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Elliptical Galaxies

Levin et al. Phys. Rev. E 78, 021130 (2008); Mon. Not. R. As. Soc. 417, L.21 (2011).
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Vlasov Equation

oF o

Casimir invariants

Cslf] = /s(f(r,v,t))ddrddv

s(f) is an arbitrary function of f
s(f) =1, s(f)=f" s(f)=fInf, ..

The Boltzmann entropy is constant!
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The Phase Space
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*Levin et al., Physics Reports 535 1 (2014)
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The Model

* Initial Distribution: fy(r,v) = n©(r,, — r)0 (v, — v)
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Incompressible Flow

* Final Distribution f(7,v) =7
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The Theory

The coarse-grained particle distribution must satisfy:
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1d Gravity
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*Teles et al. MNRAS 417, L21 (2011)
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Density and Velocity Distributions 1in 1d
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Relaxation of 2d Gravitational Systems

Df _ f Ve o,

and
V2 = 4nGmn(r)

where

n(r) = N / f(r,v)d*v
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Envelope Oscillations

. 2GM v r?
Pe(t) =
re(t)  r2(t)
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Test Particle

12 [ —Lid for i) < re(t)
P
A R
C —r@ for ri(t) = 7e(t)

where

Li: |I'Z' X V;
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Poincaré Section
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Resonance and Simulations

)

f(I',V) = 70 (EF — E(I‘,V))
+ XO(e(r,v) — ep)O(er — €(r, v)) (D)

Statistical Mechanics of Self-Gravitating Systems — p. 15



Density and Velocity Distributions

/ d2r d2v [V; + wgr)] f(r,v) = €

/er d*vf(r,v)=1, (2)
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Kinetic Temperature Distributions

*Teles et al. J. Stat. Mech. P05007 (2010)
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Crossover to Boltzmann Distribution

° x(t) == [, [N(r,t) — Nep(r)]? d?r
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* collapse time 7« ~ N3, where 7p = r,,,/vV2GM
*Teles et al. J. Stat. Mech. P05007 (2010)
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Finite /NV: Boltzmann Distribution

o fup = CeB/2+v())

* Poisson-Boltzmann equation:

4720
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Symmetry Breaking in d-Dimensions

e |nitial distribution:

d2
— 2..d .d
C’drmvm

fo(r,v) O(ry —1r)0(vy, — v)

* Evelope in position:

* Envelope in velocity:

Vi(t) =/ (d +2)(?)
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Envelope Equation

X2+ X:X;=V2:—(d+2) <x-8¢>

23:137;
and
- . Oy
b=+ 2) ()
where

V% = Cyn(r,t)
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Envelope Equation

2
€: d

X, = =% —
X3 2

where emittance

e; () = XV’ — XX} = €}(0)

1

and

o© ds
/o (X2 + ) TI5_ (X2 +5)1/2

Gi(X1,+  Xa) =
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Symmetry Breaking

° Virial number Rg = % =2 = €%(0)

e Symmetric mode X = (3, X;)/d is unstable for d > 3

e QOscillations of X result in the growth of antisymmetric
mode.

* [Instability in d = 2 for Ry < 0.255893... and Ry > 2.55819...

* Instability in d = 3 for Ry < 0.388666... and Rg > 1.61133...
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Symmetry Breaking in d=2
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2D system system: Panel (a) Rg = 2; Panel (b) Rg = 6.25

Pakter, Marcos, and Y. Levin, Phys. Rev. Lett. 111, 230603 (2013).
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3d Gravity with Ry = 1

* Small envelope oscillations.
* Quasi-static mean-field potential ¥ (r).

* Coarse-grained distribution function:
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Distribution Function

Coarse-grained distribution function:
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Marginal distributions

* [nitial waterbag and parabolic initial distributions
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Conclusions

* Systems with long-range interactions lack ergodicity and
mixing.

* The proposed core-halo distribution describes plasmas, 1d
and 2d self-gravitating systems, HMF, etc.

* There is a significant degree of universality.

* Non-symmetric QSS are possible for gravitational systems.

* 3d gravity is very complex because of particle evaporation,
but some progress is being made...

* Review: Levin, Pakter, Rizzato, Telles, Benetti,
Nonequilibrium statistical mechanics of systems with long-range

interactions, Phys. Rep. 535, 1 (2014).
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