Explosive Condensation in a One-dimensional Particle System

Bartek Waclaw and Martin R. Evans

SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.

May 21, 2014

Other Collaborators:

S. N. Majumdar (LPTMS, Paris), R. K. P. Zia (Virginia Tech, USA)

Plan

Plan:

I Real Space Condensation

- Zero Range Process
- Factorised Steady State (FSS)
- Condensation and large deviations of sums of random variables

Plan:

I Real Space Condensation

- Zero Range Process
- Factorised Steady State (FSS)
- Condensation and large deviations of sums of random variables

II Explosive Condensation

- 'Misanthrope' process
- Dynamics of condensation

Plan

Plan:

I Real Space Condensation

- Zero Range Process
- Factorised Steady State (FSS)
- Condensation and large deviations of sums of random variables

II Explosive Condensation

- 'Misanthrope' process
- Dynamics of condensation

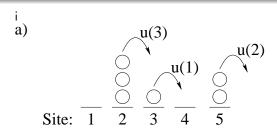
References:

T Hanney and M.R. Evans, J. Phys. A (2005)

M. R. Evans, S. N. Majumdar and R. K. P. Zia J. Stat. Phys. (2006)

B. Waclaw and M. R. Evans, Phys. Rev. Lett. 108, 070601 (2012), J. Phys. A (2014)

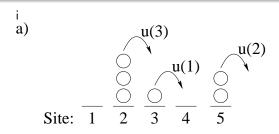
Zero-Range Process



Particle:
$$\frac{\bullet}{1}$$
 — $\frac{\bullet}{2}$ — $\frac{\bullet}{3}$ $\frac{\bullet}{4}$ — $\frac{\bullet}{5}$

- a) "balls-in-boxes" picture
- b) "Exclusion Process" picture

Zero-Range Process



Particle:
$$\frac{\bullet}{1}$$
 — $\frac{\bullet}{2}$ — $\frac{\bullet}{3}$ $\frac{\bullet}{4}$ — $\frac{\bullet}{5}$

- a) "balls-in-boxes" picture
- b) "Exclusion Process" picture

Generator

$$\mathcal{L}f(\underline{\eta}) = \sum_{i} u(\eta_i) \left[f(\underline{\eta}^{i \, i+1}) - f(\underline{\eta}) \right]$$

Motivation for ZRP

- Specific physical systems map onto ZRP
 - e.g. polymer dynamics, sandpile dynamics, traffic flow
- Effective description of dynamics involving exchange between domains
 - e.g. phase separation dynamics
- Factorised Steady State (system of *L* sites and *N* particles)

$$P(m_1....m_L) = \frac{1}{Z_{N,L}} f(m_1) \dots f(m_L) \delta(\sum_i m_i - N)$$

where the single-site weight f(m)

$$f(m) = \prod_{n=1}^{m} \frac{1}{u(n)}$$

Factorised Stationary States

$$P(m_1....m_L) = \frac{1}{Z_{N,L}} f(m_1) \dots f(m_L) \delta(\sum_i m_i - N)$$

where the single-site weight f(m)

$$f(m) = \prod_{n=1}^{m} \frac{1}{u(n)}$$

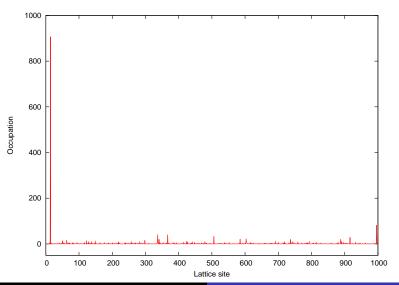
Normalization (Nonequilibrium partition function)

$$Z_{N,L} = \sum_{\{m_i=0\}}^{\infty} f(m_1) \dots f(m_L) \, \delta(\sum_j m_j - N)$$

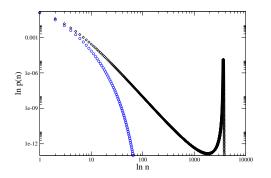
Single-site mass distribution (Marginal distribution)

$$p(m) = f(m) \frac{Z_{N-m,L-1}}{Z_{N,I}}$$

Snapshot of ZRP $u(m) = 1 + \frac{3}{m}$ above critical density



Single-site mass distribution in ZRP $u(m) = 1 + \frac{5}{m}$



below critical density (
$$\rho = \frac{N}{L}$$
) above critical density (note condensate bump p_{bump})

Grand Canonical Ensemble: $p_{gc}(m) = Az^m f(m)$ z < 1 z is fugacity

Constraint:
$$\sum_{m=0}^{\infty} m p_{gc}(m) = \rho \equiv \lim_{L,N\to\infty} \frac{N}{L}$$

i.e. density $\rho(z)$ as function of z

Grand Canonical Ensemble: $p_{gc}(m) = Az^m f(m)$ z < 1 z is fugacity

Constraint:
$$\sum_{m=0}^{\infty} m p_{gc}(m) = \rho \equiv \lim_{L,N \to \infty} \frac{N}{L}$$

i.e. density $\rho(z)$ as function of z

If
$$u(m) = 1 + \frac{\gamma}{m} \Rightarrow f(m) \sim m^{-\gamma}$$

Grand Canonical Ensemble: $p_{gc}(m) = Az^m f(m)$ z < 1 z is fugacity

Constraint:
$$\sum_{m=0}^{\infty} m p_{gc}(m) = \rho \equiv \lim_{L,N \to \infty} \frac{N}{L}$$

i.e. density $\rho(z)$ as function of z

If
$$u(m) = 1 + \frac{\gamma}{m} \Rightarrow f(m) \sim m^{-\gamma}$$

Then $z
ightarrow z^* = 1$ gives the max allowed value of density $ho_{
m max}$

$$\begin{array}{lll} \rho_{\rm max} \rightarrow \infty & & \text{if} & \gamma \leq 2 \\ \\ \rho_{\rm max} \rightarrow \rho_{\rm c} & < \infty & & \text{if} & \gamma > 2 \end{array}$$

Grand Canonical Ensemble: $p_{gc}(m) = Az^m f(m)$ z < 1 z is fugacity

Constraint:
$$\sum_{m=0}^{\infty} m p_{gc}(m) = \rho \equiv \lim_{L,N \to \infty} \frac{N}{L}$$

i.e. density $\rho(z)$ as function of z

If
$$u(m) = 1 + \frac{\gamma}{m} \Rightarrow f(m) \sim m^{-\gamma}$$

Then $z
ightarrow z^* = 1$ gives the max allowed value of density $ho_{
m max}$

$$\begin{array}{lll} \rho_{\rm max} \rightarrow \infty & & \text{if} & \gamma \leq 2 \\ \\ \rho_{\rm max} \rightarrow \rho_{\rm c} & < \infty & & \text{if} & \gamma > 2 \end{array}$$

Thus for $\gamma > 2$ we have condensation if $\rho > \rho_{c}$

In condensed phase critical fluid $p_{gc}^*(m)$ coexists with condensate $p_{bump}(m)$

Nature of the Condensate: a large deviation effect

Canonical partition function: (computed in EMZ 2006)

$$Z_{N,L} = \sum_{\{m_i=0\}}^{\infty} \prod_{i}^{L} f(m_i) \delta \left(\sum_{j}^{L} m_j - N \right)$$

Nature of the Condensate: a large deviation effect

Canonical partition function: (computed in EMZ 2006)

$$Z_{N,L} = \sum_{\{m_i=0\}}^{\infty} \prod_{i}^{L} f(m_i) \delta \left(\sum_{j}^{L} m_j - N \right)$$

w.l.o.g. let
$$\sum_{m=0}^{\infty} f(m) = 1$$
 then

 $Z_{N,L}$ = prob. that sum of L +ve iidrvs with distribution f(m) is equal to N

Nature of the Condensate: a large deviation effect

Canonical partition function: (computed in EMZ 2006)

$$Z_{N,L} = \sum_{\{m_i=0\}}^{\infty} \prod_{i}^{L} f(m_i) \delta \left(\sum_{j}^{L} m_j - N \right)$$

w.l.o.g. let
$$\sum_{m=0}^{\infty} f(m) = 1$$
 then

 $Z_{N,L} = \text{prob.}$ that sum of L +ve iidrvs with distribution f(m) is equal to N

Condensate shows up in a large deviation

of a sum of random variables when $N\gg \mu_1 L$ with $\sum_{m=0}^\infty m f(m)\equiv \mu_1<\infty.$

The event that $\sum_{i=1}^{L} m_i = N$ is most likely realised by 1 of m_i being O(L) and the rest being O(1)

Results for condensate bump scaling laws

$$3 > \gamma > 2$$

$$p_{\mathrm{cond}} \simeq rac{1}{L} rac{1}{L^{1/(\gamma-1)}} V_{\gamma}(z) \qquad z = rac{(m-M_{\mathrm{ex}})}{L^{1/(\gamma-1)}}$$

$$V_{\gamma} = \int_{-i\infty}^{i\infty} rac{ds}{2\pi i} \exp(-zs + A\Gamma(1-\gamma)s^{\gamma-1})$$

strongly asymmetric

 $\gamma > 3$

$$p_{\mathrm{cond}} \simeq \frac{1}{L} \frac{1}{\sqrt{2\pi\Delta^2 L}} \exp(-\frac{z^2}{2\Delta^2})$$
 $z = \frac{(m - M_{\mathrm{ex}})}{L^{1/2}}$

gaussian

N.B. in all cases
$$\int p_{\text{cond}}(m) dm = \frac{1}{L}$$
.

For rigorous work see also Grosskinsky, Schutz, Spohn JSP 2003, Ferrari, Landim, Sisko JSP 2007, Armendariz and Loulakis PTRF 2009, Beltran and Landim 2012

Physical Systems with Real-space Condensation:

- Traffic and Granular flow (O'Loan, Evans, Cates, 1998)
- Cluster Aggregation and Fragmentation (Majumdar et al 1998)
- Granular clustering (van der Meer et al, 2000)
- Phase separation in driven systems (Kafri et al, 2002).
- Socio-economic contexts: company formation, city formation, wealth condensation etc. (Burda et al, 2002)
- Networks (Dorogovstev & Mendes, 2003,....)
- . . .

Open questions

- Can one analyse condensation beyond zero-range interactions?
 (pair-factorised states Evans, Hanney Majumdar 2006)
- Can one have a moving condensate that maintains its structure? (non-Markovian ZRP, Hirschberg, Mukamel, Schutz 2009), (tail dynamics, Whitehouse, Blythe, Evans 2014),
- Condensation induced by several constraints
 e.g. mean and variance of mass, momentum and energy etc
 (Szavits-Nossan, Evans, Majumdar 2014)

II Explosive Condensation

Consider Generalisation of ZRP to dependence on target site.

u(m, n) is rate of hopping of particle from departure site containing m to target site containing n particles sometimes called 'misanthrope process' (Cocozza-Thivent 1985)

Generator

$$\mathcal{L}f(\underline{\eta}) = \sum_{i} u(\eta_{i}, \eta_{i+1}) \left[f(\underline{\eta}^{i i+1}) - f(\underline{\eta}) \right]$$

II Explosive Condensation

Consider Generalisation of ZRP to dependence on target site.

u(m, n) is rate of hopping of particle from departure site containing m to target site containing n particles sometimes called 'misanthrope process' (Cocozza-Thivent 1985)

Generator

$$\mathcal{L}f(\underline{\eta}) = \sum_{i} u(\eta_{i}, \eta_{i+1}) \left[f(\underline{\eta}^{i i+1}) - f(\underline{\eta}) \right]$$

We still have factorised stationary state if u(m, n) satisfy:

$$u(m,n) = u(n+1,m-1) \frac{u(1,n)u(m,0)}{u(n+1,0)u(1,m-1)}$$
$$u(m,n) - u(n,m) = u(m,0) - u(n,0)$$

and the single-site weight becomes

$$f(m) = Az^m \prod_{k=1}^m \frac{u(1, k-1)}{u(k, 0)}$$

Explosive Condensation cont.

A simple form which gives a factorised stationary state is

$$u(m,n) = [v(m) - v(0)]v(n)$$

then the single-site weight becomes

$$f(m) \propto \prod_{k=1}^{m} \frac{v(k-1)}{v(k)-v(0)}$$

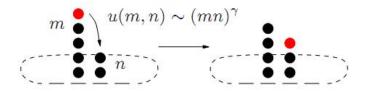
For f to decay as $f(m) \sim m^{-\gamma}$ (for condensation) we now have several possible choices of asymptotic behaviour of v(m)

$$v(m) \simeq 1 - \frac{\alpha}{m}$$
 'ZRP like' (γ is function of α and $v(0)$)
 $v(m) \sim m^{\gamma}$ 'explosive'

Explosive Condensation cont.

Explosive dynamics

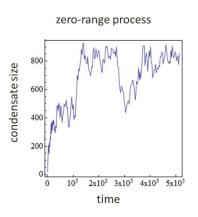
$$u(m,n)=[v(m)-v(0)]v(n)$$
 with $v(m)=(\epsilon+m)^{\gamma}$ and $\epsilon>0$

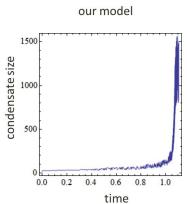


Get condensation for $\gamma > 2$.

Contrasting Dynamics

Both choices (ZRP-like, explosive) generate same stationary state (condensed) but the dynamics are very different:





$$T_{SS} \sim L^2$$

$$T_{SS} = ?$$

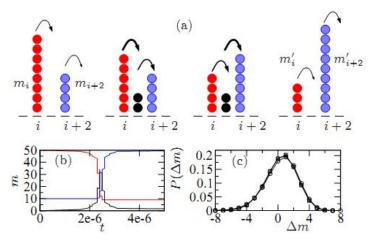
Explosive Dynamics

Speed of condensate $v(m) \sim m^{\gamma}$

- fast slinky motion'
- longest time is for first particle to move then rest follow c.f. non-Markovian ZRP (Hirschberg, Mukamel, Schutz 2009)
- Speed increases with size

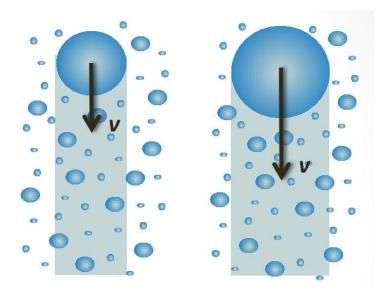
Explosive Dynamics

Scattering collisions between two condensates



- Almost elastic scattering
- Larger condensate picks up mass

Raindrops



Heuristic/Approximate Picture

- Initially a large number O(L) of clusters (mini-condensates) emerge from initial condition
- These grow in time first out of these to become macroscopic determines relaxation time T

Heuristic/Approximate Picture

- Initially a large number O(L) of clusters (mini-condensates) emerge from initial condition
- These grow in time first out of these to become macroscopic determines relaxation time T
- Relaxation time for a putative condensate comes from simplistic non-interacting picture of infinite sequence of collisions labelled by n where condensate accrues mass:

$$m_n=m_{n-1}+\delta$$
 deterministic accretion $t_n=t_{n-1}+\Delta t_n$ stochastic accretion times where $p_n(\Delta t_n)=\lambda_n \mathrm{e}^{-\lambda_n \Delta t_n}$ and $\lambda_n=Am_n^\gamma$ speed determines mean accretion time

Heuristic/Approximate Picture cont

Distribution of $T=\sum_{n=1}^{\infty}\Delta t_n$ (time for a cluster to become a macroscopic condensate) is given for small T by

$$f(T) \simeq CT^{\frac{(1-3\gamma)}{2(\gamma-1)}} \exp{-AT^{-1/(\gamma-1)}}$$

For small *T* the exponential part dominates.

Heuristic/Approximate Picture cont

Distribution of $T = \sum_{n=1}^{\infty} \Delta t_n$ (time for a cluster to become a macroscopic condensate) is given for small T by

$$f(T) \simeq CT^{\frac{(1-3\gamma)}{2(\gamma-1)}} \exp{-AT^{-1/(\gamma-1)}}$$

For small *T* the exponential part dominates.

Extreme value statistics for average of *minimum* of L iidrvs drawn from f(T) implies

$$L\int_0^{T_{\min}} f(T) \, \mathrm{d}T = 1$$

which gives

$$L \exp{-AT^{-1/(\gamma-1)}} \simeq 1$$

and

$$T_{\min} \sim (\ln L)^{1-\gamma}$$

Heuristic/Approximate Picture cont

Distribution of $T = \sum_{n=1}^{\infty} \Delta t_n$ (time for a cluster to become a macroscopic condensate) is given for small T by

$$f(T) \simeq CT^{\frac{(1-3\gamma)}{2(\gamma-1)}} \exp{-AT^{-1/(\gamma-1)}}$$

For small *T* the exponential part dominates.

Extreme value statistics for average of *minimum* of L iidrvs drawn from f(T) implies

$$L\int_0^{T_{\min}} f(T) \, \mathrm{d}T = 1$$

which gives

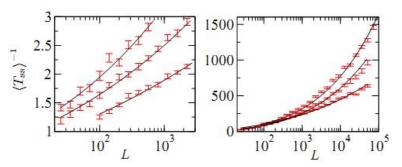
$$L \exp{-AT^{-1/(\gamma-1)}} \simeq 1$$

and

$$T_{\min} \sim (\ln L)^{1-\gamma}$$

Instantaneous as $L \to \infty$

Numerical Evidence for Instantaneous Condensation



 $\langle \mathit{Tss} \rangle$ obtained in numerical simulations (points) and from formula $c_2(c_3 + \ln L)^{1-\gamma}$ fitted to data points (lines). In all cases the density $\rho = 2$ and $\gamma = 3$, 4, 5 (curves from bottom to top). Left: $v(m) = (0.3 + m)^{\gamma}$, every 5th site has initially 10 particles. Right: $v(m) = (1+m)^{\gamma}$ particles are distributed randomly in the initial state. $\langle \mathit{Tss} \rangle^{-1}$ for different γ differ by orders of magnitude and hence they have been rescaled to plot

Conclusions

 Real space condensation — ubiquitous dynamical phase transition in variety of contexts

Analysable within ZRP FSS

Conclusions

- Real space condensation ubiquitous dynamical phase transition in variety of contexts
 - Analysable within ZRP FSS
- Understanding in terms of large deviations of sum of random variables

Conclusions

 Real space condensation — ubiquitous dynamical phase transition in variety of contexts

Analysable within ZRP FSS

- Understanding in terms of large deviations of sum of random variables
- Explosive Condensation has same stationary state as ZRP but relaxation time $T \sim (\ln L)^{1-\gamma}$ vanishes for large L
- First (?) spatially extended realisation of the instantaneous gelation phenomenon seen in mean-field models of cluster aggregation (Smoluchowski equation)

$$\frac{\mathrm{d} N_i}{\mathrm{d} t} = \frac{1}{2} \sum_{j+k=i} K_{jk} N_j N_k - \sum_j K_{ij} N_i N_j$$

where e.g.
$$K_{ij} = i^{\nu}j^{\mu} + i^{\mu}j^{\nu}$$

