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Inelastic gas



X

Inelastic collision: (vy —vg) = —r(v] — v3)

coefficient of restitution 7 € |0,1)

Momentum conservation: vi + vz = v] + v, (m = 1)
- v1 = ev] + (1 —€)vy 1 — 7
Collision rules: €= —
ve = (1 — e)v] + ev;

Change of energy during collision:

AE = —¢(1 —¢) (v] —v3)?



Energy decay with time

AE x —e(Av)?, At ~ 0 /(Av), Av~v~VE

— ~ —eE3/? > E(t) ~ (14 Aet)™?
(Haffs law)

Late time behavior: (sticky gas like)

E(t) ~t2/3
(in 1D)

.. 2/3
CIUSterlng. M(t) ~ 1 / Carnevale, Pomeau & Young (1990).

MYV = constant > M~ E~1




Clusterlng in 1D
i |

—-
Il

h

FIG. 3. Space-time evolution of a 500 particle system with

r=0.9and § = 102, up to t = 600.

Ben-Naim, Chen, Doolen & Redner (1999)

Connection with Burgers equation.
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Clustering Instability in Dissipative Gases
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FIG. 3. A typical configuration of particles exhibiting clus-
ters. Here the coefficient of restitution is 0.6, the time corre-
sponds to 500 collisions per particle, and the area fraction is
0.05. The number of particles is 40000.



Large-scale structure of the universe

> V. Springel, C. S. Frenk & S. D. M. White,
Nature 440, 1137 (2006)



Driven Granular Gases

What is the velocity distribution!?

Is the steady state equilibrium like?
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Breakdown of Hydrodynamics in a One-Dimensional System of Inelastic Particles

Yunson Du, Hao Li, and Leo P. Kadanoff

The James Franck Institute, The University of Chicago, Chicago, Hlinois 60637
(Received 15 August 1994)

We study dynamics of nearly elastic particles constrained to move on a line with energy input from
the boundaries. We find that for typical initial conditions, the system evolves to an “extraordinary” state
with particles separated to two groups: The majority of the particles get clamped into a small region of
space and move with very slow velocities; a few remaining particles travel between the boundaries at
much higher speeds. Such a state clearly violates equipartition of energy. The simplest hydrodynamic
approach fails to give a correct description of the system.
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Clustering in the boundary
driven granular gas in 2D

Episov & Poschel (1997)



Uniformly driven gas
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Velocity distributions and density fluctuations in a granular gas

J. S. Olafsen™® and J. S. Urbach
Department of Physics, Georgetown University, Washington, D.C. 20057

(Received 21 April 1999)

Velocity distributions in a vibrated granular monolayer are investigated experimentally. Non-Gaussian ve-
locity distributions are observed at low vibration amplitudes but cross over smoothly to Gaussian distributions
as the amplitude is increased. Cross-correlations between fluctuations in density and temperature are present
only when the velocity distributions are strongly non-Gaussian. Confining the expansion of the granular layer
results in non-Gaussian velocity distributions that persist to high vibration amplitudes.
[S1063-651X(99)50409-1]
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FIG. 1. Log-linear plot of velocity distribution functions for
increasing I' at constant frequency. As the acceleration is increased,

the distributions go from having nearly exponential to Gaussian
tails. (O) I'=0.93, (+) I'=1.5, (O) I'=3.0.
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Non-Gaussian velocity distributions in excited granular matter in the absence of clustering

A. Kudrolli* and J. Henry
Department of Physics, Clark University, Worcester, Massachusetts 01610

(Received 18 January 2000)

The velocity distribution of spheres rolling on a slightly tilted rectangular two-dimensional surface is ob-
tained by high speed imaging. The particles are excited by periodic forcing of one of the side walls. Our data
suggests that strongly non-Gaussian velocity distributions can occur in dilute granular materials even in the
absence of significant density correlations or clustering. When the surface on which the particles roll is tilted
further to introduce stronger gravitation, the collision frequency with the driving wall increases and the
velocity component distributions approach Gaussian distributions of different widths.
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Velocity Fluctuations in a Homogeneous 2D Granular Gas in Steady State

Florence Rouyer* and Narayanan Menon’

Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-3720
(Received 25 April 2000)

We have measured the spectrum of velocity fluctuations in a granular system confined to a vertical
plane and driven into a homogeneous, steady state by strong vertical vibration. The distribution of
horizontal velocities is not Maxwell-Boltzmann and is given by P(v) = Cexp[—B(|lv|/o)“] where a =
1.55 *= 0.1 at all frequencies and amplitudes investigated, and also for varying boundary conditions. The

deviation from Maxwell-Boltzmann statistics occurs in the absence of spatial clustering and does not
result from an inhomogeneous average over regions of varying local density. Surprisingly, P(v) has the
same shape over a wide range of densities.
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Velocity fluctuations in electrostatically driven granular media

I. S. Aranson’ and J. S. Olafsen?
lArgonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

’Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
(Received 29 October 2001; revised manuscript received 23 September 2002; published 10 December 2002)

We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas.
The velocity distributions have strong deviations from a Maxwellian form over a wide range of parameters. We
have found that the tails of the distribution functions are consistent with a stretched exponential law with
_typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experi-
mental data. Our results suggest that this non-Gaussian behavior is typical of most inelastic gases with both

short- and long-range interactions.

log,,[P(v)]




Kinetic theory approach
(homogeneous gas)

® Set up Boltzmann equation for single-particle velocity
distribution, under molecular chaos hypothesis,

P(Ul, UQ) - P(Ul)P(UQ)

® Add a diffusive term to model uniform heating:

Do, P(v) [dv/dt = n(t)]

e Collision rate o< |v; — v2|® with 6 =1 (hard sphere)

> P(v) ~ exp(—A\v|3/2) Noije & Ernst (1998)
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Velocity Distributions in Dissipative Granular Gases

J.S. van Zon and E C. MacKintosh

Division of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
(Received 24 July 2003; published 12 July 2004)

Motivated by recent experiments reporting non-Gaussian velocity distributions in driven dilute
granular materials, we study by numerical simulation the properties of 2D inelastic gases.

Here we show that, rather than a universal distribution
with @ = 1.5, a family of distributions with apparent
exponents covering a wide range of values a <2 is ex-
pected, depending on both material and experimental
conditions.
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Velocity distributions in dilute granular systems

J. S. van Zon'** and F. C. MacKintosh"*'
'Division of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
’Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
(Received 30 October 2003; revised manuscript received 6 August 2004; published 11 November 2005)

We investigate the idea that velocity distributions in granular gases are determined mainly by #, the coef-
ficient of restitution and g, which measures the relative importance of heating (or energy input) to collisions.
To this end, we study by numerical simulation the properties of inelastic gases as functions of 7, concentration
¢, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian
velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Com-
parison between these results and velocity distributions obtained by other heating mechanisms and for a simple
model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be
understood as different limits of ¢, with g1 and g =<1 respectively. We review the literature for evidence of
the role of g in the recent experiments.




VVe want to understand
starting with
the simplest model

The Maxwell model: o = 0 (collision rate is
independent of the velocities of the colliding particles)

O, P(v,t) = VT / T _lp(v*,t)P(u*,t) — P(v,t)P(u,t)

A

+D0, P(v,t) Ben-Naim & Krapivsky (2000)

P(U t — QQ) ~ eXp(—A|UD Antal, Droz & Lipowski (2002)
’ Santos & Ernst (2003)

Is this true?



The model

Consider a collection of N particles.

Each particle is characterized by a velocity v; .

At each time step, pick two particles at random.

With probability p, collide them inelastically:
vi = ev; + (1 —€)v; and v; = (1 —€)v; + ev;

With probability (1 — p), apply external force:

vi =v; +1n; and v; = v; + 1,



Hierarchy of equations

® Equation for P;(v;) involves Py (v, v2)
® Equation for P (vy,v2)involves Ps (v, vy, v3)

® ..and so on.

Fortunately, we find that, the equations for variance
per particle and the velocity correlation per pair
close, and satisfy a linear recursion relation.



4pe(l—e) 2pe(1—e)
N N
O —
8pe(l—e) 1 4pe(l—e)
. N(N-1) N(N-1) _

. p(1 —1r?)

. 1
Eigenvalues are: 1 and (N — 1)

N

Linear dependence with 10




The mean energy and
the correlation

o e(n) Simulations i
— e(n) Analytical
2.(n) Simulation
—-2(n) Analytical /-
e =4/3
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What we find:

® Eventually, both variance and the
correlation increase linearly with time.

® No steady state.

® [he aSSlePtiOn PQ(Ul, Ug) — P1 (’Ul)Pl (UQ)
is not valid!
(which was used in the Boltzmann equation)



Modeling the external forcing

I”

The particles collide with a “vibrating wal
v—W = —ry, (0" — W7)

The wall is massive: W = Ww*
V= —1u,0 + (1 +74)W

The velocity of the wall is random: (1 + 7,)W =7

V= —TuVU+T71




V= —TuU+ 7 rev € [—1,1]

I 1 _ [4pe(1—€)+2(1—p)(1—72))] 2pe(1—e) ]
N N
R —
8pe(l—e) 1 _ |[4pe(1—€)—2(1—p) (1474)?+4(N—1)(1—p) (1+7,)]
i N(N-1) N(N-1) _

No steady state

N\

Tw = —1 rw = +1

For r., # —1 both eigenvalues have absolute
values less than unity. Thus, the system reaches a
steady state.



Mean energy and correlation

in the steady state

(02/2) [26(1 —e&)+v(1—7r2)+2(N —2)y(1 + rw)}

e —

4e(1 —e)(1—r2)+~(1 —72)2 4+ (N —2)(1 + ry)[4e(1 —€) + 2v(1 —r2)] °

5 _ 20%¢(1 — ¢)

4e(1—e)(1—r2)+~4(1—72)2 4+ (N —2)(1 +ry)[de(1 —€) +2v(1 —r2)]

Large N limit:

2

B Y . —1
° de(1 —€) + 2v(1 — r2) POV

Y =0(N)

y=(1-p)/p
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Mean energy in
the steady state .71

- (©)

— e(n) Analytical
-+ e =4/9

| | | | | ] : — - - - - - - - - - -— —
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o e(n) Simulation

e The correlation
— is O(N™1)
| — 0 as N — o

* The assumption

PQ(Ul, 2)2) - Pl(’Ul)P(UQ)

-
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Steady state



Generating function zo) = ()
in the steady state (., » -

Z(X) =pZ(eA) Z([1 = e]A) + (1 = p) Z(rwA) f(N)

with Z(\) = Z(—\)

and Z(\) =1+eX +--- as)\ — 0 !
exp(0?A\?/2)
for Gaussian noise
Nonlinear & nonlocal equation!

We can’t find the exact solution.



Near-elastic, weak
energy injection limit

e—0, 1, =(1—-0)—>1, oc—0

while keeping o°/¢ and 6/¢ fixed.

iz ;
= AATZ()
vo? /e
where A? =
2[1+ ~0/¢
o Simulation
— Gaussian
Gaussian with (v?) = A?




Elastic collision
with the “wall”’ ¢.=1

ZO) = [1=(1=p) fN] pZ(NZ([1 - )

This can be solved
by iteration.

Exponential tail:

10

7

\.

P(v) ~ A(e) exp(—|Xoll])

— Analytical

o Simulation 3%

8 4 0 4

v

8



No steady state

V= —TuVU +T71




Inelastic collision
with the “wall”

Difficult to guess the tail from numerical simulation, as it
requires large number of realizations.

(Irw] < 1)

Convenient to numerically solve the generating function
Z(ik) for the special case e =7, = 1/2..

Numerically computing the inverse Fourier transform
gives the velocity distribution.

The numerical results were not conclusive!
P(v) ~ exp(—A\fU\O‘)

with (¢ gradually increasing (but v << 2) as we go towards
higher and higher velocities.



Saddle-point analysis

exp|p(A*) + Mv]  where p(\) =1nZ(\)

P(v) ~
\/27.‘."“//()\*)‘ and lu/()\*) —
. , 1 —17r2 2 -~
Gives Gaussian: P(v) ~ exp (1 —7y)
2w 0? - 2072 |
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Even moments

2 . . .
Ms, = (v*") satisfies the recursion relation

1= — (1= €2 4y (1= 72) | My, =




Ratio of moments

120} -

g2 o = 1/ 4,e=1/ 4
_{.g;:?:" op=1/ 4. e=1/2"
10k , i p=1/ . e=1/4
S p=1/ . £=1/2
L + —3/ 4. e=1/4_
L5 | | p:3/ 4,|8= 1/2
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M2n/M2n—2




No steady state

V= —TuVU +T71

\

T"w —

1



Conclusion

It is possible to write exact recursion relation for the
time evolution of the second moment and velocity
correlation together for the driven inelastic Maxwell
model.

This enables us to obtain the form of the
high-energy tails and all moments (recursively) of the
velocity distribution in the steady state in the
thermodynamic limit.

We do not require any approximations to break the
BBGKY hierarchy, which is usually assumed in earlier
works but is unnecessary.

Results are also valid in the continuum time dynamics.



