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Motivation

v

Study of nonlinear effects in disordered lattices

v

Linear lattices: Anderson localization = no propagation

v

Nonlinear lattices: Weak subdiffusive spreading due to chaos

v

Problems: Linear modes are only exponentially localized, no
clear picture of spreading
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Usual nonlinear lattices

Z P/ 2q, K(q/+1 —q)?

3 + Uni(qr) + Vai(gi+1 — 1)

Strongly nonlinear lattice
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H= § ?’ + wzfl + Uni(ar) + Vai(qr+1 — 1)
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Sonic vacuum

» No phonons, no linear propagating waves and modes

» Localization length =1 (minimal possible)

» Only propagating waves are nonlinear ones — typically
compactons

» At finite energy density: typically strongly chaotic/turbulent
states
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Setup |: Spreading of a localized wave packet in 1-d
lattices [with Mario Mulansky, New J. Phys. (2013)]

Strong compactness of the spreading field:

Here " Anderson modes” are one site oscillators = no exponential
tails, the packet width L is well-defined at each moment of time
Disorder to prevent ballistic quasi-compactons

Regular lattice Disordered lattice
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How to average

Traditionally width at fixed time : (log L(t)), but due to large
fluctuations one averages here propagation speed at different
densities

With sharp edges the averaging of propagation time at fixed width,
i.e. at fixed density, is possible: log AT = (log(T(L+ 1) — T(L)))

IAT(L) = < T(L+1) - T(L) >

1l >
L

Goal: to describe AT(L, E) for different total energies E
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Guiding phenomenology

Use Nonlinear Diffusion Equation (NDE) as a heuristic model

op 0 ([ ,0p : _
E—D§<p a), with /pdx—E

Self-similar solution

1 ax? M
p(x, t) = [D(t — to)]t/+a) (E ~ 2(a+2)[D(t — to)]2/(a+2)>

yields subdiffusion

| — /22+3Ea/(2+a [D( )]1/(2+a)
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One parameter scaling

Reformulate

L = 22+3Ea/(2+a)(D(t_ to))l/(Z-‘ra)
a

as scaling relaions:

E E? EdL L

where w = E/L is the characteristic density, d—l_ AT

L\ 1/(2+2) —(a+1)
L <t to> ldt (E) a(w)+1=—

1dt

dlogw



Spreading in a homogeneously nonlinear lattice

Fully self-similar lattice:
rescaling energy < rescaling time

P

2
k

H = (qk+1 - Qk)
K

+ We e +

From the rescaling of energy and time it follows

K—2

2K
= L ~ (t — tp)5x—2
2K ( 0)

2k
tNE27K = a—=

For the case kK = 4 we have

L~ (t—t)*° AT ~ 154
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Nonlinearly coupled nonlinear oscillators
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Different scaling: AT /E®" = F(L/E)
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Nonlinearly coupled nonlinear oscillators
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Conclusions for 1-dimensional wavepacket spreading

» Nonlinearly coupled linear oscillators:
NDE scaling works, slowing down of spreading

» Nonlinearly coupled nonlinear oscillators:
FracNDE scaling works, good power-law
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Probability to observe chaos in a finite lattice in dependence on

length and density
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This is a strongly nonlinear lattice that is easy to model numerically

= . .

Ding-Dong model (Prosen, Robnik, 92) is a chain of linear
oscillators with elastic collisions
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Ding-Dong dynamics

Hamiltonian and collision condition
2 2
P+ 4
H= Z % when qx—qk+1 =1 then px — pri1, prr1 — Pk
k
Effective calculation of the collision times — simulation on very
long times pissible

Strongly nonlinear lattice: no linear waves, no phonons, all
propagating perturbations are nonlinear
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Compactons in a homogeneous Ding-Dong lattice
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Spreading in a homogeneous lattice

From random initial conditions: chaos, breathers, and
(almost)compactons appear
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Spreading in a disordered lattice

Disorder in distances or masses destroys compactons
Spreading effectively stops: no spreading events for time interval
10%°, a few chaotic spots appear
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Hamiltonian H =", , Ej x with

2 2

p3 Wws

Eij = 2k 4 LK
2 K

lgi k| "+

+ £(|Qi+1,k — Qi,k|’\ +|gi—1k — q,',k|’\
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FIG. 1. Instantaneous logarithmic local energy density log,, w; «
for k = 2, & = 4 at times 10%, 10*, and 10° (left to right panels). The
upper row shows results for a regular lattice (w;x = 1) with energy
E =1 (W =g =1 from variable transformations). The lower row
is from simulations of a disordered lattice (w; x € [0,1]) with energy
E = 10. The total size of the squares is 160 x 160 lattice sites.
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2-dimensional Nonlinear Diffusion Equation

% =V (p?Vp), with /pd27: E.

has a solution with growing radius

R? = 4834; L (t— )V and B = <£> "

The scaling prediction:

An® t—to\” 1
_— UV =
E E a+1’
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Spreading in regular 2-dimensional lattices

Linear oscillators, coupled via

nonlinearity power 4 nonlinearity power 6
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A simple resonance model of spreading

An initially non-excited (linear) site is excited by a neighbor
oscillating with amplitude € and frequency Q = 1 + ae*~? (this
shift of frequency follows from the nonlinear coupling term).

PP+ g n |g — esinQt|
2 A '

Hy
The resonant averaged Hamiltonian
(Hy) = —ac* 21 + F(V2le=2 cos 0, V2le=2 sin 0) |
can be rescaled by | — €2/, t — ¢*~2t which vyields
An? ~ 2/

in accordance with numerics
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Spreading in disordered 2-dimensional lattices

Linear oscillators, coupled via
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Conclusions for 2-dimensional wavepacket spreading

» Nonlinearly coupled linear oscillators:
NDE % = V (p?Vp) scaling works, good power laws

» Regular lattices:
effective powers in NDE a3, ~ 1,36, =2 = a = % -1

» lIrregular lattices:
effective powers in NDE a3 g = 3,36 ~5=>a=A—-1
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