ("d) and P ("i) and show

that the PDFs show phase-transition-like behaviors de-
pending on a, which means the PDFs have a dependence
for some range of a, otherwise, not. Through the numer-
ical simulation, we find that these phase transitions of
the PDFs result from the competition between the heat
bath noise strength and the initial energy strength of a
particle.
To calculate P ("d), it is convinient to compute first its

characteristic function

⇡d(�) =
⌦
e��⌧"d

↵
=

Z 1

�1
d"dP ("d)e

��⌧"d = P̂ (�i�⌧),

(4)

In the long time limit, initial energy is fully dissipated.
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