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Boundary Driven Diffusive System

* Diffusive interacting+conserving channel ("disordered’ phase - think gas)
e Channel connected to two reservoirs at different densities

* Steady-state
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| .What is the average density profile p(z) (0<x<1)?

2. Fluctuations - for example, two point correlations <p(x)p(y)>7
Probability of any configuration P [p(z)] ?
How is a fluctuation generated dynamically?



Outline
* Approaches

* Brief recall of equilibrium results

* Out of equilibrium basics - average density
correlations (simple picture for
bositive vs. negative)

* Probability of arbitrary profile -
Calculating the large deviation functional
General properties - nonlocal
non-differentiable functional
structure of singularities

* Fluctuation induced forces (Casimir)



Approaches

Generally can identify two approaches:

|. Start from a microscopic model:
for example, simple symmetric exclusion model
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- Evolution of probability IP(t)) = M|P(t))
t —

Solve



FIuctuating Hydrodynamics Phenomenological approach
(can also derive in some cases):

- Density field ,0(513‘) satisfies

/ /
- Rescale space 0 <=z (z %) <1 and time t= R

N2
J=-=D(p)Vp+o(p)n(z,t)
— ~
Fick’s law Noise

- Noise is small due to rescaling (central limit theorem)

1

(@, On(a', 1)) = <0(z —")o(t — ')

- D(p)and (T(p) connected by fluctuation-dissipation (recall rescaling)
o (p) = 2kpTp’k (p) D (p)

compressibility

- Boundary conditions p(0) =p;  p(1) = p,



Equations of motion (fluctuating hydrodynamics)

J=—=D(p)Vp++/a(p)n(z,t)
o (p) = 2kpTp*x (p) D (p)

With boundary conditions  p(0) = p; and p(1) = p,

- Phenomenological approach D(p) and O‘(p) given/measured™

- Microscopic approach D(p) and 0‘(,0) calculated
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for symmetric exclusion model D(p) =1

* Weber et. al. PRB 2001




In Equilibrium Pl = Py = P (on average flat)

Fluctuation dissipation dictates probability of any configuration
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with f(p) = / dp1 /_ dpo 2D (p2) the free-energy density
P

o (p2)

: ote -
For example, for symmetric exclusion model

|- [oral fungtieital (no,conrelatios)

2. Smooth functional
(result of smooth D and o)




Out of Equilibrium

(on average non-flat profile)
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Question | (easy) - The average Density Profile




Average Density Profile

Op(x) +V-J =0
J=—=D(p)Vp++/a(p)n(z,t)

Solve V(D(ﬁ)Vﬁ) — () with boundary conditions

p(0) =pr  p(1) =p,

For example, for D = 1 get linear profile

y




Question Il - Small Fluctuations




Fluctuations

Naive guess - weak drive so locally in equilibrium

Calculate p(x)

And gu

with

How wrong!? <(/p(w)) >c off by order
(Pl — p,r)2



Reason for disagreement is the presence
of generic long range correlations
(bositive or negative)

Lattice models - Sphon 1983
Experiments on heat flow - Law et.al. 1988
(review by Dorfman et. al. 1997)

Too see, enough to evaluate two-point correlation
for small fluctuations



Simple picture for long range correlations

Look at fluctuation o // |
in bulk of system :

X
At later times spreads |
generating
negative correlations :




Simple picture for long range correlations

Next, look at fluctuation
near the boundaries

of system < [

At later times spreads
generating
positive correlations




Correlations in system dictated by interplay of two

processes.

- If noise near the boundaries is stronger (1

positive correlations

R . . 0)
- If noise near the boundaries in weaker
negative correlations




Easy to understand within a simple two box system

Jo1 J12 Jos3
x>

Po P1 P2 P3

‘Boxed fluctuating hydrodynamics’



Next, large deviation (Question 3):

brobability of an arbitrary configuration

- Exact solutions (Derrida, Lebowitz, Speer)

- Macroscopic fluctuation theory (Bertini, Jona-Lasinio, based on
large deviations literature Freidlin,Ventzel,Varadhan....)

(see paper by Tailleur, Kurchan and Lecomte 2008)




Macroscopic fluctuation theory

Op(x)+V-J=0
J=—=D(p)Vp++o(p)n(z,t)

o (p) = 2kpTp’k (p) D (p)

The probability of a history of noise is

(z,t)2
P[n(x,t)] oc e NS T dudt

or

_ (J+D(p)Vp)*?
Nf 50 () dxdt — G_NS

Pln(x,t)] < e

Large N - use saddle-point/wkb
(hard - nonlinear field equations)



Usually solve Hamiltonian version of saddle-point
equations

Introduce Lagrange multiplier to fix current

/dazdtﬁ(az)(@tp +V-J)

get
Op = 0ip— 20, (0 (p)Dup)
81!5/‘/a - (8513:5)2 - Oy0 (:0) - ag ),
momentum
Non-linear

(Could have got here via Martin-Siggia-Rose
and saddle-point)



Note, in the large N limit given that a fluctuation
occurred its history is deterministic



lllustration of idea

One dimensional brownian particle in periodic potential (weak noise)

uw = F(x) ++/¢e/21(t)
(n(t)n(t')) = 6(t —t')

Most probable location

Want probability distribution in steady state P(:Ij,t = OO)
P ln(.1)] o e~ J d@ra—F(@)? Plz) = -0,V (z)

Look at problem |. particle starts at £ = —oo in most probably state
2.endsatxat t =0

saddle point to find most probably history
(instanton)

(WKB - see Graham,Tel, Dykman, .......)



Comment: Problem above in equilibrium.

Time reversal symmetry (ala Onsager)
Path to fluctuation same as
relaxation to most probably state

Makes hard problem relatively easy



For diffusive fields - same idea

(J+D(p)Vp)?
Pli(a, )] o e~V J G dndt NS

Look for most probably history that leads to

configuration of interest at ¢t = 0 starting from most
probable at t = —¢
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Technically minimize over J, p subjéct to constraint 815,0 +VJ =0



Result of calculation

Plp(z)] e~ Nolo(z)]

1

Called Large Deviation Functional

It is the direct analog of a free energy away from equilibrium

Recap
systematic way to calculate probability of
arbitrary configuration for diffusive systems



Results to date

- Exact solution for D = 1 and o(p) = a+bp+cp” only in 1d
(obtained first via microscopic path by Derrida et. al. 2002)

For example, D =1,0(p) =2p(1 — p)

B 1 1 — p(x) p(T) VE
¢[,0($)] _/O dx [(1 — p(x)) In 1~ F(z) + p(z)In F () + In (1) — p(0)

V2F

(VE)?

Note - nonlocal a direct manifestation of the long range
correlations (very different from equilibrium)

where p(z) = F(z)+ F(z)(1 - F(z))

Can also show a smooth functional (exception see below)




- Numerical algorithm evaluate probability of a given
configurations (Bunin,YK, Podosky 2012)

|.Allows one to explore general models
and in any dimension

2. Gives a hint on how to build perturbative treatment



Non-differentiable (non-local) functionals

V4 L

Bertini et.al. 201 | (infinite bulk drive)
Bunin, YK, Podosky 2012 (no bulk drive + rough conditions
+ structure of singularity)
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Recall that find path that leads to configuration.

For this model find that sometimes there are
multiple
saddle point solutions




Some intuition why can have singularities in non-equilibrium

(warning mechanism very different!)

Biased Brownian walker perjodic i)o,u dary cqnditions
(large EEMRURGCE W ERESRTIA ML Pllﬁalpla,ﬁ%],&))’kman)

Drive l€ads to a singular

~ Targe deviation Tunctions.
Appearns in 4 plane of codimension | in the
configuration s
with smooth equation parameters

Most probably path

D\ A

Iwo competing saddle point solutions



Note breaking of time reversal symmetry

D\

Create fluctuation

Relax from fluctuation

For diffusive fields this is true for all configurations
(not just singular)



To see singularities look at 2d cross-sections
first smooth case (SSEP)
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One history leading to every final configuration

pf(z) = p(x) + a1 sinme + agsin 27x



For boundary driven Ising model (2d cut)

The value of the function

I

P |

Po/3

P13 \ Pq/3

Multiple-path
region

Similar to first order line ending at

" critical point”
Bunin, YK, Podosky 2013



Motivated by similarities to critical phenomena
look at order parameter

A = ||op|

6p]? = / dxdt [ps(, 1) — pr (@, )

two locally minimizing histories

Can construct a Landau theory p1
with (T —T,)/T,

0 — (/ dz [ps(z) —pcrit(aﬁ)f)w : N

~



Because have two solutions the structure of singularities
given by a simple Ising Landau theory

3/2

Cusp tip: like 2 y = +=X
order phase s
transition
Switching
t/ line: like 15t

order phase-

x transition line

6_N¢(pcusp)+% In N
universal model independent
(as long as singularity there)



Comments:

e Can show analytically that occurs also in model with
D=1 o(p) = a + cp
for ¢ > 0

* For this model occurs for any non-equilibrium
boundary conditions

* For Boundary driven Ising model occurs only for large
enough boundary drive |p(1) — p(0)



For boundary driven appear when o(p) has a
"deep enough’ convex region
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Natural question: Can you have more than two
(locally minimizing) histories?



Weakly Asymmetric Simple Exclusion Process
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same model as before but with non-symmetric rates

w—w =

I
N



Equation of motion

Op (,t) + 0rJ (z,t) =0

1
J(az,t)——§ p(x,t)+o(p)E+o(p)n(z,t).

o(p)=p(l—0p)

Bertini et. al. (201 |) showed that in the
infinite bias case (PASEP) there are singularities
with two histories.

Structure was not discussed.



Steady-state Blythe et. al. 2000

Most probable
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Look at large deviations using cuts in configuration space
Take particle hole symmetric boundary conditions
(cleaner)



Small Field (think SSEP) smooth

Larger field find cusp
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Increase field further
and find tricritical analogues
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At infinite field (PASEP) can show analytically
that there are configurations

where s histories lead to the same configuration
MAP EXACTLY TO LANDAU THEORY

Cubgcritical
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0 0.005 0.01 0.015 0.02 0.025 0.03



Slightly different: Casimir Forces in Diffusive Systems




Recall generic long-range correlations

Many times presence of long ranged
correlations associated with
fluctuation induced forces

Casimir, Critical point (Fisher, de Gennes),
Goldstone modes (Kardar et. al.)



Fluid dynamics case

Pressure modification due to fluctuations in fluid dynamics shown
by Kirkpatrick et.al, PRL (201 3)

Pl Pr

L
P x —kpT(Vp)?L x g(x)

vahishes at boundaries



Diffusive systems

|
: | :
|

Can calculate force between plates for simple models.
For hard core gas attractive (relatively small force)

F _kBTT(V ,0)2 I? (YK M. Kardar)

For other models can have repulsive

Note, absent at linear response level



Summary

|. Out of equilibrium large deviation functionals are both generically non-local due
to long-range correlations and can be singular.

2.Well defined method to analyze singular structure, can classify.

3. Can roughly know which models are singular and which are not (no bulk bias)

4. Casimir like forces

|. Higher dimensions!?

2. Systematic perturbation theory?

3. Is there an influence of the singularities on small fluctuations?
4. Approach to ordered phases!?

5. Simple effective low dimensional models
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