Stochastic energy-exchange models of non-equilibrium.

Cristian Giardina'

Joint work with J. Kurchan (Paris), F. Redig (Delft) K. Vafayi (Eindhoven), G. Carinci, C. Giberti (Modena).

Fourier law $J = \kappa \nabla T$

- 1D Hamiltonian models:
 - Oscillators chains (Lebowitz, Lieb, Rieder, 1967): $\kappa \sim N$.
 - Non-linear oscillators chains (Lepri, Livi, Politi, Phys. Rep. 2003): $\kappa \sim N^{\alpha}$, $0 < \alpha < 1$
 - Non-linear fluctuating hydrodynamics (van Beijeren 2012, Spohn 2013)

Stochastic energy exchange models

Kipnis, Marchioro, Presutti (1982):

Observables: Energies at every site $z = (z_1, \dots, z_N) \in \mathbb{R}_+^N$

Dynamics: Select a bond at random and **uniformly** redistribute the energy under the constraint of conserving the total energy.

$$L^{KMP} f(z) = \sum_{i=1}^{N} \int_{0}^{1} dp \left[f(z_{1}, \dots, p(z_{i} + z_{i+1}), (1 - p)(z_{i} + z_{i+1}), \dots, z_{N}) - f(z) \right]$$

Outline

- From Hamiltonian to stochastics: a simple model.
- Duality Theory:
 - Brownian Momentum Process (BMP).
 - Symmetric Inclusion Process (SIP).
- Self-duality (SIP).
- Boundary driven systems.
- A larger picture & "redistribution" models.

From Hamiltonian to stochastics

A simple Hamiltonian model (G., Kurchan)

$$H(q,p) = \sum_{i=1}^{N} \frac{1}{2} \Big(p_i - A_i \Big)^2$$

 $A = (A_1(q), \dots, A_N(q))$ "vector potential" in \mathbb{R}^N .

$$\frac{dq_i}{dt} = v_i$$

$$\frac{dv_i}{dt} = \sum_{i=1}^{N} B_{ij} v_i$$

where

$$B_{ij}(q) = \frac{\partial A_i(q)}{\partial q_i} - \frac{\partial A_j(q)}{\partial q_i}$$

antisymmetric matrix containing the "magnetic fields"

Conservation laws

Conservation of Energy:
 Even if the forces depend on velocities and positions, the model conserves the total (kinetic) energy

$$\frac{d}{dt}\left(\sum_{i}\frac{1}{2}v_{i}^{2}\right)=\sum_{i,j}B_{ij}v_{i}v_{j}=0$$

• Conservation of Momentum: If we choose the $A_i(x)$ such that they are left invariant by the simultaneous translations $x_i \to x_i + \delta$, then the quantity $\sum_i p_i$ is conserved.

Example: discrete time dynamics with "magnetic kicks"

$$q(t+1) = q(t) + v(t)$$

$$v(t+1) = R(t+1) \cdot v(t)$$

with R(t) a rotation matrix

$$R(t+1) = \begin{pmatrix} \cos(B(q(t+1))) & \sin(B(q(t+1))) \\ -\sin(B(q(t+1))) & \cos(B(q(t+1))) \end{pmatrix}$$

Chaoticity properties of the map on \mathbb{T}_2

 $\begin{aligned} & \text{Figure: Poincare section with plane } q^{(2)} = 0 \text{ of the map} \left\{ \begin{array}{ll} q_{t+1}^{(1)} = & q_t^{(1)} + v \cos(\beta_t) \\ q_{t+1}^{(2)} = & q_t^{(2)} + v \sin(\beta_t) \\ \beta_{t+1} = & \beta_t + B(q_t^{(1)}, q_t^{(2)}) \end{array} \right. \\ & \text{with } v = \sqrt{v_1^2 + v_2^2}, \quad \beta = \arctan(v_2/v_1), \quad B(q^{(1)}, q^{(2)}) = q^{(1)} + q^{(2)} - 2\pi \ . \end{aligned}$

Numerical result

Thermal conductivity

Duality theory

Duality

Definition

 $(\eta_t)_{t\geq 0}$ Markov process on Ω with generator L,

 $(\xi_t)_{t\geq 0}$ Markov process on Ω_{dual} with generator L_{dual}

Duality

Definition

 $(\eta_t)_{t\geq 0}$ Markov process on Ω with generator L,

 $(\xi_t)_{t\geq 0}$ Markov process on Ω_{dual} with generator L_{dual}

 ξ_t is dual to η_t with duality function $D: \Omega \times \Omega_{dual} \to \mathbb{R}$ if $\forall t \geq 0$

$$\mathbb{E}_{\eta}(D(\eta_t, \xi)) = \mathbb{E}_{\xi}(D(\eta, \xi_t))$$
 $\forall (\eta, \xi) \in \Omega \times \Omega_{dual}$

Duality

Definition

 $(\eta_t)_{t\geq 0}$ Markov process on Ω with generator L,

 $(\xi_t)_{t\geq 0}$ Markov process on Ω_{dual} with generator L_{dual}

 ξ_t is dual to η_t with duality function $D: \Omega \times \Omega_{dual} \to \mathbb{R}$ if $\forall t \geq 0$

$$\mathbb{E}_{\eta}(D(\eta_t, \xi)) = \mathbb{E}_{\xi}(D(\eta, \xi_t))$$
 $\forall (\eta, \xi) \in \Omega \times \Omega_{dual}$

Equivalently

$$LD(\cdot,\xi)(\eta) = L_{dual}D(\eta,\cdot)(\xi)$$

How to find a dual process?

- Write the generator in abstract form, i.e. as an element of a Lie algebra, using creation and annihilation operators.
- Ouality is related to a change of representation, i.e. new operators that satisfy the same algebra.
- Self-duality is associated to symmetries, i.e. conserved quantities.

The method at work

Brownian momentum process

Brownian momentum process (BMP) on two sites

Given $(x_i, x_j) \equiv$ velocities of the couple (i, j)

$$L_{i,j}^{BMP}f(x_i,x_j) = \left(x_i \frac{\partial}{\partial x_i} - x_j \frac{\partial}{\partial x_i}\right)^2 f(x_i,x_j)$$

- ullet polar coordinates $L_{i,j}^{ extit{BMP}} = rac{\partial^2}{\partial heta_{ii}^2}$
- Brownian motion for angle $\theta_{i,j} = \arctan(x_i/x_i)$
- total kinetic energy conserved: $r_{i,j}^2 = x_i^2 + x_j^2$

Brownian momentum process (BMP)

For a graph
$$G = (V, E)$$
 let $\Omega = \bigotimes_{i \in V} \Omega_i = \mathbb{R}^{|V|}$.
Configuration $X = (X_1, \dots, X_{|V|}) \in \Omega$

Generator BMP

$$L^{BMP} = \sum_{(i,j)\in E} L_{i,j}^{BMP} = \sum_{(i,j)\in E} \left(x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i} \right)^2$$

Brownian momentum process (BMP)

For a graph
$$G = (V, E)$$
 let $\Omega = \bigotimes_{i \in V} \Omega_i = \mathbb{R}^{|V|}$.
Configuration $X = (X_1, \dots, X_{|V|}) \in \Omega$

Generator BMP

$$L^{BMP} = \sum_{(i,j)\in E} L_{i,j}^{BMP} = \sum_{(i,j)\in E} \left(x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i} \right)^2$$

Brownian momentum process (BMP)

For a graph
$$G = (V, E)$$
 let $\Omega = \bigotimes_{i \in V} \Omega_i = \mathbb{R}^{|V|}$.
Configuration $X = (X_1, \dots, X_{|V|}) \in \Omega$

Generator BMP

$$L^{BMP} = \sum_{(i,j)\in\mathcal{E}} L_{i,j}^{BMP} = \sum_{(i,j)\in\mathcal{E}} \left(x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i} \right)^2$$

Stationary measures: Gaussian product measures

$$d\mu(x) = \prod_{i=1}^{|V|} \frac{e^{-\frac{x_i^2}{2T}}}{\sqrt{2\pi T}} dx_i$$

Symmetric Inclusion Process (SIP)

$$\Omega_{dual} = \bigotimes_{i \in V} \Omega_i^{dual} = \{0, 1, 2, ...\}^{|V|}$$

Configuration $\xi = (\xi_1, ..., \xi_{|V|}) \in \Omega_{dual}$

Symmetric Inclusion Process (SIP)

$$\Omega_{dual} = \bigotimes_{i \in V} \Omega_i^{dual} = \{0, 1, 2, ...\}^{|V|}$$

Configuration $\xi = (\xi_1, ..., \xi_{|V|}) \in \Omega_{dual}$

Generator SIP

$$L^{SIP}f(\xi) = \sum_{(i,j)\in E} L_{i,j}^{SIP}f(\xi)$$

$$= \sum_{(i,j)\in E} \xi_i \left(\xi_j + \frac{1}{2}\right) \left[f(\xi^{i,j}) - f(\xi)\right] + \left(\xi_i + \frac{1}{2}\right) \xi_j \left[f(\xi^{j,i}) - f(\xi)\right]$$

Symmetric Inclusion Process (SIP)

$$\Omega_{dual} = \bigotimes_{i \in V} \Omega_i^{dual} = \{0, 1, 2, \ldots\}^{|V|}$$

Configuration $\xi = (\xi_1, \ldots, \xi_{|V|}) \in \Omega_{dual}$

Generator SIP

$$L^{SIP} f(\xi) = \sum_{(i,j) \in E} L_{i,j}^{SIP} f(\xi)$$

$$= \sum_{(i,j) \in E} \xi_i \left(\xi_j + \frac{1}{2} \right) \left[f(\xi^{i,j}) - f(\xi) \right] + \left(\xi_i + \frac{1}{2} \right) \xi_j \left[f(\xi^{j,i}) - f(\xi) \right]$$

Stationary measures: product of Negative Binomial(r, p) with r = 2

$$\mathbb{P}_r(\xi_1 = n_1, \dots, \xi_{|V|} = n_{|V|}) = \prod_{i=1}^{|V|} \frac{p^{n_i} (1-p)^r}{n_i!} \frac{\Gamma(r+n_i)}{\Gamma(r)}$$

Duality between BMP and SIP

Theorem 1

The process $\{x(t)\}_{t\geq 0}$ with generator $L=L^{BMP}$ and the process $\{\xi(t)\}_{t\geq 0}$ with generator $L_{dual}=L^{SIP}$ are dual on

$$D(x,\xi) = \prod_{i \in V} \frac{x_i^{2\xi_i}}{(2\xi_i - 1)!!}$$

Duality between BMP and SIP

Theorem 1

The process $\{x(t)\}_{t\geq 0}$ with generator $L=L^{BMP}$ and the process $\{\xi(t)\}_{t\geq 0}$ with generator $L_{dual}=L^{SIP}$ are dual on

$$D(x,\xi) = \prod_{i \in V} \frac{x_i^{2\xi_i}}{(2\xi_i - 1)!!}$$

Proof: An explicit computation gives

$$L^{BMP}D(\cdot,\xi)(x) = L^{SIP}D(x,\cdot)(\xi)$$

Duality explained

SU(1, 1) ferromagnetic quantum spin chain

Abstract operator

$$\mathscr{L} = \sum_{(i,j)\in E} \left(K_i^+ K_j^- + K_i^- K_j^+ - 2K_i^o K_j^o + \frac{1}{8} \right)$$

with $\{K_i^+, K_i^-, K_i^o\}_{i \in V}$ satisfying SU(1,1) commutation relations:

$$[K_i^o, K_j^{\pm}] = \pm \delta_{i,j} K_i^{\pm}$$
 $[K_i^-, K_j^+] = 2\delta_{i,j} K_i^o$

Duality explained

SU(1,1) ferromagnetic quantum spin chain

Abstract operator

$$\mathscr{L} = \sum_{(i,j) \in E} \left(K_i^+ K_j^- + K_i^- K_j^+ - 2K_i^o K_j^o + \frac{1}{8} \right)$$

with $\{K_i^+, K_i^-, K_i^o\}_{i \in V}$ satisfying SU(1, 1) commutation relations:

$$[K_i^o, K_i^{\pm}] = \pm \delta_{i,j} K_i^{\pm}$$
 $[K_i^-, K_i^+] = 2\delta_{i,j} K_i^o$

Duality between L^{BMP} e L^{SIP} corresponds to two different representations of the operator \mathscr{L} .

Duality fct is the intertwiner.

Continuous representation

$$K_{i}^{+} = \frac{1}{2}x_{i}^{2} \qquad K_{i}^{-} = \frac{1}{2}\frac{\partial^{2}}{\partial x_{i}^{2}}$$

$$K_{i}^{o} = \frac{1}{4}\left(x_{i}\frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{i}}x_{i}\right)$$

satisfy commutation relations of the SU(1,1) Lie algebra

$$[K_i^o,K_i^{\pm}]=\pm K_i^{\pm} \qquad [K_i^-,K_i^+]=2K_i^o$$

Continuous representation

$$\begin{split} K_i^+ &= \frac{1}{2} x_i^2 & K_i^- &= \frac{1}{2} \frac{\partial^2}{\partial x_i^2} \\ K_i^o &= \frac{1}{4} \left(x_i \frac{\partial}{\partial x_i} + \frac{\partial}{\partial x_i} x_i \right) \end{split}$$

satisfy commutation relations of the SU(1,1) Lie algebra

$$[K_i^o,K_i^\pm]=\pm K_i^\pm \qquad [K_i^-,K_i^+]=2K_i^o$$

In this representation

$$\mathscr{L} = L^{BMP} = \sum_{(i,j) \in E} \left(x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i} \right)^2$$

Discrete representation

$$\mathcal{K}_{i}^{+}|\xi_{i}\rangle = \left(\xi_{i} + \frac{1}{2}\right)|\xi_{i} + 1\rangle$$

$$\mathcal{K}_{i}^{-}|\xi_{i}\rangle = \xi_{i}|\xi_{i} - 1\rangle$$

$$\mathcal{K}_{i}^{o}|\xi_{i}\rangle = \left(\xi_{i} + \frac{1}{4}\right)|\xi_{i}\rangle$$

Discrete representation

$$\begin{split} \mathcal{K}_{i}^{+}|\xi_{i}\rangle &= \left(\xi_{i} + \frac{1}{2}\right)|\xi_{i} + 1\rangle \\ \mathcal{K}_{i}^{-}|\xi_{i}\rangle &= \xi_{i}|\xi_{i} - 1\rangle \\ \mathcal{K}_{i}^{o}|\xi_{i}\rangle &= \left(\xi_{i} + \frac{1}{4}\right)|\xi_{i}\rangle \end{split}$$

In a canonical base

Discete representation

$$\mathcal{K}_{i}^{+}|\xi_{i}\rangle = \left(\xi_{i} + \frac{1}{2}\right)|\xi_{i} + 1\rangle$$

$$\mathcal{K}_{i}^{-}|\xi_{i}\rangle = \xi_{i}|\xi_{i} - 1\rangle$$

$$\mathcal{K}_{i}^{0}|\xi_{i}\rangle = \left(\xi_{i} + \frac{1}{4}\right)|\xi_{i}\rangle$$

In this representation

$$\mathcal{L}f(\xi) = L^{SIP}f(\xi)$$

$$= \sum_{(i,j) \in \mathcal{F}} \xi_i \left(\xi_j + \frac{1}{2} \right) \left[f(\xi^{i,j}) - f(\xi) \right] + \left(\xi_i + \frac{1}{2} \right) \xi_j \left[f(\xi^{j,i}) - f(\xi) \right]$$

Intertwiner

$$K_i^+ D_i(\cdot, \xi_i)(x_i) = \mathcal{K}_i^+ D_i(x_i, \cdot)(\xi_i)$$

$$K_i^- D_i(\cdot, \xi_i)(x_i) = \mathcal{K}_i^- D_i(x_i, \cdot)(\xi_i)$$

$$K_i^o D_i(\cdot, \xi_i)(x_i) = \mathcal{K}_i^o D_i(x_i, \cdot)(\xi_i)$$

From the creation operators

$$\frac{x_i^2}{2}D_i(x_i,\xi_i) = \left(\xi_i + \frac{1}{2}\right)D(x,\xi_i + 1)$$

Therefore

$$D_i(x_i, \xi_i) = \frac{x_i^{2\xi_i}}{(2\xi_i - 1)!!} D_i(x_i, 0)$$

Self-duality

Markov chain with finite state space

Markov chain with finite state space

1. Matrix formulation of self-duality ($L_{dual} = L$)

$$LD = DL^T$$

1. Matrix formulation of self-duality ($L_{dual} = L$)

$$LD = DL^T$$

1. Matrix formulation of self-duality ($L_{dual} = L$)

$$\mathbf{LD} = \mathbf{DL}^T$$

$$LD(\cdot,\xi)(\eta) = LD(\eta,\cdot)(\xi)$$

1. Matrix formulation of self-duality ($L_{dual} = L$)

$$LD = DL^T$$

$$\sum_{\eta'} \mathbf{L}(\eta, \eta') \mathbf{D}(\eta', \xi) = LD(\cdot, \xi)(\eta) = LD(\eta, \cdot)(\xi)$$

1. Matrix formulation of self-duality ($L_{dual} = L$)

$$LD = DL^T$$

$$\sum_{\boldsymbol{\eta}'} \mathbf{L}(\boldsymbol{\eta},\boldsymbol{\eta}') \mathbf{D}(\boldsymbol{\eta}',\boldsymbol{\xi}) = LD(\cdot,\boldsymbol{\xi})(\boldsymbol{\eta}) = LD(\boldsymbol{\eta},\cdot)(\boldsymbol{\xi}) = \sum_{\boldsymbol{\xi}'} \mathbf{L}(\boldsymbol{\xi},\boldsymbol{\xi}') \mathbf{D}(\boldsymbol{\eta},\boldsymbol{\xi}')$$

2. trivial self-duality \iff reversible measure μ

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

2. trivial self-duality \iff reversible measure μ

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

2. trivial self-duality \iff reversible measure μ

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

$$\mathsf{Ld}(\eta,\xi) = \mathsf{dL^T}(\eta,\xi)$$

2. trivial self-duality \iff reversible measure μ

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

$$rac{\mathbf{L}(\eta, \xi)}{\mu(\xi)} = \mathbf{Ld}(\eta, \xi) = \mathbf{dL^T}(\eta, \xi)$$

2. trivial self-duality \iff reversible measure μ

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

$$\frac{\mathbf{L}(\eta,\xi)}{\mu(\xi)} = \mathbf{Ld}(\eta,\xi) = \mathbf{dL^T}(\eta,\xi) = \frac{\mathbf{L}(\xi,\eta)}{\mu(\eta)}$$

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

Indeed

LD

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

Indeed

 ${\bf L}{\bf D}={\bf L}{\bf S}{\bf d}$

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

$$\mathbf{LD} = \mathbf{LSd} = \mathbf{SLd}$$

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

$$LD = LSd = SLd = SdL^T$$

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

$$LD = LSd = SLd = SdL^T = DL^T$$

- 3. S: symmetry of the generator, i.e. [L, S] = 0,d: trivial self-duality function,
 - \longrightarrow **D** = **Sd** self-duality function.

Indeed

$$LD = LSd = SLd = SdL^T = DL^T$$

Self-duality is related to the action of a symmetry.

Self-duality of the SIP process

Theorem 2

The process with generator L^{SIP} is self-dual on functions

$$D(\eta,\xi) = \prod_{i \in V} \frac{\eta_i!}{(\eta_i - \xi_i)!} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} + \xi_i\right)}$$

Self-duality of the SIP process

Theorem 2

The process with generator L^{SIP} is self-dual on functions

$$D(\eta, \xi) = \prod_{i \in V} \frac{\eta_i!}{(\eta_i - \xi_i)!} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} + \xi_i\right)}$$

Proof:

$$[L^{SIP}, \sum_{i} K_{i}^{o}] = [L^{SIP}, \sum_{i} K_{i}^{+}] = [L^{SIP}, \sum_{i} K_{i}^{-}] = 0$$

Self-duality fct related to the simmetry $S = e^{\sum_i K_i^+}$

Boundary driven systems.

Brownian Momentum Process with reservoirs

Inclusion Process with absorbing reservoirs

Duality between BMP with reservoirs and SIP with absorbing boundaries

Configurations
$$\bar{\xi} = (\xi_0, \xi_1, \dots, \xi_N, \xi_{N+1}) \in \Omega_{dual} = \mathbb{N}^{N+2}$$

Duality between BMP with reservoirs and SIP with absorbing boundaries

Configurations
$$\bar{\xi} = (\xi_0, \xi_1, \dots, \xi_N, \xi_{N+1}) \in \Omega_{dual} = \mathbb{N}^{N+2}$$

Theorem 3

The process $\{x(t)\}_{t\geq 0}$ with generator $L^{BMP,res}$ is dual to the process $\{\bar{\xi}(t)\}_{t\geq 0}$ with generator $L^{SIP,abs}$ on

$$D(x,\bar{\xi}) = T_L^{\xi_0} \left(\prod_{i=1}^N \frac{x_i^{2\xi_i}}{(2\xi_i - 1)!!} \right) T_R^{\xi_{N+1}}$$

CONSEQUENCES OF DUALITY

- From continuous to discrete:
 Interacting diffusions (BMP) studied via particle systems (SIP).
- From many to few:
 n-points correlation functions of N particles using n dual walkers
 Remark: n

 N
- From reservoirs to absorbing boundaries:
 Stationary state of dual process described by absorption probabilities at the boundaries

Let
$$\mathbb{P}_{\bar{\xi}}(a,b)=\mathbb{P}(\xi_0(\infty)=a,\xi_{N+1}(\infty)=b\mid \xi(0)=\bar{\xi}).$$
 Then

$$\mathbb{E}(D(x,\bar{\xi})) = \sum_{a,b} T_L^a T_R^b \mathbb{P}_{\bar{\xi}}(a,b)$$

Let
$$\mathbb{P}_{\bar{\xi}}(a,b) = \mathbb{P}(\xi_0(\infty) = a, \xi_{N+1}(\infty) = b \mid \xi(0) = \bar{\xi})$$
. Then
$$\mathbb{E}(D(x,\bar{\xi})) = \sum T_L^a T_R^b \, \, \mathbb{P}_{\bar{\xi}}(a,b)$$

$$\mathbb{E}(D(x,\bar{\xi})) = \lim_{t\to\infty} \mathbb{E}_{x_0}(D(x_t,\bar{\xi}))$$

Let
$$\mathbb{P}_{\bar{\xi}}(a,b)=\mathbb{P}(\xi_0(\infty)=a,\xi_{N+1}(\infty)=b\mid \xi(0)=\bar{\xi})$$
. Then
$$\mathbb{E}(D(x,\bar{\xi}\,))=\sum_{a,b}T_L^aT_R^b\ \mathbb{P}_{\bar{\xi}}(a,b)$$

$$\mathbb{E}(D(x,\bar{\xi})) = \lim_{t \to \infty} \mathbb{E}_{x_0}(D(x_t,\bar{\xi}))$$
$$= \lim_{t \to \infty} \mathbb{E}_{\bar{\xi}}(D(x_0,\bar{\xi}_t))$$

Let
$$\mathbb{P}_{\bar{\xi}}(a,b) = \mathbb{P}(\xi_0(\infty) = a, \xi_{N+1}(\infty) = b \mid \xi(0) = \bar{\xi})$$
. Then

$$\mathbb{E}(D(x,\bar{\xi})) = \sum_{a,b} T_L^a T_R^b \mathbb{P}_{\bar{\xi}}(a,b)$$

$$\begin{split} \mathbb{E}(D(x,\bar{\xi}\,)) &= \lim_{t \to \infty} \mathbb{E}_{x_0}(D(x_t,\bar{\xi}\,)) \\ &= \lim_{t \to \infty} \, \mathbb{E}_{\bar{\xi}}(D(x_0,\bar{\xi}_t\,)) \\ & \text{using} \qquad D(x,\bar{\xi}) = T_L^{\xi_0}\left(\prod_{i=1}^N \frac{X_i^{2\xi_i}}{(2\xi_i-1)!!}\right) T_R^{\xi_{N+1}} \end{split}$$

Let
$$\mathbb{P}_{\bar{\xi}}(a,b) = \mathbb{P}(\xi_0(\infty) = a, \xi_{N+1}(\infty) = b \mid \xi(0) = \bar{\xi})$$
. Then

$$\mathbb{E}(D(x,\bar{\xi})) = \sum_{a,b} T_L^a T_R^b \mathbb{P}_{\bar{\xi}}(a,b)$$

$$\begin{split} \mathbb{E}(D(x,\bar{\xi}\,)) &= \lim_{t \to \infty} \mathbb{E}_{x_0}(D(x_t,\bar{\xi}\,)) \\ &= \lim_{t \to \infty} \, \mathbb{E}_{\bar{\xi}}(D(x_0,\bar{\xi}_t\,)) \\ & \qquad \qquad using \qquad D(x,\bar{\xi}) = T_L^{\xi_0}\left(\prod_{i=1}^N \frac{x_i^{2\xi_i}}{(2\xi_i-1)!!}\right) T_R^{\xi_{N+1}} \\ &= \mathbb{E}_{\bar{\xi}}(T_L^{\xi_0(\infty)}T_R^{\xi_{N+1}(\infty)}) \end{split}$$

Temperature profile

$$\vec{\xi} = (0, \dots, 0, \frac{1}{1}, 0, \dots, 0) \Rightarrow D(x, \vec{\xi}) = x_i^2$$

site $i \nearrow \Rightarrow 1$ SIP walker $(X_t)_{t > 0}$ with $X_0 = i$

Temperature profile

$$\vec{\xi} = (0, \dots, 0, \frac{1}{1}, 0, \dots, 0) \Rightarrow D(x, \vec{\xi}) = x_i^2$$

 \Rightarrow 1 SIP walker $(X_t)_{t \ge 0}$ with $X_0 = i$

$$\mathbb{E}\left(x_i^2\right) = T_L \, \mathbb{P}_i(X_\infty = 0) + T_R \, \mathbb{P}_i(X_\infty = N+1)$$

Temperature profile

$$\vec{\xi} = (0, \dots, 0, \frac{1}{1}, 0, \dots, 0) \Rightarrow D(x, \vec{\xi}) = x_i^2$$

 \Rightarrow 1 SIP walker $(X_t)_{t \ge 0}$ with $X_0 = i$

$$\mathbb{E}\left(x_i^2\right) = T_L \, \mathbb{P}_i(X_\infty = 0) + T_R \, \mathbb{P}_i(X_\infty = N+1)$$

$$\mathbb{E}(x_i^2) = T_L + \left(\frac{T_R - T_L}{N+1}\right)i$$

$$\langle J \rangle = \mathbb{E}(x_{i+1}^2) - \mathbb{E}(x_i^2) = \frac{T_R - T_L}{N+1}$$
 Fourier's law

Energy covariance

If
$$\vec{\xi} = (0, \dots, 0, \frac{1}{1}, 0, \dots, 0, \frac{1}{1}, 0, \dots, 0)$$
 \Rightarrow $D(x, \vec{\xi}) = x_i^2 x_j^2$ site $i \nearrow$ site $j \nearrow$

Energy covariance

If
$$\vec{\xi} = (0, \dots, 0, \frac{1}{1}, 0, \dots, 0, \frac{1}{1}, 0, \dots, 0)$$
 \Rightarrow $D(x, \vec{\xi}) = x_i^2 x_j^2$ site $i \nearrow$ site $j \nearrow$

In the dual process we initialize two SIP walkers $(X_t, Y_t)_{t\geq 0}$ with $(X_0, Y_0) = (i, j)$

Inclusion Process with absorbing reservoirs

$$\mathbf{E}(x_i^2 x_i^2) = T_L^2 \mathbf{P}(\bullet) + T_R^2 \mathbf{P}(\bullet) + T_L T_R(\mathbf{P}(\bullet) + \mathbf{P}(\bullet))$$

Energy covariance

$$\mathbb{E}\left(x_i^2 x_j^2\right) - \mathbb{E}\left(x_i^2\right) \mathbb{E}\left(x_j^2\right) = \frac{2i(N+1-j)}{(N+3)(N+1)^2} (T_R - T_L)^2 \ge 0$$

Remark: up to a sign, covariance is the same in the boundary driven Exclusion Process.

A larger picture & redistribution models

- (i). Brownian Energy Process *BEP*(*m*)
- (ii). Instantaneous thermalization
- (iii). Symmetric exclusion (SEP(n))

(i) Brownian Energy Process: BEP

The energies of the Brownian Momentum Process

$$z_i(t)=x_i^2(t)$$

(i) Brownian Energy Process: BEP

The energies of the Brownian Momentum Process

$$z_i(t) = x_i^2(t)$$

evolve with

Generator

$$L^{BEP} = \sum_{(i,j) \in E} z_i z_j \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_j} \right)^2 - \frac{1}{2} (z_i - z_j) \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_j} \right)$$

Generalized Brownian Energy Process: BEP(m)

$$L^{BMP(m)} = \sum_{(i,j)\in E} \sum_{\alpha,\beta=1}^{m} \left(x_{i,\alpha} \frac{\partial}{\partial x_{j,\beta}} - x_{j,\beta} \frac{\partial}{\partial x_{i,\alpha}} \right)^{2}$$

Generalized Brownian Energy Process: BEP(m)

$$L^{BMP(m)} = \sum_{(i,j)\in E} \sum_{\alpha,\beta=1}^{m} \left(x_{i,\alpha} \frac{\partial}{\partial x_{j,\beta}} - x_{j,\beta} \frac{\partial}{\partial x_{i,\alpha}} \right)^{2}$$

The energies
$$z_i(t) = \sum_{\alpha=1}^{m} x_{i,\alpha}^2(t)$$

evolve with

Generator

$$L^{BEP(m)} = \sum_{(i,j)\in E} z_i z_j \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_j}\right)^2 - \frac{m}{2} (z_i - z_j) \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_j}\right)$$

Stationary measures: product Gamma($\frac{m}{2}$, θ)

Adding-up SU(1,1) spins

$$\mathcal{L}^{(\textbf{m})} = \sum_{(i,j) \in E} \left(\mathcal{K}_i^+ \mathcal{K}_j^- + \mathcal{K}_i^- \mathcal{K}_j^+ - 2 \mathcal{K}_i^o \mathcal{K}_j^o + \frac{\textit{m}^2}{8} \right)$$

$$\left\{\mathcal{K}_{i}^{+},\mathcal{K}_{i}^{-},\mathcal{K}_{i}^{o}\right\}_{i\in V}$$
 satisfy $SU(1,1)$

Adding-up SU(1,1) spins

$$\mathcal{L}^{(\textbf{m})} = \sum_{(i,j) \in E} \left(\mathcal{K}_i^+ \mathcal{K}_j^- + \mathcal{K}_i^- \mathcal{K}_j^+ - 2 \mathcal{K}_i^o \mathcal{K}_j^o + \frac{\textbf{m}^2}{8} \right)$$

$$\left\{\mathcal{K}_{i}^{+},\mathcal{K}_{i}^{-},\mathcal{K}_{i}^{o}\right\}_{i\in V}$$
 satisfy $SU(1,1)$

$$\begin{cases}
\mathcal{K}_{i}^{+} = z_{i} \\
\mathcal{K}_{i}^{-} = z_{i} \partial_{z_{i}}^{2} + \frac{m}{2} \partial_{z_{i}} \\
\mathcal{K}_{i}^{0} = z_{i} \partial_{z_{i}} + \frac{m}{4}
\end{cases}$$

$$\begin{cases} \mathcal{K}_{i}^{+}|\xi_{i}\rangle = \left(\xi_{i} + \frac{m}{2}\right)|\xi_{i} + 1\rangle \\ \mathcal{K}_{i}^{-}|\xi_{i}\rangle = \xi_{i}|\xi_{i} - 1\rangle \\ \mathcal{K}_{i}^{o}|\xi_{i}\rangle = \left(\xi_{i} + \frac{m}{2}\right)|\xi_{i}\rangle \end{cases}$$

Generalized Symmetric Inclusion Process: SIP(m)

Generator

$$L^{SIP(m)}f(\xi) = \sum_{(i,j)\in E} \xi_i \left(\xi_j + \frac{\mathsf{m}}{2}\right) \left[f(\xi^{i,j}) - f(\xi)\right] + \xi_j \left(\xi_i + \frac{\mathsf{m}}{2}\right) \left[f(\xi^{j,i}) - f(\xi)\right]$$

Duality between BEP(m) and SIP(m)

Theorem 4

The process $\{z(t)\}_{t\geq 0}$ with generator $L^{BEP(m)}$ and the process $\{\xi(t)\}_{t\geq 0}$ with generator $L^{SIP(m)}$ are dual on

$$D(z,\xi) = \prod_{i \in V} z_i^{\xi_i} \frac{\Gamma(\frac{m}{2})}{\Gamma(\frac{m}{2} + \xi_i)}$$

(ii) Redistribution models

Generator

$$L^{KMP}f(z) = \sum_{i} \int_{0}^{1} dp[f(z_{1}, \dots, p(z_{i} + z_{i+1}), (1 - p)(z_{i} + z_{i+1}), \dots, z_{N}) - f(z)]$$

KMP model is an instantaneous thermalization limit of BEP(2).

$$L_{i,j}^{IT}f(z_i,z_j)$$

$$L_{i,j}^{IT}f(z_i,z_j) := \lim_{t\to\infty} \left(e^{tL_{i,j}^{BEP(m)}} - 1\right) f(z_i,z_j)$$

$$\begin{split} L_{i,j}^{IT} f(z_i, z_j) &:= \lim_{t \to \infty} \left(e^{t L_{i,j}^{BEP(m)}} - 1 \right) f(z_i, z_j) \\ &= \int dz_i' dz_j' \; \rho^{(m)}(z_i', z_j' \mid z_i' + z_j' = z_i + z_j) [f(z_i', z_j') - f(z_i, z_j)] \end{split}$$

$$\begin{split} L_{i,j}^{TT}f(z_i,z_j) &:= \lim_{t \to \infty} \left(e^{tL_{i,j}^{BEP(m)}} - 1 \right) f(z_i,z_j) \\ &= \int dz_i' dz_j' \; \rho^{(m)}(z_i',z_j' \mid z_i' + z_j' = z_i + z_j) [f(z_i',z_j') - f(z_i,z_j)] \\ &= \int_0^1 dp \; \nu^{(m)}(p) \left[f(p(z_i + z_j), (1-p)(z_i + z_j)) - f(z_i,z_j) \right] \end{split}$$

$$\begin{split} L_{i,j}^{IT}f(z_i,z_j) &:= \lim_{t \to \infty} \left(e^{tL_{i,j}^{BEP(m)}} - 1 \right) f(z_i,z_j) \\ &= \int dz_i' dz_j' \; \rho^{(m)}(z_i',z_j' \mid z_i' + z_j' = z_i + z_j) [f(z_i',z_j') - f(z_i,z_j)] \\ &= \int_0^1 dp \; \nu^{(m)}(p) \left[f(p(z_i + z_j), (1-p)(z_i + z_j)) - f(z_i,z_j) \right] \end{split}$$

$$X, Y \sim \text{Gamma}\left(\frac{m}{2}, \theta\right)$$
 i.i.d. $\Longrightarrow P = \frac{X}{X + Y} \sim \text{Beta}\left(\frac{m}{2}, \frac{m}{2}\right)$

For m = 2: uniform redistribution

(iii) Generalized Symmetric Exclusion Process, SEP(n) [Schütz]

Configuration
$$\xi = (\xi_1, ..., \xi_{|V|}) \in \{0, 1, 2, ..., n\}^{|V|}$$

(iii) Generalized Symmetric Exclusion Process, SEP(n) [Schütz]

Configuration
$$\xi = (\xi_1, ..., \xi_{|V|}) \in \{0, 1, 2, ..., n\}^{|V|}$$

$$L^{SEP(n)}f(\xi) = \sum_{(i,j)\in E} \xi_i(\mathbf{n} - \xi_j)[f(\xi^{i,j}) - f(\xi)] + (\mathbf{n} - \xi_i)\xi_j[f(\xi^{j,i}) - f(\xi)]$$

(iii) Generalized Symmetric Exclusion Process, SEP(n) [Schütz]

Configuration
$$\xi = (\xi_1, ..., \xi_{|V|}) \in \{0, 1, 2, ..., n\}^{|V|}$$

$$L^{SEP(n)}f(\xi) = \sum_{(i,j) \in E} \xi_i(\mathbf{n} - \xi_j)[f(\xi^{i,j}) - f(\xi)] + (\mathbf{n} - \xi_i)\xi_j[f(\xi^{j,i}) - f(\xi)]$$

Stationary measures: product with marginals Binomial(n,p)

Generalized Symmetric Exclusion Process: SEP(n)

$$\mathcal{L}^{(n)} = \sum_{(i,j) \in E} \left(J_i^+ J_j^- + J_i^- J_j^+ + 2 J_i^o J_j^o - rac{n^2}{2}
ight)$$

 $\{J_i^+, J_i^-, J_i^o\}$ satisfy SU(2) commutation relations

$$[J_{i}^{o}, J_{j}^{\pm}] = \pm \delta_{i,j} J_{i}^{\pm}$$
 $[J_{i}^{-}, J_{j}^{+}] = -2\delta_{i,j} J_{i}^{o}$

Generalized Symmetric Exclusion Process: SEP(n)

$$\mathcal{L}^{(n)} = \sum_{(i,j) \in E} \left(J_i^+ J_j^- + J_i^- J_j^+ + 2 J_i^o J_j^o - \frac{n^2}{2} \right)$$

 $\{J_i^+, J_i^-, J_i^o\}$ satisfy SU(2) commutation relations

$$[J_{i}^{o},J_{j}^{\pm}]=\pm\delta_{i,j}J_{i}^{\pm}$$
 $[J_{i}^{-},J_{j}^{+}]=-2\delta_{i,j}J_{i}^{o}$

$$\begin{cases} J_i^+|\xi_i\rangle = (n-\xi_i)|\xi_i+1\rangle \\ \\ J_i^-|\xi_i\rangle = \xi_i|\xi_i-1\rangle \\ \\ J_i^o|\xi_i\rangle = (\xi_i - \frac{n}{2})|\xi_i\rangle \end{cases}$$

Self-duality of the SEP(n) process

Theorem 5

The process with generator $L^{SEP(n)}$ is self-dual on functions

$$D(\eta,\xi) = \prod_{i \in V} \frac{\eta_i!}{(\eta_i - \xi_i)!} \frac{\Gamma(n+1-\xi_i)}{\Gamma(n+1)}$$

Self-duality of the SEP(n) process

Theorem 5

The process with generator $L^{SEP(n)}$ is self-dual on functions

$$D(\eta,\xi) = \prod_{i \in V} \frac{\eta_i!}{(\eta_i - \xi_i)!} \frac{\Gamma(n+1-\xi_i)}{\Gamma(n+1)}$$

Proof:

$$[L^{SEP(n)}, \sum_{i} J_{i}^{o}] = [L^{SEP(n)}, \sum_{i} J_{i}^{+}] = [L^{SEP(n)}, \sum_{i} J_{i}^{-}] = 0$$

Self-duality corresponds to the action of the symmetry $S = e^{\sum_i J_i^+}$

Summary of Self-duality

Theorem 6

The INCLUSION process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!} \frac{\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m}{2} + \xi_{i}\right)}$$

Summary of Self-duality

Theorem 6

The INCLUSION process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!} \frac{\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m}{2} + \xi_{i}\right)}$$

The INDEPENDENT WALKERS process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!}$$

Summary of Self-duality

Theorem 6

The INCLUSION process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!} \frac{\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m}{2} + \xi_{i}\right)}$$

The INDEPENDENT WALKERS process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!}$$

The EXCLUSION process is self-dual on

$$D(\eta,\xi) = \prod_{i} \frac{\eta_{i}!}{(\eta_{i} - \xi_{i})!} \frac{\Gamma(n+1-\xi_{i})}{\Gamma(n+1)}$$

Perspectives

Energy/particle redistribution models [JSP (2013)]

Instantaneous thermalization limit of inclusion process, independent walkers, exclusion process

Mathematical population genetics: [arXiv:1302.3206]

e.g. Multi-type Wright Fisher diffusion, Moran model

Bulk-driven models: [work in progress]

Asymmetric processes and q-deformed algebras

