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Inelastic gas



Inelastic collision: (v1 � v2) = �r(v�1 � v�2)

coefficient of restitution

v1 + v2 = v�1 + v�2 (m = 1)Momentum conservation: 

Collision rules:
v2 = (1� �)v�1 + �v�2

v1 = �v�1 + (1� �)v�2
�

� =
1� r

2

�E = ��(1� �) (v�1 � v�2)
2

Change of energy during collision:

r � [0, 1)



Energy decay with time

dE

dt
⇥ ��E3/2

(Haff ’s law)

E(t) � (1 +A� t)�2

Late time behavior: (sticky gas like)

E(t) � t�2/3

(in 1D)
clustering: M(t) � t2/3 Carnevale, Pomeau & Young (1990).

MV = constant M � E�1

�E � ��(�v)2, �t � �/(�v), �v � v �
�

E



Clustering in 1D

Ben-Naim,  Chen,  Doolen & Redner (1999)

Connection with Burgers equation.





Large-scale structure of the universe

V. Springel, C. S. Frenk & S. D. M. White, 
Nature 440, 1137 (2006)



Driven Granular Gases

What is the velocity distribution?

Is the steady state equilibrium like?





Clustering in the boundary 
driven granular gas in 2D

Episov & Pöschel (1997)



Uniformly driven gas











• Set up Boltzmann equation for single-particle velocity 
distribution, under molecular chaos hypothesis,  
 

• Add a diffusive term to model uniform heating:  
 

• Collision rate                      with           (hard sphere)

Kinetic theory approach 
(homogeneous gas)

P (v1, v2) = P (v1)P (v2)

⇥ |v1 � v2|� � = 1

D�vP (v) dv/dt = �(t)[                 ]

P (v) ⇥ exp
�
�A|v|3/2

⇥
Noije & Ernst (1998)





We want to understand 
starting with  

the simplest model
The Maxwell model:          (collision rate is 
independent of the velocities of the colliding particles)

� = 0

�tP (v, t) =
⇥
T

⇤ ⇤

�⇤
du

�
1

r
P (v⇥, t)P (u⇥, t)� P (v, t)P (u, t)

⇥

+D�vP (v, t)

P (v, t ⇤ ⌅) ⇥ exp
�
�A|v|

⇥
Ben-Naim & Krapivsky (2000)

Antal, Droz & Lipowski (2002)	

Santos & Ernst (2003)

Is this true?



The model

• Consider a collection of    particles.	


• Each particle is characterized by a velocity    .	


• At each time step,  pick two particles at random.	


• With probability   ,  collide them inelastically:	


!

• With probability          ,  apply external force:

N

vi

p

(1� p)

vi = �v�i + (1� �)v�j vj = (1� �)v�i + �v�jand

vi = v�i + �i vj = v�j + �jand



Hierarchy of equations

• Equation for          involves 	


• Equation for              involves	


•  ... and so on.

P2(v1, v2)

P1(v1)

P3(v1, v2, v3)

P2(v1, v2)

Fortunately, we find that,  the equations for variance 
per particle and the velocity correlation per pair 
close, and satisfy a linear recursion relation.



e(n) =
1

2N

N�

i=1

�v2
i (n)� , �(n) =

1

N(N � 1)

�

i �=j

�vi(n)vj(n)�

[e(n),�(n)]T � Xn = RXn�1 + C

R =

�

��
1 � 4p�(1��)

N
2p�(1��)

N

8p�(1��)
N(N�1) 1 � 4p�(1��)

N(N�1)

�

�� C =

�
(1 � p)�2

N
0

�

Linear dependence with n

Eigenvalues are: 1 � p(1 � r2)

(N � 1)
1 and



The mean energy and  
the correlation
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What we find:

• Eventually, both variance and the 
correlation increase linearly with time. 	


• No steady state.	


• The assumption                                                                                          
                        is not valid! 
(which was used in the Boltzmann equation)

P2(v1, v2) = P1(v1)P1(v2)



Modeling the external forcing

The particles collide with a “vibrating wall”

v �W = �rw(v
� �W �)

The wall is massive: W = W �

v = �rwv
� + (1 + rw)W

The velocity of the wall is random: (1 + rw)W = �

v = �rwv + �



R =

�

���
1 � [4p�(1��)+2(1�p)(1�r2

w)]
N

2p�(1��)
N

8p�(1��)
N(N�1) 1 � [4p�(1��)�2(1�p)(1+rw)2+4(N�1)(1�p)(1+rw)]

N(N�1)

�

���

rw = �1 rw = +1

No steady state

For             both eigenvalues have absolute	

values less than unity. Thus, the system reaches a 	

steady state.

rw �= �1

v = �rwv + � rw � [�1, 1]



Mean energy and correlation 
in the steady state

e =
(�2/2)

�
2�(1 � �) + �(1 � r2

w) + 2(N � 2)�(1 + rw)
�

4�(1 � �)(1 � r2
w) + �(1 � r2

w)2 + (N � 2)(1 + rw)[4�(1 � �) + 2�(1 � r2
w)]

,

� =
2�2�(1 � �)

4�(1 � �)(1 � r2
w) + �(1 � r2

w)2 + (N � 2)(1 + rw)[4�(1 � �) + 2�(1 � r2
w)]

.

e =
��2

4�(1 � �) + 2�(1 � r2
w)

+ O(N�1)

� = O(N�1)

NLarge      limit:

� = (1 � p)/p



Mean energy in 	

the steady state
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is              
         as  
O(N�1)
� 0 N � ⇥

P2(v1, v2) = P1(v1)P (v2)

•The assumption

Steady state

rw �= �1



Generating function         
in the steady state (           )

Z(�) =
�
e��v

⇥

exp
�
⇥2�2/2

⇥

for Gaussian noise

Z(�) = Z(��)with

and Z(�) = 1 + e�2 + · · · as� � 0

Nonlinear & nonlocal equation! 
We can’t find the exact solution.  

Z(⇥) = pZ(�⇥)Z([1� �]⇥) + (1� p)Z(rw⇥) f(⇥)

rw ⇥= �1



Near-elastic, weak 
energy injection limit

while keeping ⇥2/� ⇥/�and fixed.
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�2 =
�⌅2/⇥

2
�
1 + �⇤/⇥

⇥where

�v2⇥ = �2Gaussian with

� ⇥ 0, rw = (1� ⇥) ⇥ 1, ⇤ ⇥ 0
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Elastic collision 
with the “wall” rw = 1

Z(⇥) =
�
1� (1� p) f(⇥)

⇥�1
pZ(�⇥)Z([1� �]⇥)

This can be solved  
by iteration.

Exponential tail:

P (v) ⇥ A(�) exp
�
�|⇥0||v|

⇥

(         )



rw = �1 rw = +1

No steady state
P (v) � e�|v|/v�

v = �rwv + �



Inelastic collision  
with the “wall”

• Difficult to guess the tail from numerical simulation, as it 
requires large number of realizations. 	


• Convenient to numerically solve the generating function  
         for the special case                      .  	


• Numerically computing the inverse Fourier transform 
gives  the velocity distribution.	


• The numerical results were not conclusive!

|rw| < 1

Z(ik) � = rw = 1/2

P (v) ⇥ exp
�
�A|v|�

⇥

with    gradually increasing (but           ) as we go towards 
higher and higher velocities.

� � < 2

(           )



Saddle-point analysis
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µ′(λ
)

µ″(λ)
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P (v) �
exp

�
µ(��) + ��v

⇥
⇤
2⇥|µ⇥⇥(��)|

µ(�) = lnZ(�)

µ⇥(��) = �v

where

and

P (v) ⇥
⇤

1� r2w
2�⇥2

exp

�
� v2

2⇥2
(1� r2w)

⇥
Gives Gaussian:



Even moments

⌃
1�⇥2n � (1� ⇥)2n + �

�
1� r2nw

⇥⌥
M2n =

n�1⇧

m=1

⇤
2n

2m

⌅
⇥2m(1� ⇥)2n�2mM2mM2n�2m

+ �
n�1⇧

m=0

⇤
2n

2m

⌅
r2mw M2m

(2n� 2m)!

(n�m)!

⇤
⇤2

2

⌅n�m

M2n =
�
v2n

⇥
satisfies the recursion relation



Ratio of moments
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rw = �1 rw = +1

No steady state

P (v) � e�|v|/v�

v = �rwv + �

P (v) � e�av2



Conclusion
• It is possible to write exact recursion relation for the 

time evolution of the second moment and velocity 
correlation together for the driven inelastic Maxwell 
model. 	


• This enables us to obtain the form of the  
high-energy tails and all moments (recursively) of the 
velocity distribution in the steady state in the 
thermodynamic limit.	


• We do not require any approximations to break the 
BBGKY hierarchy, which is usually assumed in earlier 
works but is unnecessary.	


• Results are also valid in the continuum time dynamics.


