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The unreasonable effectiveness 
of science

• Galaxies have millions of stars, a piece of material has 1032 molecules, ...
Yet, we understand their behavior in terms of few relevant variables!

• Will this work for a cell (104 genes), the brain (107 neurons) 
an economy (106 individuals)... ?

• We build airplanes. Can we also cure cancer or avoid the next financial crisis?

• Even if the answer is no,  what is the best we can do?

• How to find the (most) relevant variables or description of complex 
phenomena?

The miracle of the appropriateness of the language of mathematics for the 
formulation of the laws of physics is a wonderful gift which we neither 
understand nor deserve. We should be grateful for it and hope it will remain 
valid also in future research and that it will extend, for the better of for the 
worse, to our pleasure, even though perhaps also to our bafflement, to wide 
branches of learning                                                       (E. P. Wigner 1960)



Facts and questions

• Fact 1:
Data deluge + advanced experimental techniques (e.g. sequencing)
Complex systems involve many variables (high-d inference, e.g. 104 genes)
Strong under-sampling. Prediction is typically hard (e.g. drug design)

• Fact 2:
We observe “Criticality”, as a statistical regularity,
in a wide variety of different systems as cities, 
the brain, languages, economy/finance, biology.

• Questions:
Are there typical properties of high-d samples of complex systems?
Are there overarching organizing principles (e.g. SOC)?
Can we exploit “criticality” (e.g. for model selection)?

P. Bak How Nature Works (1996)
T. Mora & W. Bialek, J.Stat.Phys. (2011)
S. Ki Baek et al. N. J. Physics (2012)
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Fig. 1. (a) Log-log plot of the cumulative distribution of ensembles of the land
prices for each of the four years 1985, 1987, 1991, and 1998.The movement of the
mean values of land prices. (b) The movement of power-law exponent α of land
prices’ ensemble distribution. (c) The movement of coefficient of variation (CV) of
land prices’ ensemble distribution. (d) Log-log plot of the cumulative distribution
of ensembles of the stock prices on January 4, 2000. (e) The movement of power-law
exponent α of stock prices’ ensemble distribution. (f) The movement of coefficient
of variation (CV) on stock prices’ ensemble distribution.
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(land prices in Japan
  Kaizoji & Kaizoji 2006)

rank ~1/size



• Statistical mechanics: order and disorder

• Critical phenomena: 
- anomalous fluctuations (CV)
- scale invariance

Weak interaction
Short range correlations

Large entropy

Strong interaction
Long range order

Small entropy

critical point

T � Tc

T ⌧ Tc

Tcp{s|ĝ} =
1

Z
e�Eĝ [s]/T

s = (s1, . . . , sN ), si = ±1

Criticality in (statistical) physics

C(r) ⇠ r�d�⌘



Criticality everywhere
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Figure 1 Frequency of word usage in English 
 
Figure 1 shows a plot of frequency of word usage in English plotted against rank. The most 
popular word, at least in polite conversation, is THE which is used about once in every twelve 
words. This has a rank of one. As we move to higher ranks we encounter less well known 
words. QUALITY occurs about once in every thousand words. The curve is remarkable. For 
over three orders of magnitude it follows very closely Zipf’s Law in its currently used form with k 
equal to one.   
 
This, and some of the following examples, are taken from a paper by Scarrott 2. More modern 
examples have recently been generated by the author.  
 

 
Figure 2    Ranking of world cities by population, see table 1 for key. 
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For example, Figure 2 shows the population of cities in several countries in rank order. Table 1 
gives the key.  
 

A  United States  B  China 
C  West Germany  D  Spain 
E  France   F  East Germany  
G  Switzerland   H  United Kingdom  
I  Mexico 

 
Table  1. Key to figure 2 

 
We see that Zipf’s Law is broadly obeyed by all the countries plotted except for the United 
Kingdom and Mexico. However, in both these exceptions the distortion is due to a 
disproportionately large principal city. If the ranking of the first city is ignored, the resulting curve 
has a slope close to -1.  
 

 
 

Figure 3  Ranking of various groups, see table 2 for key 
 

A  Populations of all countries 
B  Number of ships built by all countries 
C  Students at English universities   
D  Building Societies by assets 
E  Populations of World’s religions    
F  US insurance companies by staff  
G  World languages    
H  English public schools by students  

 
Table  2. Key to figure 3 

 
Figure 3 shows a variety of organisations. Here again the curves have a slope close to -1 
except for two cases, G and H.  
 
In this figure the size of groups are normalised to the size of the largest group.   
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(G. Kirby 1985)
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From empirical distribution to energy

Criticality = linear relation between energy and entropy ~ kN(k)
Peak of Cv in learned models

T. Mora & W. Bialek, J.Stat.Phys. (2011)

P{s} =

1

Z
e��E{s} ) E{s} ' � log

Ks

M

number of 
observations 
of state s

total number of 
observations 



Complex system
= many degrees of freedom + function

• Complex systems are not random:

• Individuals do not live in random cities 

• A writer does not choose words at random when writing 

• Proteins are not random sequences of amino acids 

• ...

• Only part of what they do is accessible to us:

• Variables:

• Function:

• Behavior: 

~s = (s1, . . . , sn, sn+1, . . . , sN ) , si = ±1

s s̄knowns            unknowns

model   unknown function
U(~s) = us + vs̄|s,

⌦
vs̄|s

↵
= 0

, N � 1

s⇤ = argmax

s

h
us +max

s̄
vs̄|s

i



How relevant are known vars?
e.g. Why do you live where you live?

• I live where I live because my zip code can be nicely 
decomposed in primes: 34151 = 13 x 37 x 71 

• Others choose where to live depending on job, marriage, 
interests, etc. The zip code is not a relevant variable in this 
choice, whereas the city is.

• The distribution of city sizes contains information about how 
people choose where to live. The distribution by zip code does not.

• The distribution of population by zip code is trivial, that by city is not

• Same for language: word are the relevant variables, punctuations 
marks are not ...

• Modeling: models should contain relevant variables to be predictive

• Sampling: if the variables we sample are relevant, we can infer what 
the system is doing
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Nature

Observables (knowns)

max

(s,s̄)
U(s, s̄)

max

s
max

s̄
U(s, s̄) ) s⇤

s = (s1, . . . , sn), n = fN

s̄ = (sn+1, . . . , sN )

ps⇤ = P{s0 = s⇤}

Q: How many? How relevant?

Modeling:
(the direct problem)

Model
max

s
Es̄ [U(s, s̄)]

= max

s
us ) s0

P {s⇤ = s} =
1

Z(�)
e�us , Z(�) =

X

s

e�us



Gibbs-Boltzmann distribution

• Without further knowledge,        has to be taken 
as an i.i.d. random variable

• As long as

• Then

• For Gaussian(0,1) P{v},

• Same as maximal entropy with   

vs̄|s

h|vs̄|s|mi < 1 8m
) max

s̄
vs̄|s = a+ ��1Y, Y ⇠ Gumbel

P {s⇤ = s} =
1

Z(�)
e�us , Z(�) =

X

s

e�us

� =

p
2N(1� f) log 2

husi = ū



The most complex system: REM

• If                                               then
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f (fract. of relevant vars)

P{s⇤ = s0} ' 1� a

1 + b(� � �c)

�c =

s
f

1� f

P{s⇤ = s0} ' e�cN(�c��)
(Random  Energy Model
  Cook & Derrida 1991)

us ⇠ Gaussian(0,�2) i.i.d.

s = (s1, . . . , sn), n = fN

s̄ = (sn+1, . . . , sN )

Known variables
should be relevant
enough!
(relevant = those the
system cares about)



Maximally informative models 
are critical

• e.g. s = n binary variables (e.g. 
spikes from salamander retina)

• Parametric models:
p(s) = p(s|h,J) = Ising model

• Uniform P{p(s)} maps in a non-
uniform P{h,J} that concentrates 
around critical points

• Intuition (Cramer-Rao):
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FIG. 2: Mean couplings (J̄ , h̄) produced by the inference pro-
cedure in various cases and with various bin sizes. Orange,
red, purple and blue points correspond to the inferred values
for a simulated Hawkes process with ⌅ = 0.3, µ = 0.1 and �
respectively equal to (0, 0.075,0.15,0.225). Boxes and circles
correspond respectively to the to the fit of a fully connected
model (2 parameters, J̄ and h̄) and to the mean couplings
for a spin glass (N fields hi and N(N � 1)/2 couplings Jij).
In each of those process we considered N = 100 channels
producing 5000 events each. The dashed line correspond to
theoretical, approximate predictions for the inferred couplings
of those processes at T =1. The black points correspond to
the values obtained for U = 106 seconds of financial data cor-
responding the activity pattern of 100 stocks of the NYSE. On
the background, the density of models for a fully connected
model is also plotted for the sake of comparison. The white
line intersects the origin and the inferred values of (J̄ , h̄) at
�T = 18 s: for such a choice of the bin size, a fully connected
model would have the maximum density of models exactly at
⇥ = 1.

varying the inverse temperature � corresponds to moving
on the line passing through the origin and the inferred
point (white line in Fig. 2). If �t is in the region close
to the critical point, for the reasons stated above, then
fluctuations will be maximal for � � 1. We remark, how-
ever, that such a notion of proximity to a critical point is
only apparent. The distance from the critical point eval-
uated using � is not invariant under reparametrization of
the couplings: the number of distinguishable models in a
given interval of temperature is not constant throughout
the space of couplings.

In summary, we have shown that the measure of dis-
tinguishable distribution in a parametric family of mod-
els is directly related to the susceptibility and, conse-
quently, has a singular concentration at critical points.
One may speculate that, if experiments are designed (or
data-set collected) in order to be maximally informative,

they should return data from distributions which are uni-
formly sampled from the space of distributions. Since
this uniform measure is peaked at critical point, this sug-
gests that inference of data from maximally informative
experiments returns parameters close to critical points
with high probability.
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Extensions:
• What is the analogous of Boltzmann for fat tailed P{v}?

• How relevant and how many should known variables be when P{v} is 
sub-exponential?

• GREM (directed polymers on trees) optimal resolution/discounting

U(~s) = u1
s1

+ u2
s2|s1

+ u3
s3|s2,s1

+ . . .+ um
sm|sm�1,...,s1

uk
sk|sk�1,...,s1

⇠ �k�1, � < 1Discounting:

s̄ ⌘ s�k = (sk, . . . , sm)

s ⌘ s<k = (s1, . . . , sk�1)

knowns unknown

k

s0

~s⇤



Nature

Data M observations

Observables (knowns)

max

(s,s̄)
U(s, s̄)

max

s
max

s̄
U(s, s̄) ) s⇤

Q:  What can I say on us = Es[U(s,s)]? 
     When is M large enough? 
     What do samples (typically) look like when M is small?

Sampling:
(the inverse problem)

ŝ =
⇣
s(1), . . . , s(M)

⌘



Where is the information on
in the sample?

• Sample of M observations

•                         gives a noisy estimate of

• The information contained in the sample is H[K]

usKs =
MX

1=1

�s(i),s

us ⇡ c+ ��1
logKs

ŝ =
⇣
s(1), . . . , s(M)

⌘

H[K] = �
X

k

kN(k)

M
log2

kN(k)

M N(K)=n. of cities of size K

us



The information content of the city size 
distribution: how many bits to find Mr X?

• M people in the US, need log2 M bits to find Mr X

• If you knew the size KX of the city where X lives 
then you’d need log2 [KX N(KX)] binary questions 
(i.e. bits).                  

• If you knew which city sX X lives in, then you’d 
need log2 KX bits

• If all individuals live in the same city KX=M then 
you don’t gain any information either way

• If each individual lives in a different city (KX=1) 
you don’t gain anything if you know KX 
you know everything if you know sX  

• Information gain depends on N(K) and the 
amount of information is given by H[K]

H[K] = �
X

k

kN(k)

M
log2

kN(k)

M

H[s] = �
X

k

kN(k)

M
log2

k

M

H[K] = H[s] = 0

H[K] = 0, H[s] = log2 M

Information gain and entropy

What is the most informative 
N(k) for 0 < H[s] < log2M ?



Maximally informative samples 
(upper bound)

N(k) : max

{N(k)}
H[K]

s.t. H[s] = H0
X

k

kN(k) = M
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H[
K]

H[s]

M=106

M=105

H[s]�H[K] =

X

k

kN(k)

M
logN(k)

� 0

Data processing inequality:

N(k) ⇠ k�µ

Zipf: µ = 2

N(k) = 1 ⇠ 8k



Applications/examples

• Data clustering: Classifying financial stocks

• Keywords in the “Origin of the Species”

• Finding relevant positions in proteins

• Optimal description of the dynamics of a complex system



• Time series for M=4000 stocks, 
daily returns (1 Jan 1990 - 30 Apr 1999)

• s(i) = label of stock i in hierarchical data clustering with N clusters

• Which method?

Maximum likelihood
(Marsili, 2003)

Minimal Spanning Tree (MST)
(Bonanno et. al. 2004, Tumminello et al. 2006)

Finding relevant variables 1:
Classifying 4000 NYSE stocks



H[K] can be used to score clustering 
methods

 0
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MST = Minimal Spanning Tree
MLDC = Maximum Likelihood Data Clustering
MLDC IM = MLDC on internal modes
SEC = US Security Exchange Commission classification

Data: xi(t) = (log)return of stock i=1,...,4000 in day t =1/1/90 - 30/4/99



Finding relevant variables II:
Keywords in text

• Text = (w1,w2, w3, ... , wL) in blocks of B words

• Montemurro, Zanette (2009): relevant words are those whose 
frequency distribution in blocks differs most from the random 
distribution. 

• Ks=number of times w occurs in block s=1,..,L/B

• Words with larger H[K] are the most relevant (those that are 
chosen for specific reasons)



The Origin of the Species
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Finding relevant variables III:
Choosing relevant positions in proteins

• Protein: amino-acid sequence 

• Function (e.g. response regulator receptor) is related to sequence
(e.g. structure/contacts, active sites, etc)

• Data: Families of homologous proteins in PFAM database. 
Same function different organisms, different sequences

• How to find relevant variables?

1. subsequence of n most conserved amino-acids 

2. subsequence that maximizes H[K]

~s(i) =
⇣
s(i), s̄(i)

⌘ ~s(1) . . .~s(M)

~s = (s1, . . . , sN )



“Most relevant” subsequences

• Relevant variables are 
not only the most 
conserved ones

• Over-fitting?
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HA1 of H3N2 
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   comparable to expert classification
- difference with random sequence peaks 
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True
Random

Expert classification:



4

FIG. 3: Procedure for reducing the dimentionality of the system. The first step consists on defining clusters based on the

pearson correlation of each pair of regions. To perform this clustering we used an algorithm based on the maximum likelihood

of the partition of the system [? ]. The second step consists on defining discrete states for each cluster. This was done by

clustering the time points inseide each cluster, using the same algorithm as in the first step. In this way the system’s state is

define at each time step as ~S(t) = {si(t)}, i = 1, ..., P , si = 1..., Q.

Finding relevant variables IV: 
On the dynamics of complex systems 

• High dimensional data:
Brain: 40k voxels, 10k time points
Finance: 4k stocks, 2k days

• Dimensionality reduction:
clusters and states

• What resolution?
How many clusters/states?

• Which are the relevant clusters?

(work in Progress,  Ariel Haimovici, Dante Chialvo, MM)

max 
predictability?



Summary
• Models may be predictive only when known variables are relevant 

• Relevant variables are those for which samples “look critical”
(i.e. most informative samples in the under-sampling regime are 
power laws)

• Zipf’s law separates the under-sampling from well sampled regimes

• H[K] vs H[s] plot can be useful

• to find relevant variables, keywords

• to score clustering methods

• ...

• Model free method



Thanks


