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Active micro-rheology
Active manipulation of small probe particles by external forces, using 
magnetic fields, electric fields, or micro-mechanical forces.

Because the probe’s motion is no longer purely Brownian in active microrheology, the
probe particle has an average displacement and therefore an average velocity, from which
we can define an effective microviscosity of the dispersion through the use of Stokes drag
law. This microviscosity is a function of the Péclet number—the ratio of the imposed
motion to the thermal motion—and the volume fraction of the freely suspended bath
particles. The results of a series of BD simulations are detailed in Sec. IV. The microvis-
cosity exhibits a Newtonian plateau for low Péclet numbers, force thins as the Péclet
number is increased, and finally reaches a second plateau region for high Péclet numbers.
The microviscosity is also an increasing function of volume fraction, and a simple theory
by Squires and Brady !2005" can be used to give appropriate scaling relations that
collapse the effective viscosities at different suspension volume fractions and Péclet
numbers onto a single universal curve !a brief overview of the dilute theory is given in
Sec. III". The dispersion with the highest volume fraction !55%", displays yield behavior,
and the simple scaling arguments of Squires and Brady !2005" only apply at the highest
Péclet numbers studied where the motion of the probe “liquefies” the material in its
immediate neighborhood. For small Pe, the system is solidlike. We also address the
difference in the measurements when the probe is dragged with a constant force versus a
constant velocity. These two cases result in different effective viscosities—when the
particle is dragged with a constant velocity, the probe cannot move laterally as it passes
suspended particles, the suspension is more dissipative and the effective viscosity calcu-
lated is higher than for the equivalent constant force measurement.

One of the central issues in the use of microrheology is the relation between the
microviscosity and the macroviscosity—the viscosity measured in a conventional mac-
roscopic rheometer—and, therefore, one of the key goals of this study has been to com-
pare our microviscosity results to the results obtained for a homogeneously sheared
suspension. A direct comparison can be made to the simulation work of Foss and Brady
!2000" who conducted BD simulations of suspensions at some of the same volume
fractions as used in this study. In the BD simulations of Foss and Brady !2000", a simple

FIG. 1. The model system: a probe particle is dragged by means of an imposed external force through a
surrounding suspension of monodisperse force-free bath particles. The relative strength of Brownian !UB

#D /a#kT /6!"a2" to driven motion !UF#F /6!"a" gives the Péclet number Pe=Fa /kT and governs the
behavior of the system. Here, D is the Stokes–Einstein–Sutherland diffusivity of a single particle of radius a and
thermal energy kT in a fluid of viscosity ". !Alternatively, the probe particle may be dragged with a constant
velocity U, in which case UF=U and Pe=Ua /D."
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Active micro-rheology in very dense fluids
A driven tracer particle interacting with a bath at equilibrium
creates an inhomogeneous nonequilibrium perturbation.

It pushes what is in front and runs away from what is left behind

This is observed in colloidal suspensions, monolayers of vibrated
grains and in glass systems.

Characterizing the motion of the intruder teaches us the
micro-rheological properties of the fluid

J Pesic, et al, PRE (2012) 86, 031403
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Nonequilibrium inhomogeneity
As the force increases ...

 a traffic jammed region in front of the intruder
 a wake region behind the it

C M-M, G Oshanin Soft Matter (2011), 7 993
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The modelThe model: An ASEP in a sea of SSEP’s

! We consider a square lattice of Lx × Ly
sites, of unit spacing, with P.B.C and
populated with hard-core particles.

! Each site can be either empty or
occupied by at most one particle.

! The system evolves in discrete time n
and particles move randomly.

! One particle, the intruder, is subject to a
constant force F

• Bath particles move in either direction with equal jump
probability 1/4.
• The intruder moves in direction eν with probability

pν = Z−1e
β
2 F·eν ,

where Z = 2(1 + cosh (βσF/2)) and β is the inverse temperature.
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Force-velocity relationForce-Velocity Relation

Stokesian regime

V =
F

ξ
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with friction coefficient

ξ = ξmf + ξcoop
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The problem

What is the probability distribution function of the 
intruder’s displacement at time n?

We are interested in the limit of very dense lattices or very strong pulling forces.

Intruder’s displacementDerivation of the probability distribution

Taking the thermodynamic limit Lx , Ly → ∞ with ρ0 fixed we
obtain for the characteristic function

Pn(k) # exp(−ρ0Ωn(k))

Ωn(k) is implicitly defined by

Ωn(k) =
n
∑

l=0

∑

ν

∆n−l(k|eν)
∑

Z"=0

F ∗
l (0|eν |Z) ,

F ∗
l (0|eν |Z) is the FPT conditional probability for a RW starting at

Z to be at 0 at time l , given that it is at site 0+ eν at time l − 1
and

∆l(k|eν) = 1− pl(k) exp (i(k · eν))

J.S
tat.M

ech.(2013)P
05008

A biased intruder in a dense quiescent medium

and

p
n

(k) =
X

Rn

exp (i(k · R
n

))
⌦

P (R
n

|Zj)
↵

, (9)

and summing over R

n

, one finds that

P
n

(k) ' pM

n

(k), (10)

which yields, upon going to the thermodynamic limit L
x

, L
y

! 1 (with ⇢0 = M/(L
x

⇥L
y

)
and n kept fixed), the following general result:

P
n

(k) ' exp (�⇢0 ⌦
n

(k)) . (11)

Then, the desired probability distribution function obeys

P (R
n

) ' 1

4⇡2

Z

⇡

�⇡

dk exp (�i (k · R
n

) � ⇢0 ⌦
n

(k)) . (12)

Here ⌦
n

(k) is defined by

⌦
n

(k) =
n

X

l=0

X

⌫

�
n�l

(k|e
⌫

)
X

Z6=0

F ⇤
l

(0|e
⌫

|Z), (13)

where F ⇤
l

(0|e
⌫

|Z) is the conditional probability for a random walk starting at Z to arrive
for the first time at the origin at the nth step, being at site 0 + e

⌫

at time moment n � 1
(see [71] for more details), and

�
l

(k|e
⌫

) = 1 � p
l

(k) exp (i(k · e
⌫

)) . (14)

The function ⌦
n

(k) can be determined by introducing the generating function

⌦
z

(k) =
1

X

n=0

⌦
n

(k) zn, (15)

for which one finds the following asymptotic solution [60]:

⌦
z

(k)⇠
z!1�

1

1 � z

�(k)

1 � z + ��1
z

�(k)
, (16)

where

�
z

⇠
z!1� � ⇡

(1 � z) ln(1 � z)
, (17)

is the leading asymptotic term of the generating function of the mean number of ‘new’
(also called ‘virgin’ [65]) sites visited in the nth step.

Finally, the function �(k) obeys

�(k) = �ia0kx

+
a1k

2
x

2
+

a2k
2
y

2
, (18)

with a
j

= a
j

(F ) defined for arbitrary �F by

a0 =
sinh(�F/2)

(2⇡ � 3) cosh(�F/2) + 1
, (19)
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The limit of high density 2DA single vacancy problem
! If the intruder is not around then the

new position is chosen randomly with
equal probability 1/4

! If at time n the vacancy at position
rn + eν is adjacent to the intruder at
position rn then the vacancy exchanges
its position with the intruder with
probability

qν =
p−ν

3/4 + p−ν

and with probability 1/(3 + 4p−ν) with
any of the three adjacent bath particles

• Limit of small vacancy density ρ0 = M/(Lx × Ly ) " 1

• Idea: trapping of the intruder by diffusive vacancies.

O Bénichou, G Oshanin, PRE (2001) 64. 020103

MJAM Brummelhuis, HJ Hilhorst, Physica A (1989) 156, 575
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 many vacancies problem as many single vacancy problems.

 propagator of the intruder in the presence of a single vacancy is 
given in terms of First-Passage Time distributions of the vacancy 
to the site ocupied by the intruder.

 results in the long time limit



Intruder’s displacement
Derivation of the probability distribution

! Let Z j
n denote the position of the j-th vacancy at time n,

j = 1, 2, . . . ,M.

! We want to compute the probability of finding the intruder at
position rn at time n conditioned to {Zj

n}

P(rn|{Z
j
n}) =

∑

r1n

· · ·
∑

rMn

δ(rn, r
1
n + · · ·+ r

M
n )P(r1n, . . . , r

M
n |{Zj

n})

! P(r1n, . . . , r
M
n |{Zj

n}) is the conditional probability that within the
time interval n the intruder moved to r1n due to its interaction with
vacancy 1, to r2n due to its interaction with vacancy 2, etc.

! In the lowest order in ρ0 the vacancies contributions are
independent and

P(r1n, . . . , r
M
n |{Zj

n}) !
M
∏

j=1

P(rn|Z
j
n)

The problem reduces to M single vacancies, correct to O(ρ0).



Intruder’s displacement
Derivation of the probability distribution

! Averaging P(rn|Z
j
n) over the initial distribution of vacancies

P(rn) !
∑

r1n

· · ·
∑

rMn

δ(rn, r
1
n + · · ·+ r

M
n )

M
∏

j=1

〈P(rn|Z
j
n)〉

! Defining the Fourier transformed distribution

Pn(k) =
∑

rn

exp (−ik · rn) 〈P(rn|{Z
j
n})〉

and summing over rn one obtains that it factorizes into

Pn(k) =

(

∑

rn

exp (−ik · rn) 〈P(rn|Z
j
n)〉

)M
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Intruder’s displacement
Derivation of the probability distribution

Ωn(k) can be solved explicitly in terms of its generating function

Ωz(k) =
∞
∑

n=0

Ωn(k) z
n

In the large n (and ρ0 ! 1) limit z → 1−

Ωz(k) ∼
1

(1− z)

Φ(k)

1− z + Φ(k)/χz

with
χz ∼ −

π

(1− z) ln(1− z)

the leading asymptotic term of the generating function of the
mean number of “new” (virgin) sites visited on the n-th step

BD Hughes, (2005) Random walks in random environments



Intruder’s displacementDerivation of the probability distribution

Then

Ωz(k) ∼
Φ(k)

(1− z)2

(

1−
ln(1− z)

π
Φ(k)

)−1

,

with

Φ(k) = −ia0kx + a1k
2
x /2 + a2k

2
y /2

a0 =
sinh(βF/2)

(2π − 3) cosh(βF/2) + 1
,

a1 =
cosh(βF/2)

(2π − 3) cosh(βF/2) + 1
,

a2 =
1

cosh(βF/2) + 2π − 3
.
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Intruder’s displacement
Derivation of the probability distribution

Ωn(k) can be solved explicitly in terms of its generating function

Ωz(k) =
∞
∑

n=0

Ωn(k) z
n

In the large n (and ρ0 ! 1) limit z → 1−

Ωz(k) ∼
1

(1− z)

Φ(k)

1− z + Φ(k)/χz

with
χz ∼ −

π

(1− z) ln(1− z)

the leading asymptotic term of the generating function of the
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Velocity and variance
Velocity and Variance
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The intruder moves at constant velocity along the field direction
and diffuses along the transversal direction

O Bénichou, C M-M, G Oshanin, PRE 87 020103 (2013)
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Weak superdiffusion
Weakly superdiffusive
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Anomalous broadening of the fluctuations

In the limit ρ0 → 0
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Confined geometries

Confined geometries

The variance of the intruder’s displacement can be represented as

σ2
x ∼ ρ0a1n + ρ0a

2
0
n

χn
,

χn: mean # of new sites visited on the n-th step by any vacancy.

In terms of Sn, the mean # of distinct lattice sites visited by any
of the vacancies up to time n

χn = Sn − Sn−1

Sn is a fundamental characteristic property of a lattice

discrete-time RW.

O Bénichou, P Illien, C M-M, G Oshanin (2013)
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Confined geometriesConfined geometries

In general, for infinite systems (at least in one direction)

Sn ∼ nα

α is and indicator of the mixing of the lattice gas and depends on
the effective dimensionality of the lattice.

! for larger α, a vacancy mostly moves to new sites

! for smaller α, a vacancy predominantly revisits already visited
sites

In general α < 1 for systems in which the RW is recurrent, while
α = 1 for non-recurrent RW’s.
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Confined geometries

We have

χn ∼ nα−1 ⇒ σ2
x ∼ ρ0a1n + ρ0a

2
0n

2−α

! For non-recurrent random walk (α = 1), the behaviour is
diffusive

! For recurrent random walks (α < 1)

σ2
x ∼ ρ0a

2
0n

2−α

The less efficient the mixing of the lattice gas is the faster the
variance of the intruder’s displacement grows



Stripes and Capillaries

subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys

lim
t!1

!2
x

t
"

#0!0

8
>>><
>>>:

B quasi-1D;

4a20$
#1#0 lnð##1

0 Þ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0 3D lattice;

(3)

i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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$ #0t lnðð#0a0Þ2 þ 1=tÞ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0t 3D lattice;

(4)

where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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Single-File dynamics

2

TP position, and set the basis for a refined analysis of
real trajectories of active particles in crowded single-file
environments.

The model. Consider a one-dimensional, infinite in
both directions line of integers x, populated by hard-core
particles present at mean density ⇢, performing symmet-
ric random walks. At t = 0 we introduce at the origin
of the lattice an active TP, hopping on its right (resp.
left) neighbor site with probability p

1

(resp. p�1

), which
process is also constrained by hard-core exclusion. In
what follows, we focus on the limit of a dense system,
corresponding to the limit of a small vacancies density
⇢

0

= 1 � ⇢ ⌧ 1. In this limit it is most convenient
to follow the vacancies, rather than the particles. We
thus formulate directly the dynamics of the vacancies,
which unambiguously defines the full dynamics of the
system. Following [25, 26], we assume that at each time
step each vacancy is moved to one of its nearest neigh-
bours sites, with equal probability. As long as a vacancy
is surrounded only by bath particles, it thus performs a
symmetrical nearest neighbors random walk. However,
due to the biased nature of the movement of the TP,
specific rules have to be defined when a vacancy is adja-
cent to the TP. In this case, if the vacancy occupies the
site to the right (resp. to the left) of the TP, we stip-
ulate that it has a probability q

1

= 1/(2p

1

+ 1) (resp.
q�1

= 1/(2p�1

+ 1)) to jump to the right (resp. to the
left) and 1� q

1

(resp. 1� q�1

) to jump to the left (resp.
to the right). These rules are the discrete counterpart of
a continuous time version of the model [30], as shown in
[26]. Note that a complete description of the dynamics
would requires additional rules for cases where two vacan-
cies are adjacent or have common neighbours; however,
these cases contribute only to O(⇢2), and can thus be left
unstated.

1/2 1/2

X

FIG. 1: (color online) Model notations.

Single file with a single vacancy. We start with an aux-
iliary problem in which the system contains just a single
vacancy initially at position Z, and which will be proved
next to be a key step in the resolution of the complete
problem with a (small) concentration of vacancies. Let
p

n
Z(X) denote the probability of having the TP at site X

at time moment n, given that the vacancy commenced
its random walk at Z. Clearly, in a single vacancy case
this probability is not equal to zero only for X = 0 and
X = 1, if Z > 0, and X = 0 and X = �1, if Z < 0.

Following Refs. [25, 26], we then represent p

n
Z(X) as:

p

n
Z(X) = �X,0

0

@1 �
nX

j=0

F

j
Z

1

A +

+
+1X

p=1
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�m1+...+mp+1,n�
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j
(�1)

p

1

A⇥ F

mp

(�1)

p+1 . . . F

m2
�1

F

m1
Z , (1)

where �a,b = 1 when a = b and is equal to zero, otherwise,
and F

n
Z is the probability that the vacancy, which started

its random walk at site Z, arrived to the origin for the
first time at time moment n.

Let now g(⇠) denote the generating function of any
time-dependent function g(n), g(⇠) ⌘ P1

n=0

g(n)⇠n.
Then, Eq. (1) implies that the generating function of
the propagator of the single-vacancy model can be ex-
pressed via the generating functions of the corresponding
first-passage distributions as

p±1

(X; ⇠) =
�X,0(1 � F±1

) + �X,±1

F±1

(1 � F⌥1

)

(1 � F

1

F�1

)(1 � ⇠)
, (2)

where we have used the short notations F±1

⌘ F±1

(⇠).
Single file with a small concentration of vacancies. We

now turn to the original problem with a small but finite
density ⇢

0

of vacancies and aim to express the desired
probability Pn(X) of finding the TP at site X at time
n via the propagator for a single-vacancy problem. We
consider first a finite chain with L sites, M of which are
vacant and the initial positions of the latter are denoted
by Zj , j = 1, . . . , M . Then, the probability Pn(X|{Zj})
of finding the TP at position X at time moment n as a
result of its interaction with all the vacancies collectively,
for their fixed initial configuration, writes

Pn(X|{Zj}) =
X

Y1,Y2,...,YM

�X,Y1+...+YM Pn({Yj}|{Zj}),

(3)
where Pn({Yj}|{Zj}) stands for the conditional probabil-
ity that within the time interval n the TP has performed
a displacement Y

1

due to interactions with the first va-
cancy, a displacement Y

2

due to the interactions with the
second vacancy, and etc. In the lowest order in the den-
sity of vacancies, the vacancies contribute independently
to the total displacement of the tracer, so that the latter
conditional probability decomposes

Pn({Yj}|{Zj}) ⇠
⇢0!0

MY

j=1
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n
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(Yj) , (4)

where p

n
Zj

(Yj) is the single-vacancy propagator and the
symbol ⇠

⇢0!0

signifies the leading behavior in the small

density of vacancies limit. Note that such an approxi-
mation yields results which are exact to the order O(⇢

0

),



Single-File dynamics

2

TP position, and set the basis for a refined analysis of
real trajectories of active particles in crowded single-file
environments.

The model. Consider a one-dimensional, infinite in
both directions line of integers x, populated by hard-core
particles present at mean density ⇢, performing symmet-
ric random walks. At t = 0 we introduce at the origin
of the lattice an active TP, hopping on its right (resp.
left) neighbor site with probability p
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(resp. p�1

), which
process is also constrained by hard-core exclusion. In
what follows, we focus on the limit of a dense system,
corresponding to the limit of a small vacancies density
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= 1 � ⇢ ⌧ 1. In this limit it is most convenient
to follow the vacancies, rather than the particles. We
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which unambiguously defines the full dynamics of the
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where IX(·) is the modified Bessel function. Importantly,
we find that despite the known asymmetry of the con-
centration profile of the bath particles [22], the rescaled
variable (Xn�
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(n))/
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even

(n) is asymptotically dis-
tributed accordingly to a normal law. More precisely, the
convergence to this Gaussian distribution can be quan-

tified by the skewness �

1

= 

(3)

(n)/

3/2

(2)
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(n) of the distribution Pn(X).

From Eqs.(13) and (14) we readily find that in the lead-
ing in ⇢

0

order
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Note that �

1

> 0 which signifies that the right tail
of Pn(X) is longer and the fluctuations are more pro-
nounced for X > X where the bath particles accumu-
late, than in the region X < X depleted with the bath
particles.

0

0.5

1

1.5

2

0 0.025 0.05 0.075 0.1 0.125 0.15



o
d
d

⇢

0

0

1

2

3

0 0.05 0.1 0.15



e
v
e
n

⇢

0

FIG. 2: (color online) Odd cumulants at time n = 100 vs
⇢
0

. The straight lines define our predictions in Eq. (11) for
di↵erent values of p

1

, while the filled and empty symbols are
the results of numerical simulations for the first and third
cumulants, respectively. Circles are results for p

1

= 0.55,
squares - for p

1

= 0.6, triangles - for p
1

= 0.75 and diamonds
- for p

1

= 0.98. The inset shows analogous results for the
second and the fourth cumulants.

Note finally that the regime of validity of our expres-
sions with respect to the density ⇢

0

is tested in Fig. 2,
where we compare our theoretical predictions for the cu-
mulants, obtained by the inversion of our general Eq.
(11), against the results of numerical simulations for dif-
ferent values of the density ⇢

0

of the vacancies, for dif-
ferent forces f (defined as �f = ln(p

1

/p�1

) and a fixed
time moment n = 100. We observe a very good agree-
ment for very small values of ⇢

0

and conclude that, in
general, the approach developed here provides a very ac-
curate description of the TP dynamics for ⇢

0

. 0.1. Fur-
ther on, in Fig. 3 we plot our theoretical predictions for

the time-evolution of the cumulants for di↵erent values of
the force and at a fixed density ⇢

0

. Again, we observe a
perfect agreement between theory and simulations. Note
that for small fields the reduced odd cumulants approach
1 from above, while for strong fields from below. Last, we
compare in Fig.4 our prediction in Eq. (16) against the
numerical data and again observe a very good agreement
between our analytical result and numerical simulations.
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= 0.98. Solid lines give the results of
the inversion of Eq. (11), while symbols are the results of
numerical simulations.
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Summary. We have solved a minimal model of ac-
tive transport in crowded single-file environments. Our
approach generalises the emblematic model of single file
di↵usion to the case of an active TP. We have derived
explicit expressions, valid in the limit of high density of
bath particles, of the full distribution Pn(X) of the TP
position and of all its cumulants, for arbitrary values of
the bias f and for any time n. Our analysis reveals strik-
ing features, such as the anomalous scaling / p

n of all
cumulants, the equality of cumulants of same parity char-
acteristic of a Skellam distribution and a convergence to a
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. Again, we observe a
perfect agreement between theory and simulations. Note
that for small fields the reduced odd cumulants approach
1 from above, while for strong fields from below. Last, we
compare in Fig.4 our prediction in Eq. (16) against the
numerical data and again observe a very good agreement
between our analytical result and numerical simulations.
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Summary. We have solved a minimal model of ac-
tive transport in crowded single-file environments. Our
approach generalises the emblematic model of single file
di↵usion to the case of an active TP. We have derived
explicit expressions, valid in the limit of high density of
bath particles, of the full distribution Pn(X) of the TP
position and of all its cumulants, for arbitrary values of
the bias f and for any time n. Our analysis reveals strik-
ing features, such as the anomalous scaling / p

n of all
cumulants, the equality of cumulants of same parity char-
acteristic of a Skellam distribution and a convergence to a

Skellman-type distribution

3

and hence, such a description is expected to be quite ac-
curate when ⇢

0

⌧ 1 [25, 26]. Next, we suppose that
initially the vacancies are uniformly distributed on the
chain (except for the origin, which is occupied by the TP)
and average Pn(X|{Zj}) over the initial distribution of
the vacancies. In doing so and subsequently turning to
the thermodynamic limit, i.e. setting L ! 1, M ! 1
with M/L = ⇢

0

kept fixed, we find that the generating
function of the second characteristic function

 X(k; ⇠) ⌘
1X

n=0

ln( ePn(k))⇠n (5)

satisfies

lim
⇢0!0
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Our last step consists in the explicit determination of F±1

and
P1

Z=1

F✏Z(⇠) in Eq.(6). We note that both can be
readily expressed via the first-passage time density at the
origin at time n of a symmetric one dimensional Polya
random walk, starting at time 0 at position l, denoted
as f

n
l , since, by partitioning over the first time when the

sites adjacent to the origin are reached, we have:

F

n
±1

= (1 � q±1

)�n,1 + q±1

nX

k=1

f

k�1(1)Fn�k
±1

. (7)

Multiplying both sides of Eq. (7) by ⇠

n, performing
summation over n and taking into account that fl(⇠) =P

f

n
l ⇠

n = ((1 �
p

1 � ⇠

2)/⇠)|l| [27], we find that

F±1

=
(1 � q±1

)⇠

1 � q±1

(1 �
p

1 � ⇠

2)
. (8)

Similarly, noticing that
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(9)

and using the definition of fl(⇠) given above, we obtain

1X

Z=1

F±Z(⇠) =
F±1

1 � (1 �
p

1 � ⇠

2)/⇠
. (10)

Gathering the results in Eqs. (7) to (10), substituting
them into Eq.(6), we finally derive our central analytical
result which defines the exact (in the leading in ⇢

0

order)
generating function of the cumulants of arbitrary order
j:
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(11)
This result gives access to the full statistics of the position
of the TP and puts forward striking characteristics of

active transport in dense di↵usive single file systems as
detailed below.

(i) First conclusion we can draw from Eq. (11) is that
for arbitrary f (including f = 0) all odd cumulants have
the same generating function 

odd

(⇠), and all even cumu-
lants have the same generating function 

even

(⇠). This
means that at any moment of time and for any f all cu-
mulants 

(j)(n) with arbitrary odd j are equal to each
other, 

(2j+1)

(n) = 

odd

(n), and so do all the cumulants
with arbitrary even j, 

(2j)(n) = 

even

(n).
Parenthetically, we note that, in the classical case of

single file di↵usion (i.e. f = 0), the generating function
in Eq.(11) can be inverted explicitly to give 

odd

(n) ⌘ 0
and for arbitrary time moment n
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where �(·) is the Gamma function and bxc is the floor
function. This expression, which can be shown to be
compatible with the well-known Gaussian form in the
large time limit, seems to be new.

(ii) Second, turning to the limit ⇠ ! 1 (large-n limit)
we find the leading in time asymptotic behavior of the
cumulants of arbitrary order:

lim
⇢0!0



n
(2j+1)

⇢

0

= (p
1

�p�1

)

r
2n

⇡

�2p

1

p�1

(p
1

�p�1

)+o(1)

(13)

lim
⇢0!0



n
(2j)

⇢

0

=

r
2n

⇡

+ o(1) , j = 0, 1, 2, . . . . (14)

Equations (13) and (14) signify that, remarkably, the
leading in time behavior of all even cumulants is inde-

pendent of the force f , while the leading in time behavior
of all odd cumulants does depend on f . In addition, for
the standard choice of the transition probabilities such
that p

1

= 1� p�1

and p

1

/p�1

= exp(�f), where � is the
reciprocal temperature, and for the specific case j = 0,
we check from Eq. (13) that

lim
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X
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= tanh(�f/2)
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2n/⇡, (15)

which reproduces, for j = 0, the results of [22] and [23].
Note that this anomalous scaling / p

n holds for all cu-
mulants.

(iii) We finally provide an explicit expression of the
full distribution function Pn(X) for any n. As a matter
of fact, the equality at leading order in ⇢

0

of cumulants
of the same parity proved in point (i) shows that the
distribution associated to these cumulants is of Skellam
type [28], so that :
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This result gives access to the full statistics of the position
of the TP and puts forward striking characteristics of

active transport in dense di↵usive single file systems as
detailed below.

(i) First conclusion we can draw from Eq. (11) is that
for arbitrary f (including f = 0) all odd cumulants have
the same generating function 

odd

(⇠), and all even cumu-
lants have the same generating function 

even

(⇠). This
means that at any moment of time and for any f all cu-
mulants 

(j)(n) with arbitrary odd j are equal to each
other, 

(2j+1)

(n) = 

odd

(n), and so do all the cumulants
with arbitrary even j, 

(2j)(n) = 
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(n).
Parenthetically, we note that, in the classical case of

single file di↵usion (i.e. f = 0), the generating function
in Eq.(11) can be inverted explicitly to give 
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where �(·) is the Gamma function and bxc is the floor
function. This expression, which can be shown to be
compatible with the well-known Gaussian form in the
large time limit, seems to be new.

(ii) Second, turning to the limit ⇠ ! 1 (large-n limit)
we find the leading in time asymptotic behavior of the
cumulants of arbitrary order:
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Equations (13) and (14) signify that, remarkably, the
leading in time behavior of all even cumulants is inde-

pendent of the force f , while the leading in time behavior
of all odd cumulants does depend on f . In addition, for
the standard choice of the transition probabilities such
that p
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= 1� p�1

and p
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= exp(�f), where � is the
reciprocal temperature, and for the specific case j = 0,
we check from Eq. (13) that
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which reproduces, for j = 0, the results of [22] and [23].
Note that this anomalous scaling / p

n holds for all cu-
mulants.

(iii) We finally provide an explicit expression of the
full distribution function Pn(X) for any n. As a matter
of fact, the equality at leading order in ⇢
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of cumulants
of the same parity proved in point (i) shows that the
distribution associated to these cumulants is of Skellam
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and hence, such a description is expected to be quite ac-
curate when ⇢

0

⌧ 1 [25, 26]. Next, we suppose that
initially the vacancies are uniformly distributed on the
chain (except for the origin, which is occupied by the TP)
and average Pn(X|{Zj}) over the initial distribution of
the vacancies. In doing so and subsequently turning to
the thermodynamic limit, i.e. setting L ! 1, M ! 1
with M/L = ⇢
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kept fixed, we find that the generating
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Our last step consists in the explicit determination of F±1

and
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F✏Z(⇠) in Eq.(6). We note that both can be
readily expressed via the first-passage time density at the
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where �(·) is the Gamma function and bxc is the floor
function. This expression, which can be shown to be
compatible with the well-known Gaussian form in the
large time limit, seems to be new.
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where �(·) is the Gamma function and bxc is the floor
function. This expression, which can be shown to be
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Is superdiffusion transient?
We need to determine the long time limit of the variance
at fixed vacancy density

For confined geometries 

subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys

lim
t!1

!2
x

t
"

#0!0

8
>>><
>>>:

B quasi-1D;

4a20$
#1#0 lnð##1

0 Þ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0 3D lattice;

(3)

i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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# 2a20
$ #0t lnðð#0a0Þ2 þ 1=tÞ 2D lattice;
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(4)

where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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Is superdiffusion transient?

The long time behaviour is always diffusive

In quasi-1D the longitudinal diffusivity is enhanced

subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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Is superdiffusion transient?
In the intermediate regime we find 

subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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systems and we anticipate that the ultimate diffusive
behavior might be in practice difficult to observe.

The physical mechanism responsible for the emergence
of the geometry-induced superdiffusion, revealed by our
exact approach, can be ascertained in the large f limit by a
mean-field version of the model, which stipulates that after
each interaction between the TP and a vacancy, all the other
vacancies remain uniformly distributed. The model can
then be reformulated as an effective CTRW that takes
into account explicitly the dynamics of the diffusive vacan-
cies. This is in contrast to the CTRWapproach presented in
Ref. [10] for glassy systems, which infers the mean and the
variance of the waiting-time distribution from the numeri-
cal data. In the quasi-1D case, the waiting time of the first
jump of the TP is extracted from the distribution!dS1=d!,
where S1 is the well-known survival probability of an
immobile target in a sea of diffusing predators S1ð!Þ /
expð!"0

ffiffiffi
!

p Þ [31]. Waiting times of subsequent jumps are
then drawn from the distribution!d½Tð!ÞS1ð!Þ%=d!, where
Tð!Þ is the survival probability of an immobile target
chased by a single random walker that starts near the target
[31]. Using the waiting time distribution described here,

standard calculations show the following. (i) Superdiffusion
with an exponent # ¼ 3=2 appears as a result of repeated
interactions between the TP and a single vacancy in
quasi-1D systems. This explains, in particular, why no
superdiffusion takes place in strictly single-file systems,
for which the cumulative displacement of the TP due to
interactions with a single vacancy amounts to at most one
lattice step. (ii) Diffusive behavior is established ultimately,
when other vacancies start to interact with the TP, after a
cross-over time which scales as 1="2

0. Note that while this
mean-field approach reproduces the scaling properties of
the variance with respect to the time and the density, it is
unable to predict the correct width and driving force
dependencies provided by our exact treatment.
Altogether, our results show that the emergence of

superdiffusion of a driven TP crucially depends on the
system’s geometry, an aspect so far disregarded in this
context. In order to quantitatively confirm our predictions
on further crowded nonglassy systems, we performed off-
lattice simulations investigating the dynamics of a biased
TP confined to a controlled quasi-1D geometry for models
of monodisperse dense liquids (colloidal particles) and
monodisperse granular fluids (using an algorithm similar
to the one presented in Ref. [32]). In Fig. 4 we plot the
properly rescaled variance, where a clear data collapse is
visible. This validates the time, width, and driving force
dependences that feature in our analytical expression (1)
also for off-lattice systems. Finally, our analysis shows that
superdiffusion is not the hallmark of glassy systems but is a
generic feature of driven dynamics in confined crowded
systems.
Support from European Research Council starting Grant

No. FPTOpt-277998, the Academy of Finland, and the EU
IRSES DCP-PhysBio N269139 project is acknowledged.

FIG. 3 (color online). Top: rescaled variance as a function of
rescaled time "2

0t on stripelike lattices (L ¼ 3) for different
densities [solid line, gð"2

0tÞ]; see the Supplemental Material
[20]. Bottom: rescaled variance $ðtÞ ¼ %2

xðtÞ=ð"0tÞ !
ð2a20=&Þ lnð1="2

0a
2
0Þ as a function of rescaled time "2

0t on
a 2D infinite lattice for different densities [solid line, hð"2

0tÞ]
with hðxÞ ¼ ð2a20=&Þ ln½a20x=ð1 þ a20xÞ% þ a0 cothðf=2Þ þ
2a20&ð5 ! 2&Þ=ð2& ! 4Þ þ ð2a20=&Þðln8 þ ' ! 1Þ.

FIG. 4 (color online). Rescaled variance L%2
xðtÞ=v2 as a func-

tion of time obtained from off-lattice simulations for different
widths of stripes L and forces f (it can be shown that v( a0 in
the superdiffusion regime). CF: molecular dynamics of colloidal
fluids in confined striplike geometries. GF: simulations of dense
monodisperse granular fluid in confined striplike geometries; e
stands for the restitution parameter. More details on off-lattice
simulations are given in the Supplemental Material [20].
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2 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

Fig. 1 A realization of Sr for r = 10 (left) and r = 40 (right)

2 Wiener Sausage

2.1 Random Closed Sets

Let {W (t) : t ∏ 0} be the Wiener process with variance æ2 initiated at x 2 R defined on the probability space
(Ω, F, P ). Let {W1(t)}, . . . , {Wd(t)} be d independent Wiener processes starting at x1, . . . , xd 2 R, respec-
tively. Then, the random function {X(t), t ∏ 0} with X(t) =

°
W1(t), . . . , Wd(t)

¢
is called a d–dimensional

Brownian motion initiated at (x1, . . . , xd) 2 Rd; see e.g. [3].

The Minkowski sum of two sets A and B in Rd is given by A © B = {x + y : x 2 A, y 2 B}. If B is the ball
Br(o) of radius r ∏ 0 in Rd centered at the origin, the set Ar = A © Br(o) is often referred to as r–parallel
neighborhood of A. The operation A 7! Ar is known as dilation. Let F (C) be the family of all closed (compact)
subsets in Rd, respectively. Denote by æF the æ–algebra generated by the sets {F 2 F : F \ C 6= ;}, C 2 C.
A random closed set (RACS) Ξ is a random variable with values in F , i.e., Ξ : Ω ! F is a (F,æF )–measurable
mapping. For the general theory of random sets, see e.g. [16], [17], [21].

Let T > 0 be a fixed a time instant and let S(T ) = {X(t) : 0 ∑ t ∑ T} µ Rd denote the Brownian path in Rd.
We shall often write only S instead of S(T ) unless the time T is changed. The set Sr = S(T )©Br(o), r ∏ 0 is
called a Wiener sausage; see e.g. [25], p. 64.

In Figure 1, a simulated realization of Sr for æ = 1, T = 25000 and two dilation radii r = 10 and r = 40 is
given.
Lemma 2.1 For any r > 0, the Wiener sausage Sr is a compact RACS.

P r o o f. Notice that for each ! 2 Ω the set S(!) is compact as a continuous image of the compact interval
[0, T ]. To prove the measurability of S required in the definition of a random closed set, it is sufficient to show
that the indicator function 1(S \ C = ;) is a random variable for all C 2 C. Indeed, it holds

1(S \ C = ;) = 1(X(t) 62 C, t 2 [0, T ]) = 1(øx
C > T ) ,

where øx
C = inf{t ∏ 0 : X(t) 2 C} is the first hitting time of the set C for the Wiener process X started at x.

It is well known that øx
C is a random variable; cf. e.g. [30, § 6.1]. Hence, 1(øx

C > T ) is measurable and S is a
compact random closed set. Since the dilation preserves this property (see [21], p. 23), the Wiener sausage Sr is
a RACS as well.

2.2 Main Results

Let Vd denote the Lebesgue measure and Hs the s–dimensional Hausdorff measure in Rd; see e.g. [20]. Then
Hd°1

(@Sr) is a random variable, cf. [1] and references therein. The main result of the present paper is the
following representation formula of the expected surface area of the Wiener sausage Sr.
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would be smaller. In other words, ↵ is an indicator of the degree of mixing of the lattice
gas with larger values of ↵ corresponding to a better mixing.

Note that ↵ < 1 for systems in which the random walk is recurrent, while equation (35)
with ↵ = 1 holds for systems in which random walks are not recurrent. For its continuous
counterpart, the mean volume of the Wiener sausage shows exactly the same power-law
behaviour with ↵ < 1 for systems in which random (not necessarily standard Brownian)
motion is, in the nomenclature of de Gennes [77], compactly exploring space, and ↵ = 1
corresponds to the case of the so-called non-compact exploration. Examples corresponding
to the former and to the latter cases can be found in [75, 76, 79].

Noticing that, by virtue of equations (34) and (35), the mean number of new visited
sites �

n

⇠ n↵�1, supposing that ↵ < 1 (i.e., dealing with recurrent random walks or a
random motion which compactly explores space), and assuming that equation (33) still
holds, we infer that the leading long-time behaviour of the variance �2

x

is governed by the
second term on the right-hand side of equation (33), and so

�2
x

⇠ ⇢0 n2�↵. (36)

Capitalizing on the latter relation, we may draw an important qualitative conclusion: the
smaller ↵ is, i.e., the less e�cient the mixing of the lattice gas by the vacancies is, the faster
the growth of the variance of the BI displacement will be. For ↵ = 1, i.e., for non-recurrent
random walks or non-compact exploration of space, in which case the mixing of the system
by the vacancies is most e�cient, both terms in equation (33) grow in proportion to time
n, so the overall behaviour is di↵usive.

Note that in the marginal case, i.e., for infinite two-dimensional systems, the leading
long-time behaviour of the mean number of distinct sites visited follows (see, e.g., [65])
S

n

⇠ ⇡n/ ln(n), so �
n

⇠ ⇡/ ln(n) and we recover our exact result of equation (27).
We turn next to some specific confined geometries of interest. Suppose that we have

a three-dimensional slit-like geometry characterized by L
x

= L
y

= 1 and a fixed finite
thickness L

z

. For such a geometry one finds an e↵ectively two-dimensional behaviour for
the mean number of distinct sites visited, that is, S

n

⇠ L
z

n/ ln(n). This implies that the
mean number of new sites visited in the nth step behaves asymptotically as �

n

⇠ L
z

/ ln(n)
and consequently, the variance in the limit n ! 1 obeys an asymptotic, weakly super-
di↵usive law

�2
x

⇠ ⇢0

L
z

n ln(n), (37)

which is similar to the exact result that we obtained for infinite two-dimensional systems.

For infinite two-dimensional stripes such that L
x

= 1 and L
y

is fixed, one finds [72]
S

n

⇠ L
y

n1/2, which implies that �
n

⇠ L
y

/n1/2, so the variance exhibits a strongly super-
di↵usive behaviour:

�2
x

⇠ ⇢0

L
y

n3/2. (38)

Lastly, for infinitely long rectangular capillaries with L
x

= 1 and L
y

, L
z

fixed, we have
S

n

⇠ L
y

L
z

n1/2 and �
n

⇠ L
y

L
z

/n1/2, so

�2
x

⇠ ⇢0

L
y

L
z

n3/2, (39)
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would be smaller. In other words, ↵ is an indicator of the degree of mixing of the lattice
gas with larger values of ↵ corresponding to a better mixing.

Note that ↵ < 1 for systems in which the random walk is recurrent, while equation (35)
with ↵ = 1 holds for systems in which random walks are not recurrent. For its continuous
counterpart, the mean volume of the Wiener sausage shows exactly the same power-law
behaviour with ↵ < 1 for systems in which random (not necessarily standard Brownian)
motion is, in the nomenclature of de Gennes [77], compactly exploring space, and ↵ = 1
corresponds to the case of the so-called non-compact exploration. Examples corresponding
to the former and to the latter cases can be found in [75, 76, 79].

Noticing that, by virtue of equations (34) and (35), the mean number of new visited
sites �

n

⇠ n↵�1, supposing that ↵ < 1 (i.e., dealing with recurrent random walks or a
random motion which compactly explores space), and assuming that equation (33) still
holds, we infer that the leading long-time behaviour of the variance �2

x

is governed by the
second term on the right-hand side of equation (33), and so

�2
x

⇠ ⇢0 n2�↵. (36)

Capitalizing on the latter relation, we may draw an important qualitative conclusion: the
smaller ↵ is, i.e., the less e�cient the mixing of the lattice gas by the vacancies is, the faster
the growth of the variance of the BI displacement will be. For ↵ = 1, i.e., for non-recurrent
random walks or non-compact exploration of space, in which case the mixing of the system
by the vacancies is most e�cient, both terms in equation (33) grow in proportion to time
n, so the overall behaviour is di↵usive.

Note that in the marginal case, i.e., for infinite two-dimensional systems, the leading
long-time behaviour of the mean number of distinct sites visited follows (see, e.g., [65])
S

n

⇠ ⇡n/ ln(n), so �
n

⇠ ⇡/ ln(n) and we recover our exact result of equation (27).
We turn next to some specific confined geometries of interest. Suppose that we have

a three-dimensional slit-like geometry characterized by L
x

= L
y

= 1 and a fixed finite
thickness L

z

. For such a geometry one finds an e↵ectively two-dimensional behaviour for
the mean number of distinct sites visited, that is, S
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z

n/ ln(n). This implies that the
mean number of new sites visited in the nth step behaves asymptotically as �

n

⇠ L
z

/ ln(n)
and consequently, the variance in the limit n ! 1 obeys an asymptotic, weakly super-
di↵usive law
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n ln(n), (37)

which is similar to the exact result that we obtained for infinite two-dimensional systems.

For infinite two-dimensional stripes such that L
x

= 1 and L
y

is fixed, one finds [72]
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n1/2, which implies that �
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/n1/2, so the variance exhibits a strongly super-
di↵usive behaviour:
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Lastly, for infinitely long rectangular capillaries with L
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= 1 and L
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z
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systems and we anticipate that the ultimate diffusive
behavior might be in practice difficult to observe.

The physical mechanism responsible for the emergence
of the geometry-induced superdiffusion, revealed by our
exact approach, can be ascertained in the large f limit by a
mean-field version of the model, which stipulates that after
each interaction between the TP and a vacancy, all the other
vacancies remain uniformly distributed. The model can
then be reformulated as an effective CTRW that takes
into account explicitly the dynamics of the diffusive vacan-
cies. This is in contrast to the CTRWapproach presented in
Ref. [10] for glassy systems, which infers the mean and the
variance of the waiting-time distribution from the numeri-
cal data. In the quasi-1D case, the waiting time of the first
jump of the TP is extracted from the distribution!dS1=d!,
where S1 is the well-known survival probability of an
immobile target in a sea of diffusing predators S1ð!Þ /
expð!"0

ffiffiffi
!

p Þ [31]. Waiting times of subsequent jumps are
then drawn from the distribution!d½Tð!ÞS1ð!Þ%=d!, where
Tð!Þ is the survival probability of an immobile target
chased by a single random walker that starts near the target
[31]. Using the waiting time distribution described here,

standard calculations show the following. (i) Superdiffusion
with an exponent # ¼ 3=2 appears as a result of repeated
interactions between the TP and a single vacancy in
quasi-1D systems. This explains, in particular, why no
superdiffusion takes place in strictly single-file systems,
for which the cumulative displacement of the TP due to
interactions with a single vacancy amounts to at most one
lattice step. (ii) Diffusive behavior is established ultimately,
when other vacancies start to interact with the TP, after a
cross-over time which scales as 1="2

0. Note that while this
mean-field approach reproduces the scaling properties of
the variance with respect to the time and the density, it is
unable to predict the correct width and driving force
dependencies provided by our exact treatment.
Altogether, our results show that the emergence of

superdiffusion of a driven TP crucially depends on the
system’s geometry, an aspect so far disregarded in this
context. In order to quantitatively confirm our predictions
on further crowded nonglassy systems, we performed off-
lattice simulations investigating the dynamics of a biased
TP confined to a controlled quasi-1D geometry for models
of monodisperse dense liquids (colloidal particles) and
monodisperse granular fluids (using an algorithm similar
to the one presented in Ref. [32]). In Fig. 4 we plot the
properly rescaled variance, where a clear data collapse is
visible. This validates the time, width, and driving force
dependences that feature in our analytical expression (1)
also for off-lattice systems. Finally, our analysis shows that
superdiffusion is not the hallmark of glassy systems but is a
generic feature of driven dynamics in confined crowded
systems.
Support from European Research Council starting Grant
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FIG. 3 (color online). Top: rescaled variance as a function of
rescaled time "2

0t on stripelike lattices (L ¼ 3) for different
densities [solid line, gð"2

0tÞ]; see the Supplemental Material
[20]. Bottom: rescaled variance $ðtÞ ¼ %2

xðtÞ=ð"0tÞ !
ð2a20=&Þ lnð1="2

0a
2
0Þ as a function of rescaled time "2

0t on
a 2D infinite lattice for different densities [solid line, hð"2

0tÞ]
with hðxÞ ¼ ð2a20=&Þ ln½a20x=ð1 þ a20xÞ% þ a0 cothðf=2Þ þ
2a20&ð5 ! 2&Þ=ð2& ! 4Þ þ ð2a20=&Þðln8 þ ' ! 1Þ.

FIG. 4 (color online). Rescaled variance L%2
xðtÞ=v2 as a func-

tion of time obtained from off-lattice simulations for different
widths of stripes L and forces f (it can be shown that v( a0 in
the superdiffusion regime). CF: molecular dynamics of colloidal
fluids in confined striplike geometries. GF: simulations of dense
monodisperse granular fluid in confined striplike geometries; e
stands for the restitution parameter. More details on off-lattice
simulations are given in the Supplemental Material [20].
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Single-File dynamics

2

TP position, and set the basis for a refined analysis of
real trajectories of active particles in crowded single-file
environments.

The model. Consider a one-dimensional, infinite in
both directions line of integers x, populated by hard-core
particles present at mean density ⇢, performing symmet-
ric random walks. At t = 0 we introduce at the origin
of the lattice an active TP, hopping on its right (resp.
left) neighbor site with probability p

1

(resp. p�1

), which
process is also constrained by hard-core exclusion. In
what follows, we focus on the limit of a dense system,
corresponding to the limit of a small vacancies density
⇢

0

= 1 � ⇢ ⌧ 1. In this limit it is most convenient
to follow the vacancies, rather than the particles. We
thus formulate directly the dynamics of the vacancies,
which unambiguously defines the full dynamics of the
system. Following [25, 26], we assume that at each time
step each vacancy is moved to one of its nearest neigh-
bours sites, with equal probability. As long as a vacancy
is surrounded only by bath particles, it thus performs a
symmetrical nearest neighbors random walk. However,
due to the biased nature of the movement of the TP,
specific rules have to be defined when a vacancy is adja-
cent to the TP. In this case, if the vacancy occupies the
site to the right (resp. to the left) of the TP, we stip-
ulate that it has a probability q

1

= 1/(2p

1

+ 1) (resp.
q�1

= 1/(2p�1

+ 1)) to jump to the right (resp. to the
left) and 1� q

1

(resp. 1� q�1

) to jump to the left (resp.
to the right). These rules are the discrete counterpart of
a continuous time version of the model [30], as shown in
[26]. Note that a complete description of the dynamics
would requires additional rules for cases where two vacan-
cies are adjacent or have common neighbours; however,
these cases contribute only to O(⇢2), and can thus be left
unstated.

1/2 1/2

X

FIG. 1: (color online) Model notations.

Single file with a single vacancy. We start with an aux-
iliary problem in which the system contains just a single
vacancy initially at position Z, and which will be proved
next to be a key step in the resolution of the complete
problem with a (small) concentration of vacancies. Let
p

n
Z(X) denote the probability of having the TP at site X

at time moment n, given that the vacancy commenced
its random walk at Z. Clearly, in a single vacancy case
this probability is not equal to zero only for X = 0 and
X = 1, if Z > 0, and X = 0 and X = �1, if Z < 0.

Following Refs. [25, 26], we then represent p

n
Z(X) as:

p

n
Z(X) = �X,0

0

@1 �
nX

j=0

F

j
Z

1

A +

+
+1X

p=1

+1X

m1,m2,...,mp=1

+1X

mp+1=0

�m1+...+mp+1,n�

X, sign(Z)+(�1)p+1

2

⇥
0

@1 �
mp+1X

j=0

F

j
(�1)

p

1

A⇥ F

mp

(�1)

p+1 . . . F

m2
�1

F

m1
Z , (1)

where �a,b = 1 when a = b and is equal to zero, otherwise,
and F

n
Z is the probability that the vacancy, which started

its random walk at site Z, arrived to the origin for the
first time at time moment n.

Let now g(⇠) denote the generating function of any
time-dependent function g(n), g(⇠) ⌘ P1

n=0

g(n)⇠n.
Then, Eq. (1) implies that the generating function of
the propagator of the single-vacancy model can be ex-
pressed via the generating functions of the corresponding
first-passage distributions as

p±1

(X; ⇠) =
�X,0(1 � F±1

) + �X,±1

F±1

(1 � F⌥1

)

(1 � F

1

F�1

)(1 � ⇠)
, (2)

where we have used the short notations F±1

⌘ F±1

(⇠).
Single file with a small concentration of vacancies. We

now turn to the original problem with a small but finite
density ⇢

0

of vacancies and aim to express the desired
probability Pn(X) of finding the TP at site X at time
n via the propagator for a single-vacancy problem. We
consider first a finite chain with L sites, M of which are
vacant and the initial positions of the latter are denoted
by Zj , j = 1, . . . , M . Then, the probability Pn(X|{Zj})
of finding the TP at position X at time moment n as a
result of its interaction with all the vacancies collectively,
for their fixed initial configuration, writes

Pn(X|{Zj}) =
X

Y1,Y2,...,YM

�X,Y1+...+YM Pn({Yj}|{Zj}),

(3)
where Pn({Yj}|{Zj}) stands for the conditional probabil-
ity that within the time interval n the TP has performed
a displacement Y

1

due to interactions with the first va-
cancy, a displacement Y

2

due to the interactions with the
second vacancy, and etc. In the lowest order in the den-
sity of vacancies, the vacancies contribute independently
to the total displacement of the tracer, so that the latter
conditional probability decomposes

Pn({Yj}|{Zj}) ⇠
⇢0!0

MY

j=1

p

n
Zj

(Yj) , (4)

where p

n
Zj

(Yj) is the single-vacancy propagator and the
symbol ⇠

⇢0!0

signifies the leading behavior in the small

density of vacancies limit. Note that such an approxi-
mation yields results which are exact to the order O(⇢

0

),
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subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys

lim
t!1

!2
x

t
"

#0!0

8
>>><
>>>:

B quasi-1D;

4a20$
#1#0 lnð##1

0 Þ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0 3D lattice;

(3)

i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that

!2
x "

8
>>><
>>>:

tgð#2
0tÞ quasi-1D;

# 2a20
$ #0t lnðð#0a0Þ2 þ 1=tÞ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0t 3D lattice;

(4)

where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!
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x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !
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x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
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(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2
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superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
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x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!
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we find that the order in which these limits are taken
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2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
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eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
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L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
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(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2
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subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
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It, however, does not allow us, due to the nature of the limits
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still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
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such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that

!2
x "

8
>>><
>>>:

tgð#2
0tÞ quasi-1D;

# 2a20
$ #0t lnðð#0a0Þ2 þ 1=tÞ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0t 3D lattice;

(4)

where the scaling function g is explicitly calculated and
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const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
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(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $
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½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
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xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!
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x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2
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L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3
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L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,
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).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.
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Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
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where the scaling function g is explicitly calculated and
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const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded
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ance as a function of time in the superdiffusion regime. (a)
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(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
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2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
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prediction [solid line: A, defined after Eq. (1)].
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New phenomena
field-induced broadening of fluctuations in overcrowded environments



Molecular overcrowding

McGuffee and Elcock, PLoS Computational Biology  (2010)

In confined geometries, transport is passively 
subdiffusive but actively superdiffusive



 Glass and jamming transitions.
 Dynamical arrest and the broadening of the fluctuations. 
 Extensions to non-Brownian dynamics.
 Stochastic entropy.
 Transitions between steady-states.

Perspectives
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