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Proportionate growth in animals

Different body parts in animals grow roughly at the same rate.

I Proportionate growth is typical in animal kingdom.

I Easier problem than development of animal from a single cell.

I Requires regulation, and communication between different
parts.

I Same food becomes different tissues in different parts of the
body.



The standard biological explanation of this growth and regulation
involves identifying precise chemicals, growth factors, harmones,
inhibitors that are turned and off by the masterplan encoded in the
DNA.

This is similar to how patterns were generated in Chinese stadia by
placards-carrying agents.

Does one need the full complexity of DNA to get proportionate
growth?

Also, identifying chemicals is not the whole story.
It is like in a murder mystery, one says ”the knife did it”.

Our approach is like d’Arcy Thompson, emphasizes structure and
growth, ignores chemical detail.



A 1940’s picture of an organized placard display in China.



Growth models in Physics

Qualitatively different for previously studied models of growth by
aggregation in physics, e.g.

Figure: (a) A DLA cluster, (b) Epsom salt crystals grown from solution,
(c) An invasion percolation cluster

In all these cases, growth occurs only in the outer regions.
Systems showing proportionate growth outside biology are hard to
find.



Self-organization and sandpiles

In 1970’s, Haken, Prigogine introduced the idea of living systems
being ‘self-organized’.

In 1987, Bak et al realized that many natural systems are
self-organized to be at the edge of stability, and called these
Self-Organized Critical.

They proposed a sandpile model as prototype model of SOC.
Many earlier studies about the power-laws in distribution of
avalanche sizes.

Our emphasis here is on pattern formation, and not on avalanche
statistics in sandpile models.



Proportionate growth in patterns formed by growing
sandpiles

Growing patterns formed in Abelian sandpiles show
self-organization, and proportionate growth.

I A simple cellular automaton model of proportionate growth

I Complex but beautiful patterns

I Analytically tractable: Exact characterization of patterns

I Involves some interesting mathematics: discrete analytic
functions, piece-wise linear functions



Proportionate growth in sandpile patterns

Basic facts from biology:
Food required for growth. Reaches different body parts.
Cell-division occurs only if the cell has enough nutrients.

A well-studied model of threshold dynamics is the Abelian Sandpile
Model

Definition of ASM:

I Non-negative integer height zi at sites i of a square lattice

I Add rule: zi → zi + 1

I Relaxation rule : if zi > zc = 3, topple, and move one grain to
each neighbor.

Rule for forming patterns:
Add N particles at one site on a periodic background, and relax.
Generalization to other lattices, higher dimensions



Sandpile Model: toppling rules

Start with a stable configuration, and add a particle :

0 0 0 0 0

0 0 0 0 0

0 0 4 0 0

0 0 0 0 0

0 0 0 0 0

−→

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

−→

0 0 0 0 0

0 0 3 0 0

0 3 4 3 0

0 0 3 0 0

0 0 0 0 0

Finally, we get stable configuration:

0 0 1 0 0

0 2 1 2 0

1 1 0 1 1

0 2 1 2 0

0 0 1 0 0

.



Proportionate growth

Figure: Patterns formed on a square lattice with initial height 2 at all
sites. N = (a)4× 104 (b) 2× 105 (c) 4× 105. Color code 0, 1, 2, 3 =
R,B,G,Y

Diameter ∼
√
N.



Figure: Patterns produced by adding 400000 particles at the origin, on a
square lattice ASM, with initial state (a) all 0. Color code 0, 1, 2, 3 =
R,B,G,Y



Figure: The F-lattice : A square lattice with directed bonds



Figure: Pattern produced by adding 105 particles at the origin, on the
F-lattice ASM, with initial state alternating columns of 1’s and 0’s.
Color code: B = 0,W = 1



Figure: Pattern produced by adding 2x105 particles at the origin, on the
F-lattice with initial background being checkerboard. Color code: 0 =R,
1=Y



The Key Observation
S. Ostojic (2003).

I Proportionate growth.

I Periodic height pattern in each patch. [ignoring Transients]

Examples of periodic patterns in patches



Characterizing the patterns

I We define reduced coordinates ξ = X/Λ, η = Y /Λ.

I Define coarse-grained density ρ(ξ, η) for the asymptotic
pattern, Λ→∞

I The asymptotic pattern is characterized by ρ(ξ, η)

I Identify ‘patches’ as regions of constant ρ(ξ, η)

I Specify the periodic pattern in each patch, and adjacency
graph of patches

I Specify sizes of patches, and equations of boundary lines



Characterizing the patterns

Let TN(~R) = the number of topplings at point ~R.

Define reduced coordinate ~r = ~R/Λ, Λ = diameter

Proportionate growth ⇔ Scaling TN(~R) ∼ Λaφ(~r).

A non-trivial φ(~r) defines the asymptotic pattern.

The excess density of grains ∇2φ(~r) is bounded, for
~r 6= ~0 =⇒ a ≤ 2.

In addition, we have N ∼ Λb.



The Main Result

In each patch with a periodic height pattern, we can only have

a = 2, and φ(x , y) is a quadratic function of x and y ,
Or
a = 1, and φ(x , y) is a linear function of x and y .

Proof:
Expand φ(x0 + ∆x , y0 + ∆y) in a Taylor series:
φ(x0 + ∆x , y0 + ∆y) = φ(x0, y0) +A∆x +B∆y + ..+K (∆x)3 + ..
Equivalently,
TN(X ,Y ) = . . .+ K (∆X )3/Λ3−a

For finite ∆X integer, T is also integer, and no proliferation of
defect lines ⇒ K = 0.
Same is true for all higher powers.
For a non-trivial dependence on x , y , if quadratic term is not zero,
a = 2. Else, a = 1. Independent of dimension.



Characterizing the F-lattice pattern

I Only two types of patches: densities 1/2 and 1.

I All boundaries are straight lines: slopes 0,±1, or ∞
I Each patch is 3- or 4- sided polygon

I The pattern may be viewed as a tiling of plane by squares of
different sizes



Figure: Tiling with square tiles



Characterizing the F-lattice pattern ( continued)

The main simplifcation that allows the pattern on F-lattice exactly
is the observation that the adjacency graph of the pattern is
actually very simple.

This is not immediately obvious, by looking at the graph, but
becomes so by applying a 1/z2 transformation to the picture.

Figure: The 1/z2 transform of the pattern



Thus, we see that the ‘light’ patches can be labelled by integer
coordinates (m, n), and the adjacency graph of patches in the
original pattern is a square grid discretization of a two-sheeted
Riemann surface.

m

n

Figure: The Adjacency graph as (a) planar graph, (b) as a discretized
two-sheeted Riemann surface

Given the adjacency graph of the pattern, the sizes of squares can
be deduced using the Brooks -Smith-Stone-Tutte correspondence
between tilings of plane with rectangles, and electical circuits.



The Quantitative characterization of the F-lattice pattern

The exact characterization involves four steps:

I Labelling patches using two integers (m, n). The adjacency
graph is a discretized two-sheeted Riemann surface.

I Parameterize the potential in the (m, n) patch by

φ
P

(ξ, η) =
1

8
(m

P
+1)ξ2+

1

4
n
P
ξη+

1

8
(1−m

P
)η2

P
+d

P
ξ+e

P
η+f

P

I Continuity of φ and derivatives implies that dm,n and em,n
both satisfy the equation

ψm+1,n+1 + ψm+1,n−1 + ψm−1,n+1 + ψm−1,n−1 − 4ψm,n = 0,

I Solve equations numerically on a large grid, to get the exact
boundaries of patches



Dependence of the diameter Λ with N

This is much less constrained.

I If the initial background density is low enough everywhere,
Λ ∼ N1/d

I If many sites have large heights
Λ =∞ for finite N

I For an in-between set of periodic backgrounds
Λ ∼ Nα for 1/d < α ≤ 1

If Λ ∼ Nα, with α > 1/2
We construct an infinite family of periodic backgrounds on the
F-lattice that seem to have a different α for each member.



Graph of Diameter Λ vs N



Patterns with fast-growing sandpiles

Directed traingular lattice with honeycomb background pattern

Diameter ∼ N

Figure: Directed triangular lattice. In the background configuration, filled
and unfilled circles denote z = 1 and 2. Here diameter ∼ N



Examples of patterns with fast-growing sandpiles

The ‘Bat-pattern’ on F-lattice
Here Λ ∼ Nα, α ≈ 0.55

Figure: Only the boundaries of patches are shown.



Quantitative characterization

Consider the case with a = 1, say the triangular lattice pattern.
The exact characterization of the patterns here is easier:

I φ(ξ, η) is a piece-wise linear function, with rational slopes.
Parameterize as φP(ξ, η) = aPx + bPy + cP

I The allowed values of (aP , bP) for different patches form a
periodic hexagonal lattice.

I The condition that three patches meet at a point implies that
cP satisfies a Laplace equation on the adjacency graph of
patches.

I Exact solution of these equations gives the exact boundaries
of patches



Robustness of the pattern

The arguments only depend on the existence of only two types of
patches, and straight line boundaries.

These can be found ( by trial and error) in other cases also.
Then the asymptotic pattern is identical.
Some examples:



Figure: F-lattice with background density 5/8



Figure: Manhattan lattice, with initial density 1/2, and 120, 000 particles



Pattern formation in a noisy background

In presence of noise, the function φ is no longer polynomial, but
the proprtionate growth still holds.

Figure: Pattern grown on the F-lattice with some heights 1 replaced by
0’s. (a) 1% sites changed, N=228,000 , (b) 10% changed, N= 896,000.



If some 0’s are also repalced by 1’s, the effect is more dramatic.

Figure: Pattern grown on the F-lattice with some heights flipped. (a) 1%
sites changed (b) 10% sites changed



At higher noise level, the details of the pattern are not easy to see,
but averaging over different realizations of noise brings out the
pattern clearly.

Figure: F-lattice, checkerboard with 20% sites flipped. N = 57000. (a)
single realization (b) averaged height over 105 realizations.



Figure: Averaged change in height with decreasing noise strength
50%, 30%, 10% The color code for each pattern representing the height
values are shown in the colorbar.



If we apply a z → 1/z2 transformation to these figures, we get

Figure: Result of applying 1/z2 transformation. Note the nearly gridlike
pattern

This suggests that we can write the change in density as

∆ρ (x , y) =
[
A + Bε2g(x , y) +O(ε4)

]
f (x , y), (1)

Where ε is a measure of difference of noise strength from 50%



This suggests that the simplest perturbation to the density field in
the high noise limit is a periodic perturbation in the z ′-coordinates.

g(x , y) = − cos
πx ′

2
cos

πy ′

2
, (2)

where x ′ = 2xy
(x2+y2)2

, and y ′ = x2−y2

(x2+y2)2
.

A pictorial representation of this function is given below.

Figure: Density pattern using the function g(x , y), compared to actual
pattern. The black lines are contours of constant density.



A zoom-in on the theoretical lowest
-mode density perturbation g(x , y).



The pattern selection problem

For a given background, how is the pattern selected amongst the
many possible pattern?

An important principle to look for is a variational principle. This
allows approximate calculations, if exact calculation is not possible.

In our case, there is a very nice, and elementary variational
principle, that I have called the lazy man’s Principle of least
‘action’: Don’t do anything unless you have to.
i.e. the total number of topplings required to get a stable pattern
from the original configuration is the minimum for the actual
pattern.
The proof is immediate for abelian sandpiles.

Reminiscent of minimum entropy production principle.



Unexpectedly generate features at several length scales, having a
striking similarity to the natural ones

Figure: (a) A flower. (b) pattern produced by adding 256k particles on
the F-lattice, with tilted squares backgound with spacing 4. Different
colours denote different densities of particles, averaged over the unit cell
of the background pattern



Directed growth patterns

Figure: A ‘larva’ pattern. Produced on square lattice, with particle
transfer on toppling only to up, down, right neighbors. Here N = 104.
Particles are added at the left column center. Color code: 0=white, 1=
red, 2=yellow.



A ‘larva’ pattern formed on a directed cubic lattice

Figure: N = 107 grains added on an initial background of all heights
zero. The particles were added at the central point of the left end. The
first shows the mid-saggital section, and the next three show different
transverse sections. Colour code : 0, 1, 2, 3, 4 = white, red, yellow, blue
and green.



Conjectures

The theoretical understanding of these patterns is very limited.

I In general, we expect that Λlongitudinal ∼ Λ2
transverse .

I Patterns do not show proportionate growth, but there are
easily identified sub-structures, independent of N.

I For large N, TN(X ,Y ) ∼ Λ2φ(X/Λ,Y /Λ2), where φ(ξ, η)
defines the asymptotic pattern.

I In each periodic patch, φ(ξ, η) is a polynomial function of ξ
and η, of degree 2 in ξ, and degree 1 in η.

I A repeated motif here is a layer of square patches of slowly
varying sizes.

Detailed characterization ?



Connection to Tropical Mathematics

Define
a⊕b = Max [a, b] (3)

a⊗ b = a + b (4)

Then standard properties of usual addition and multiplication (
commutative, identity, distributive ..) contiue to hold.
Example: 3⊕5⊕2 = 5

3⊗ 4 = 7
Tropical polynomials: a⊗ x ⊗ x ⊕ b ⊗ x ⊕ c
Example: x ⊗ x⊕2⊗ x⊕5 = Max [2x , x + 2, 5].
Fundamental theorem of tropical algebra.

A piecewise -linear convex function can be represented as a
tropical polynomial.



Hence useful for describing the toppling function function in
growing sandpiles where toppling function is piece-wise linear.
Say, for the linearly growing triangular pattern,

φ(ξ, η) = ⊕∞l ,m=0 Fl .m ⊗ ξl ⊗ ηm



Crumpled paper may be described by piece-wise linear functions

picture from www.myjanee.com/tuts/crumpled



Discrete Analytic Functions
Functions defined only on discrete points in the complex z− plane.

Discrete Cauchy-Riemann conditions:

F (z1)− F (z3)

z1 − z3
=

F (z2)− F (z4)

z2 − z4



On a square grid :

∆F13 + ∆F35 + ∆F57 + δF71 = 0

is equivalent to

∆F02 + ∆F04 + ∆F06 + ∆F08 = 0

Discrete Laplace Equation.
Sum, but not product, of discrete analytic functions is also DA



We find that the coefficients of the linear terms in the toppling
function define a discrete analytic function d + ie of the complex
variable m + in, where (m, n) is the patch label.
In fact the discrete analytic function is defined by the condions
that D(m + in) is a discrete analytic function, with D(0)=0, and
D(z)/z1/2 tends to 1 for large |z |.
These conditions determine the function D(z) and hence the
pattern, completely.
For growth near an edge, the function becomes discrete
approximant to the function z1/3
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Thank You.


	Discrete Analyticity and Discrete Quadratic Approximants

