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1 Coherent nonlinear dynamics of the atom-field

interaction

A two-level atom moving in a 1D standing laser wave

Ĥ =
P 2

2ma
+

1

2
~(ωa − ωf)σ̂z − ~Ω (σ̂− + σ̂+) cos kfX. (1)

Coherent evolution in the absence of any losses is governed by the

Hamilton-Schrödinger equations

ẋ = ωrp, ṗ = −u sinx, u̇ = ∆v,

v̇ = −∆u+ 2z cosx, ż = −2v cosx,
(2)

x ≡ kfX and p ≡ P/~kf are classical atomic center-of-mass position and

momentum, u and v are a synchronized and a quadrature components

of the atomic electric dipole moment, z is the atomic population

inversion. The dimensionless time τ ≡ Ωt. The normalized recoil

frequency, ωr ≡ ~k2
f/maΩ� 1, and the atom-field detuning, ∆ ≡ (ωf −

ωa)/Ω, are the control parameters.

Two integrals of motion: H ≡ ωr

2 p
2 − u cosx− ∆

2 z and the Bloch vector

u2 + v2 + z2 = 1.
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Figure 1: Left: maximum Lyapunov exponent λ vs atom-field detuning

∆ and initial atomic momentum p0. Right: typical atomic trajectory

in the regime of chaotic transport, ωr = 10−5.
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2 Regimes of motion

At zero detuning, the fast (u, v, z) and slow (x, p) variables are

separated allowing one to integrate exactly the equations of motion.

Off the resonance, atoms may wander in a chaotic way in the optical

lattice with alternating trappings in the wells of the optical potential

and flights over its hills (Argonov and SP, JETP 2003). The c.m.

motion is described by the equation of a nonlinear physical pendulum

with the frequency modulation

ẍ+ ωru(τ) sinx = 0. (3)

Atom moves in an optical potential −u cosx, a nonstationary structure

with potential wells of different depths.

4



3 Stochastic map for chaotic atomic transport

Chaotic atomic transport may occur even if the detuning is very

small, |∆| � 1 (Fig. 1). At |∆| 6= 0 and far from the nodes, the

variable u performs shallow oscillations. “Jumps” of u are expected

to occur near the nodes. Approximating the variable u between the

nodes by constant values, we construct a discrete stochastic mapping

(Argonov and SP, PRA 2007)

um = sin(Θ sinϕm + arcsinum−1), (4)

where Θ ≡ |∆|
√
π/ωrpnode is an angular amplitude of the jump, um value

of u just after the m-th node crossing, ϕm random phases, and pnode ≡√
2H/ωr the value of p when atom crosses a node (it is practically a

constant with a given value of H for all the nodes).
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With given values of ∆, ωr, and pnode, the map (4) has been shown

numerically to give a satisfactory probabilistic distribution of magni-

tudes of changes in the variable u just after crossing the nodes. The

stochastic map (4) is valid under the assumptions of small detunings

(|∆| � 1) and comparatively slow atoms (|ωrp| � 1). It allows to re-

duce the basic set of equations of motion (2) to the effective equation

of motion (3).
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Figure 2: Left: typical evolution of the atomic dipole-moment component

u for comparatively slow and slightly detuned atom,∆ = −0.01. Right:

graphic representation for um and θm ≡ arcsinum maps. H is a given

value of the atomic energy. Atoms either oscillate in potential wells

(trapping) or fly through the optical lattice (flight).
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4 Statistical properties of chaotic transport

4.1 Model for chaotic atomic transport

At H < 0, atom is trapped in the first well, at H > |u|max = 1, atom

moves in the same direction, whereas at 0 < H < 1, atom can change

its direction of motion. There is a direct correspondence between

chaotic atomic transport in the optical lattice and stochastic dynam-

ics of the Bloch variable u.

Let us introduce the map for arcsinum

θm ≡ arcsinum = Θ sinϕm + arcsinum−1, (5)

which describes a random motion of the point along a circle of the

unit radius (Fig. 2). The vertical projection of this point is um. The

value of the energy H specifies four regions, two of which correspond

to atomic oscillations in a well, and two other ones — to ballistic

motion in the optical lattice. “A flight” is an event when atom passes,

at least, two successive antinodes (and three nodes). The discrete

flight length is a number of nodes l the atom crossed. Center-of-

mass oscillations in a well of the optical potential will be called “a

trapping”.
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4.2 Statistics of chaotic atomic transport at large

jump magnitudes of u

If the angular amplitudes of the jumps are sufficiently large Θ & π
2 ,

then the internal atomic variable θm ≡ arcsinum just after crossing the

m-th node may take with the same probability practically any value

from the range [−π/2, π/2] (see Fig. 2). With given values of the recoil

frequency ωr = 10−5 and the energy in the range 0 < H < 1, large

jumps take place at medium detunings |∆| ∼ 0.1. The probability for

an atom to cross l successive nodes before turning is

Pfl(l) = P l
+ P− =

(
arccosH

π

)
exp

[
l ln

(
1− arccosH

π

)]
. (6)

It is a flight probability density function (PDF) in terms of the dis-

crete flight lengths. The exponential decay means that the atomic

transport is normal for sufficiently large values of the jump magni-

tudes of the variable u. The probability for a trapped atom to cross

the corresponding well node l times before escaping from the well is

Ptr(l) = P l
− P+ =

(
1− arccosH

π

)
exp

[
l ln

(
arccosH

π

)]
. (7)
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4.3 Statistics of chaotic atomic transport at small

jump magnitudes of u

With small values of the angular amplitudes, Θ � π
2 , it may take

a long time for an atom to exit from one of the trapping or flight

regions in Fig. 2. The result will depend on how long is the length of

the corresponding circular arc in Fig. 2 as compared with the jump

lengths.

• Jump lengths are small as compared with the lengths of both the

flight and trapping arcs

Θ� min{arcsinH, arccosH}. (8)

Motion of θm along the circle can be treated as a one-dimensional

diffusion process for a fictitious particle with the diffusion coeffi-

cient D = Θ2/4. The probability density for a particle to exit from

the interval of the length 2θmax after crossing l nodes is

P (l) ' Q

θ3
max

∞∑
j=0

(
j +

1

2

)2

exp
−
(
j + 1

2

)2
π2Dl

θ2
max

, (9)

where Q is a normalization constant and θmax is equal to arcsinH

for flights and arccosH for trappings.
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If l & θ2
max/D, then all the terms in the sum (9) are small as com-

pared with the first one. Both the flight and trapping statistics

are exponential in this case. To the contrary, if l � θ2
max/D, then

one should take into account a large number of terms in the sum

(9) and we get the power law decay

P (l) ' Qπ−2.5D−1.5

4
l−1.5, l� θ2

max

D
(10)

both for the flight and trapping PDFs. The power-law statistics

(10) implies anomalous atomic transport.

The size of the trapping and flight regions depends on the value

of the atomic energy H (see Fig. 2). At H >
√

2/2 (arcsinH > π/4),

the flight PDF Pfl has a longer decay than the trapping PDF Ptr.

On the contrary, at H <
√

2/2, the Ptr’s decay is longer than the

Pfl’s one.
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• If the jump magnitude is of the order of the size of the flight or

trapping regions

Θ ∼ arcsinH � π

2
or Θ ∼ arccosH � π

2
, (11)

then a particle may pass through the region making a small num-

ber of jumps l. So, the approximation of the diffusion process (8)

fails, and the corresponding PDF is exponential.
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In order to check the analytical results obtained, we compare them

with numerical simulation of the reduced (3) and basic (2) equations

of motion. In Fig. 3 (left) we compare the results (in a log-log scale)

in the case of small jump magnitudes of the variable u (∆ = −0.001)

and approximately equal sizes of the flight and trapping regions (H =

0.724 ∼
√

2/2). The initial segment of the function demonstrate the

power law decay with the slope −1.5 given by the formula (10). The

central segment cannot be fitted by a simple function. In the range

l & l2cr ' 3000, the decay is expected to be purely exponential in

accordance with the first term in Eq. (9).
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In order to demonstrate what happens with larger values of the jump

magnitudes, we take the detuning to be ∆ = −0.01 increasing the

jump magnitude in ten times as compared with the preceding cases.

With the taken value of the energy H = 0.8055 we provide a slight

domination of flights over trappings. The jump magnitude is now so

large that particles may pass through the flight and trapping regions

making a small number of jumps. It is expected that all the PDFs,

both the flight and trapping ones, should be practically exponential

in the whole range of the crossing number l. It is really the case (see

Fig. 3 (right)).
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Figure 3: Left: The flight Pfl and trapping Ptr PDFs for a chaotically

moving atom with small jumps of u at ∆ = −0.001. The energy value

H = 0.724 (p0 = 535) provides approximately equal sizes of the flight

and trapping regions in Fig. 2. Right: The same with large u-jumps at

∆ = −0.01. H = 0.8055 (p0 = 550) provides a domination of the flight

events over the trapping ones. White and black circles represent

results of integration of the basic (2) and reduced (3) equations of

motion, respectively, and the solid lines represent the analytical PDFs

(9).
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5 Poincaré sections
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Figure 4: Poincaré mapping in the Bloch variable space. (a) u < 0,

(b) u > 0, (c) magnification of the small region in (a) fragment, (d)

mapping with a single chaotic trajectory in (b) fragment, illustrating

the effect of sticking: W = 33.8, peff = 2600, ωr = 10−5, ∆ = −0.05.

Poincaré mappings for a number of ballistic atomic trajectories in

the western (u < 0) and eastern (u > 0) Bloch hemispheres (u, v, z) on

the plane v−z. ∆ = −0.05, ωr = 10−5, the total energy W = 33.8, x0 = 0.
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6 Atomic dynamic fractals
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Figure 5: The schematic diagram shows the optical lattice with detectors.
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Figure 6: Fractal-like dependence of the time of exit of atoms T (in units

of Ω−1) from a small region in the optical lattice on the detuning ∆

(in units of Ω): p0 = 200, z0 = −1, u0 = v0 = 0. Magnifications of the

detuning intervals are shown.

17



7 Wave packet motion and quantum-classical cor-

respondence

The Hamiltonian

Ĥ =
P̂ 2

2ma
+

~
2

(ωa − ωf)σ̂z − ~Ω (σ̂− + σ̂+) cos kfX̂, (12)

the state vector in the momentum representation

|Ψ(t)〉 =

∫
[a(P, t)|2〉+ b(P, t)|1〉]|P 〉dP, (13)

where a(P, t) and b(P, t) are the probability amplitudes to find atom

at time t with the momentum P in the excited, |2〉, and ground, |1〉,
states, respectively. The normalized Schrödinger equation for the

probability amplitudes (SP, JETP 2009)

iȧ(p) =
1

2
(ωrp

2 −∆)a(p)− 1

2
[b(p+ 1) + b(p− 1)],

iḃ(p) =
1

2
(ωrp

2 + ∆)b(p)− 1

2
[a(p+ 1) + a(p− 1)].

(14)
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The probability to find an atom with the momentum p at the moment

of time τ is P(p, τ) = |a(p, τ)|2 + |b(p, τ)|2. The internal atomic state is

described by the following real-valued combinations of the probability

amplitudes: u(τ) ≡ 2 Re
∫
dp [a(p, τ)b∗(p, τ)], v(τ) ≡ −2 Im

∫
dp[a(p, τ)b∗(p, τ)],

z(τ) ≡
∫
dp[|a(p, τ)|2 − |b(p, τ)|2], which are expected values of the syn-

chronized (with the laser field) and a quadrature components of the

atomic electric dipole moment (u and v, respectively) and the atomic

population inversion, z.
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Probability to make a nonadiabatic transition

PLZ = exp(−κ), (15)

from one of the nonresonant potentials to another one specified by

the Landau–Zener parameter

κ ≡ π
∆2

ωD
, (16)

The quantity ωr|pnode| is a normalized Doppler shift for an atom mov-

ing with the momentum |pnode|, i.e., ωD ≡ ωr|pnode| ≡ kf |vnode|/Ω.
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There are three regimes of atomic motion.

• κ � 1. The probability to make the transition is exponentially

small even when an atom crosses a node. The evolution of the

atomic wave packet is adiabatic in this case.

• κ� 1. The distance between the potentials at the nodes is small

and the atom changes the potential each time when crossing any

node with the probability close to unity. In the limit case ∆ = 0,

the atom moves in the resonant potentials.

• κ ' 1. The probability to change the potential or to remain in

the same one, upon crossing a node, are of the same order. In

this regime one may expect a proliferation of components of the

atomic wave packet at the nodes and complexification of the wave

function.
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Figure 7: Momentum probability distribution P(p, τ) of a Gaussian wave

packet vs time with p0 = 1000, σ2
p = 50, and ωr = 10−5 at (a) ∆ =

0.3, adiabatic motion, and (b) ∆ = 0.1, motion with nonadiabatic

transitions. The color codes the values of P(p, τ).
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The key result is that the squared angular amplitude of the u map is

exactly the Landau–Zener parameter (16), i.e., Θ2 = κ

arcsinum =
√
κ sinϕm + arcsinum−1. (17)

If κ ' 1, then the internal atomic variable arcsinum just after crossing

the m-th node may take with the same probability practically any

value from the range [−π/2, π/2]. It means semiclassically that the

momentum of a ballistic atom changes chaotically upon crossing the

field nodes. In accordance with the quantum formula (16), the cor-

responding atomic wave packet makes nonadiabatic transitions when

crossing the nodes and splits at each node. As the result, the wave

packet of a single atom becomes so complex that it may be called a

chaotic one in the sense that it is much more complicated than the

wave packets propagating adiabatically. Thus, nonadiabatic wave

chaos and semiclassical dynamical chaos occur in the same range of

the control parameters and are specified by the same Landau–Zener

parameter κ ' 1. In two limit cases with κ � 1 and κ � 1 both the

semiclassical and quantized translational ballistic motion are regular.
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