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Motivations

Understanding the interplay of driving and glassiness, in

Non-monotonic (or negative di�erential) response to a driving force

I Shear-thinning and shear-thickening (rheology)

I Negative resistance (ion channels, homeostatic balance...)

I Macromolecular crowding: anomalous di�usion

Fluctuation relations

I Approaching the large-deviation regime

I Time-reversal symmetry of current �uctuations

I E�ective �uctuating hydrodynamics description

A double challenge

- No general Gibbs-Boltzmann framework in NESS

- We still do not know what an equilibrium glass is
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The main ingredient

Cage e�ect in viscous liquids

Higher/Lower density regions prevent/facilitate particle rearrangements

Ex.: a particle randomly jumps to a NN hole i� it has at least 2 NN holes

before and after the move (detailed balance). No static interaction H = 0external field E

At high density kinetic constraints are hardly satis�ed, so dynamics is slow

No particle is permanently blocked, (unless it was so in the initial state)

Unlike geometric restrictions, where states (instead of moves) are forbidden,

the kinetic restrictions imply a trivial thermodynamics
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Plan of talk

1 Boundary-driven transport
Negative (di�erential) resistance and directed motion

Aging and steady state regime

2 Constrained exclusion processes
Transport and relaxation properties

Some features of the NESS measure

3 Fluctuation symmetry
Steady state �uctuation relation
Current �uctuations statistics
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Boundary-driven transport

boundary-induced dissipation

density-dependent di�usion, D(ρ)

vanishing di�usion at high density

ρ+ −→ ρ−

ρ(z , t) local density, |z | ≤ L . Particle reservoirs at ρ(±L, t) = ρ±.

∂ρ

∂t
=

∂

∂z

[
D(ρ)

∂ρ

∂z

]

An exactly solvable case is obtained for: D(ρ) ∼ (ρc − ρ)φ

−→ Porous Medium Equation

Mauro Sellitto (S.U.N.) Driven Di�usive Glassy Systems Florence, June 2014 6 / 35



Non-equilibrium steady state

This is obtained by setting ∂tρ = 0 with ρ− < ρ+ < ρc

J(ρ+, ρ−) ∼ (ρc − ρ−)1+φ − (ρc − ρ+)1+φ

ρc − ρ(z) =
(
a+ − a−

z

L

)1/(1+φ)
with a± = 1

2

[
(ρc − ρ−)1+φ ± (ρc − ρ+)1+φ

]
.

• density pro�le is nonlinear

• current depends on ρc − ρ±, not simply ρ+ − ρ−
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Negative di�erential resistance

To keep things simple, consider δ = ρ−/ρ+ �xed.
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Directed motion

Asymmetric piecewise-constant periodic forcing
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Non-stationary aging regime

Slow glassy dynamics is obtained by setting ρ− = ρ+ = ρc

Looking for solution of the form ρc − ρ(z , t) = f (z) g(t), we get:

f (z) =
[
f φ(z)f ′(z)

]′
with boundary condition: f (±L) = 0,

g ′(t) = g1+φ(t).

Some interesting features

Power-law critical relaxation: ρc − ρ(z , t) ∼ t−1/φ

Simple aging behaviour: B(t, t
w

) =

∫
t

tw

D(s) ds ∼ log t − log t
w

Triangle relation: B(t, t
w

) = B(t, s) + B(s, t
w

)

Weak-ergodicity breaking: lim
t→∞

lim
tw→∞

B(t + t
w
, t
w

) 6= lim
tw→∞

lim
t→∞

B(t + t
w
, t
w

)
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Constrained lattice gases: the equilibrium case

2d KA model: a particle on a square lattice can jump to a NN vacancy i� it has

less than 3 NN particles before and after it has jumped.

Singular di�usion at high-density (via a bootstrap percolation argument):

D(ρ) ∼ exp
c

1− ρ

and several glassy features, e.g.:

Extensive entropy of metastable (= permanently blocked) states

Stretched exponential relaxation, aging dynamics and heterogeneity

Ergodicity breaking on Bethe lattice similar to Mode-Coupling Theory

(hybrid transition and higher-order glass singularities)
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Constrained exclusion processes: the symmetric case

2D KA model boundary-driven by two reservoirs at unequal densities.

No microscopic bias. Steady current driven by the density gradient.

density pro�le local density �uctuations
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Green lines refer to the unconstrained dynamics, that is to the Symmetric Exclusion Process (SEP)
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Asymmetric constrained exclusion processes

2d KA model bulk-driven by a constant and uniform applied force E .

Particles hop to a nearby empty site with probability:

p = δ(constraint)×min

{
1, e
−→
E ·
−→
dr
}

Detailed balance holds locally but not globally due to the periodic boundary

external field E
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Positive resistance regime

Monotonic current behaviour is observed for particle density ρ < 0.79
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Ohmic transport at small �eld, saturation at large �elds, just as in ASEP

Trivial �eld dependence of rescaled current J(ρ,E )/J(ρ,∞) = 1− e
−E

For standard ASEP J(ρ,E) = ρ(1 − ρ)(1 − e
−E )/4.
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The totally asymmetric case: E →∞

Saturation current can be approximated via a simple mean-�eld argument

J(ρ) ≈ 1
4
ρ(1− ρ) (1− ρ3)2
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Interplay of driving and constraints at large ρ and E

Qualitatively:

Particle moves against the �eld are rare

⇓
Particles are generally more caged

⇓
Rearrangements are more di�cult

⇓
Flow is more obstructed
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Negative resistance and jamming

Non-monotonic current behaviour is observed for ρ ≥ 0.79
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�Non-Newtonian� features

Non-monotonic �eld-dependence of structural relaxation time ∼ viscosity
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Blocked particles and free volume

At variance with the equilibrium measure and with the ASEP, constant-density

con�gurations are not equiprobable in NESS

density of blocked particles density of accessible holes
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The NESS measure depends in a nontrivial manner on the applied �eld
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Pair correlation

Longitudinal pair correlation
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A mean-�eld attempt

In analogy with the ASEP write J(ρ,E ) ∼ (1− e
−E ) (1− ρblocked) ρhole
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The transition between the positive and NR regimes is well described, however the

approach fails as soon as ρ > 0.81, free particles and holes are strongly correlated
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Anomalous di�usion

Time averaged longitudinal mean-square displacement
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Longitudinal di�usion is generally enhanced at late times

Sub-di�usion regime at early times for small applied �elds
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3. Steady state �uctuation relation

A symmetry property of the PDF of entropy production Wτ over long time τ

Πτ (+Wτ )

Πτ (−Wτ )
= e

Wτ

i.e., when Πτ satis�es the time scaling of the large-deviation regime (τ →∞)

Πτ (Wτ ) = e
τπ(Wτ/τ)

For vanishing driving forces you get �uctuation-dissipation theorem

2 〈Wτ 〉 = 〈W 2
τ 〉 − 〈Wτ 〉2

Two serious problems

Wτ is extensive in time and space, and monotonic in the driving force

How large τ must be? the large-deviation regime may be out of reach
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Entropy production

Consider the action functional

Wτ ({σ}) = log
k(σ0, σ1) · · · k(στ−1, στ )

k(στ , στ−1) · · · k(σ1, σ0)

where k(σ, σ′) ≥ 0 are the transition probabilities for σ → σ′.
Detailed balance locally holds, and for mobile particles:

log
k(σ, σ′)

k(σ′, σ)
= log

min

{
1, e
−→
E ·
−→
dr
}

min

{
1, e−

−→
E ·
−→
dr
} = ~E · ~dr = 0, ±E

So, the action functional Wτ represents the thermodynamic entropy production:

Wτ = E Jτ
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Current �uctuations I: Low-density Ohmic regime

Current �uctuations are generally Gaussian
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Current �uctuations II: High-density Ohmic regime
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FR in the high-density Ohmic regime

Observable deviations from FR
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Current �uctuations in the NR regime
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Steady-state FR in the NR regime

Time-reversal symmetry of FR is respected, but...
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Large Deviation Function Turci Pitard, EPL (2011)

Asymmetric and singular LDF at large density and �eld
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Conclusions and some open problems

Driven di�usive systems with glassy dynamics generally exhibit:

Non-monotonic transport

Non-Newtonian features

Non-Gaussian �uctuations

Anomalous (sub and super) di�usion

Observable deviations from FR

Physical irrilevance of large-deviation regime

�> Going beyond the non-linear di�usion model

�> E�ective �uctuating hydrodynamic description

�> Phase diagram of TACEP with open boundaries

�> Exploring surface growth problems (ASEP ↔ KPZ, ACEP ↔ ?)

�> Constraints with nonuniform drive (rheology)
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Relevant spatial structures

E ≫ 1

1) 2) 3) 4)
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