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SIR model for epidemics

Three species : susceptibles (S), infected (I), recovered (R)
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al = (1S —~I e (3 rate of infection transmission
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dR e ~ rate at which an infected recovers

e mean field fully connected model

I(t) + S(t) + R(t) = N

N being the total population



Outbreak of an epidemic

Initial condition : I(0) =1, S(0) =N -1~ N, R(0) =0
Outbreak regime

al

= = (BN —9)1

Reproduction rate: H




Deterministic and stochastic models

SIR is a deterministic model. In the outbreak fluctuations are important

e Stochastic process: Galton-Watson (mean field)

e cach infected individual transmits the disease at rate N3

e cach infected individual recovers at rate -y

o Ry < 1 epidemics extinction

Reproduction rate: e Ry > 1 epidemics invasion

o [y = 1 critical case




How far in space can an epidemic spread!?
Problem 1: How to model the space?

The good candidate: Brownian process with branching and death

In dt, each infected can:
e recovers with probability v dt

e infects with probability BN dt = vRydt

e otherwiese, it diffuses (D diffusion const.)



Problem 2: How to quantify the area that needs to be quarantined?

Algorithms: Graham Scan (Nlog(N))




Monitoring the outbreak




Real applications
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How to compute the convex hull of
Branching processes!

Cauchy formulas
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Support Function

max |z, cosf + 1y, sin 6]
0<7<¢

e 1,,(t) z-maximum up to time ¢
e {,, time location of the maximum

— X, sin 6 + Yt,,, COS (9‘9:() = Y¢,,




consider a 1d branching process evolving in (0, ?)

® 1, is the global maximum

e t,, 1s the location of the maximum

..=2Dt,,



Backward Fokker Planck equation

Q:(x,,) = Probalglobal max up to t < x,,]

Qirar(Tm) = vdt + RoydtQ3 (x,,) + [1 — y(Ro + 1)]dt{(Q (z — Ax))

o (Qi(@m — AT)) = Qy(am) — (AT)Ql(x) + (AL
e (Az)=10

° <Aaz2> = 2Ddt

(Qt(zm — Az)) = Qi(wm) + DAty Qi(zm) + .-



e initial condition Qi—q(m) = 0(xm )

e boundary condition Q(z,, < 0) =0

e boundary condition Q;(x,, — c0) =1
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Red lines: critical
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The critical case
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When t — oo the perimeter remains finite, but the area diverges!

How it is possible 7 ... Fluctuations
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Out of criticality

When Ry # 1, characteristic time t* ~ |Ry — 1|71,
For times ¢t < t* the epidemic behaves as in the critical regime.
In the subcritical regime, for t > t* the epidemic goes to extinction.

In the supercritical regime, with probability 1 — 1/ Ry epidemic explodes.




Supercritical

(L(t>1")) =4 (1

(A(t > 1t")) =4r (1
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Traveling front solution



Branching Brownian motion with death as a
model for the spatial extent of animal epidemics

Using Cauchy Formulas we can map the convex
hull problem in the extreme statistic of the |-
dimensional process

Backward F-P equations for the extreme
distributions

Critical case has very large fluctuations

Super Critical case: traveling front solution




How far in space can an epidemic spread!?

Problem 1: How to model the space?

The population is uniformly distributed

At time t = 0 an infected individual appears

. and moves in space

Brownian motion is the paradigm of animal migration

while human beings take the plane (even when they are sick)




Similar calculations allows to express the mean area as:

) == | " g [2em(1 — Qu(@m)) — Ti ()

Where the evolution of T (x,,) is governed by:

Both PDE can be integrated numerically and solved
in some asymptotic limit




Dimensional reduction
/QWM
a=3 [ o - orey)a

If the process is rotationally invariant any average is independent of 6

= m [(M*(0)) — (M'(0)%)]

» (L(t)) = 2m(xm (1))
(A(t)) = 7 [{23 (1)) — (y° (tm))]

This relation is valid ONLY in average




