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Problem

• Markov process: {Xt}Tt=0

• Observable (rv): AT

• Conditioned process: Xt |AT = a

Questions

1 Conditional process Markov?

2 Generator?

3 Relation with Xt?

Connections

• Markov conditioning (Doob)

• Nonequilibrium systems

• Rare event simulations

• Quasi-stationary distributions

• Stochastic control (Fleming)
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Markov conditioning

Doob conditioning (1957)

Xt |XT ∈ A target point or set

• Brownian bridge: Wt |W1 = 0

Schrödinger bridge (1931)

Xt | p(x ,T ) = q(x) target distribution

• Classical (Markov) representation of QM

• Nelson’s mechanics

Here

• Xt |AT with AT defined on [0,T ]

• Requires generalization of Doob’s transform

• Asymptotic equivalence
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Comparison with optimal paths

Low noise limit

t

xHtL

• Concentration in path space

• Prob dominated by single path

• Dominant path, most
probable path, instanton

Fluctuation path

Arbitrary noise

t

xHtL

• No concentration

• Prob coming from many paths

• No dominating path

Fluctuating dynamics
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Process

• Markov process: Xt ∈ E
• State space: E
• Time interval (horizon): t ∈ [0,T ]

• Generator:

∂tEx [f (Xt)] = Ex [Lf (Xt)]

• Master (Fokker-Planck) equation:

∂tp(x , t) = L†p(x , t)

• Path measure:

P[x ] = P({xt}Tt=0)

t

xHtL
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xHtL
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Examples of Markov processes

Pure jump process

• Transition rates:

W (x , y) = P(x → y in dt)/dt

• Escape rates:

λ(x) =
∑
y

W (x , y) = (W 1)(x)

• Generator: L = W︸︷︷︸
off-diag

− λ︸︷︷︸
diag

t

xHtL

Pure diffusion

• SDE: dXt = F (Xt)dt + σdWt

• Generator:

L = F · ∇+
D

2
∇2, D = σσT

t

xHtL
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Conditioning observable

• Observable: AT [x ]

• Jump processes:

AT =
1

T

∫ T

0
f (Xt) dt+

1

T

∑
∆Xt 6=0

g(Xt− ,Xt+)

t

xHtL

• Diffusions:

AT =
1

T

∫ T

0
f (Xt) dt +

1

T

∫ T

0
g(Xt) ◦ dXt

t

xHtL

Examples

• Occupation time Xt ∈ ∆

• Mean number jumps (activity), current

• Work, heat, entropy production,...
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Rare event conditioning

Large deviation principle

P(AT = a) � e−TI (a)

• Meaning of �:

lim
T→∞

− 1

T
ln P(AT = a) = I (a), P(AT = a) = e−TI (a)+o(T )

• Rate function: I (a)

• Zero of I = Law of Large Numbers

• Concentration point(s): I (a∗) = 0

• Small fluctuations =
Central Limit Theorem

s

P(AT = a)

µ

T = 10

T = 50

T = 100

I (a)
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Conditioned process

t

xHtL

a

PHA
T
=
aL

• Conditioned process: Xt |AT = a
• Path measure:

Pa[x ] = P[x |AT = a] =
P[x ,AT = a]

P(AT = a)
= P[x ]

δ(AT [x ]− a)

P(AT = a)

• Path microcanonical ensemble

• Not Markov for T <∞
• Becomes equivalent to Markov process as T →∞
• Non-conditioned process realizing conditioning
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Spectral elements

Scaled cumulant function

Λk = lim
T→∞

1

T
ln E [eTkAT ]

• k ∈ R

Gärtner-Ellis Theorem

Λk differentiable, then

1 LDP for AT

2 I (a) = sup
k
{ka− Λk}

Feynman-Kac-Perron-Frobenius

Lk rk = Λk rk

• Tilted (twisted) operator: Lk

• Dominant eigenvalue: Λk

• Dominant eigenfunction: rk

Jump processes

Lk = Wekg − λ+ kf

Diffusions

Lk = F · (∇+ kg) +
D

2
(∇+ kg)2 + kf
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Driven process

Definition
• Process Yt

• Generator:
Lk = r−1

k Lk rk − r−1
k (Lk rk)

• Generalized Doob transform

• Positive, Markov operator: (Lk1) = 0

• Path measure:

Pdriven
k [x ]

P[x ]
= r−1

k (X0) eT (kAT−Λk ) rk(XT )

• Radon-Nikodym derivative

Hugo Touchette (NITheP) Conditioned processes June 2014 11 / 21

Main result

Hypotheses

• AT satisfies LDP

• Rate function I (a) convex

• Other properties of spectral elements (gap, regular rk)

Result

Xt |AT = a
T→∞∼= Yt k(a) = I ′(a)

Pa[x ] � Pdriven
k(a) [x ] almost everywhere

BT → b∗ ⇒ BT → b∗ in probability

AT = a AT → a

• Same typical states

• Different fluctuations (LDPs) in general
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Idea of the proof

Microcanonical

Xt |AT = a

Pa[x ] = P[x |AT = a]

Canonical

Pcano
k [x ] =

ekTAT [x]

E [ekTAT ]
P[x ]

Driven

Yt

Pdriven
k [x ]

Driven → canonical

• Pdriven
k [x ] � Pcano

k [x ]

• Same large deviations

Microcanonical → canonical

• Pa[x ] � Pcano
k [x ] if I (a) convex

• Same typical states

• General result about conditioning vs tilting
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Driven process: Explicit form

Jump process

• Original process: W (x , y)

• Driven process:

Wk(x , y) = rk
−1(x) W (x , y) ekg(x ,y) rk(y), k = I ′(a)

• Evans PRL 2004, Jack and Sollich PTPS 2010

Diffusion
• Reference SDE:

dXt = F (Xt)dt + σdWt

• Driven SDE:
dYt = Fk(Yt)dt + σdWt

• Modified drift:

Fk(y) = F (y) + D(kg +∇ ln rk), k = I ′(a)
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Application: Langevin equation

dXt = −γXtdt + σdWt −→ Xt |AT = a

Area under path

AT =
1

T

∫ T

0
Xtdt

• f (x) = x , g = 0

• Rate function: I (a) = γ2a2

2σ2

• Eigenfunction: rk(x) = ekx/γ

• Modified drift:

Fk(a)(x) = −γx +
a

γ

• k(a) = I ′(a)

Empirical variance

AT =
1

T

∫ T

0
X 2

t dt

• f (x) = x2, g = 0

• Modified drift:

Fk(a) = −σ
2

2a
x

• Modified friction
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Other applications

• Sheared fluids
• R.M.L. Evans PRL 2004; JPA 2005

• Baule & Evans PRL 2008; PRE 2008

• Diffusion on circle
• Conditioning on current
• Chetrite & HT PRL 2013

• Nemoto & Sasa PRE 2011, PRL 2014

• Interacting particles on lattices
• Conditioning on current
• TASEP: Schütz et al. JSTAT 2010; JSP 2011

• Zero-range: Harris et al. 2013

• Glauber-Ising: Jack & Sollich PTPS 2010

• East model: Jack & Sollich JPA 2014

• Rotators: Knezevic & Evans PRE 2014
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Fig. 20. (a) Exclusion process on the lattice Zn and (b) rescaled lattice Zn/n. A particle can jump to an empty site (black arrow) but not to an occupied site
(red arrow). The thin line at the bottom indicates the periodic boundary condition ⌘(0) = ⌘(1).

interest for these models comes from the fact that their macroscopic or hydrodynamic behavior can be determined from
their ‘‘microscopic’’ dynamics, sometimes in an exact way. Moreover, the typicality of the hydrodynamic behavior can
be studied by deriving large deviation principles which characterize the probability of observing deviations in time from
the hydrodynamic evolution [164]. The interpretation of these large deviation principles follows the Freidlin–Wentzell
theory, in that a deterministic dynamical behavior—here the hydrodynamic behavior—arises as the global minimum and
zero of a given (functional) rate function. From this point of view, the hydrodynamic equations, which are the equations of
motion describing the hydrodynamic behavior, can be characterized as the solutions of a variational principle similar to the
minimum dissipation principle of Onsager [214].

Two excellent review papers [113,215] have appeared recently on interacting particle models and their large deviations,
so we will not review this subject in detail here. The next example illustrates in the simplest way possible the gist of
the results that are typically obtained when studying these models. The example follows the work of Kipnis, Olla and
Varadhan [216],whowere the first to apply large deviation theory for studying the hydrodynamic limit of interacting particle
models.

Example 6.11 (Simple Symmetric Exclusion Process). Consider a system of k particles moving on the lattice Zn of integers
ranging from 0 to n, n > k; see Fig. 20(a). The rules that determine the evolution of the particles are assumed to be the
following:

• A particle at site iwaits for a random exponential time with mean 1, then selects one of its neighbors j at random.
• The particle at i jumps to j if j is unoccupied; if j is occupied, then the particle stays at i and goes to a waiting period again

before choosing another neighbor to jump to (exclusion principle).

We denote by ⌘t(i) the occupation of the ‘‘site’’ i 2 Zn at time t , and by ⌘t = (⌘t(0), ⌘t(1), . . . , ⌘t(n � 1)) the whole
configuration ormicrostate of the system. Because of the exclusion principle, ⌘t(i) 2 {0, 1}. Moreover, we impose boundary
conditions on the lattice by identifying the first and last site.

The generator of the Markovian process defined by the rules above can be written explicitly by noting that there can be
a jump from i to j only if ⌘(i) = 1 and ⌘(j) = 0. Therefore,

(Lf )(⌘) = 1
2

X

|i�j|=1

⌘(i)[1 � ⌘(j)][f (⌘i,j) � f (⌘)], (276)

where f is any function of ⌘, and ⌘i,j is the configuration obtained after one jump, that is, the configuration obtained by
exchanging the occupied state at i with the unoccupied state at j:

⌘i,j(k) =
(

⌘(i) if k = j
⌘(j) if k = i
⌘(k) otherwise.

(277)

To obtain a hydrodynamic description of this dynamics, we rescale the lattice spacing by a factor 1/n, as shown in Fig. 20(b),
and take the limit n ! 1 with r = k/n, the density of particles, fixed. Furthermore, we speed-up the time t by a factor
n2 to overcome the fact that the diffusion dynamics of the particle system ‘‘slows’’ down as n ! 1. In this limit, it can be
proved that the empirical density of the rescaled dynamics, defined by

⇡n
t (x) = 1

n

X

i2Zn

⌘n2t(i) �(x � i/n), (278)

where x is a point of the unit circle C , weakly converges in probability to a field ⇢t(x) which evolves on C according to the
diffusion equation

@t⇢t(x) = @xx⇢t(x). (279)

It can also be proved that the fluctuations of ⇡n
t (x) around the deterministic field ⇢t(x) follows a large deviation principle,

expressed heuristically as

Pn[⇡n
t = ⇡t ] = Pn({⇡n

t (x) = ⇡t(x)}⌧t=0) ⇣ e�nI[⇡t ]. (280)

Conditioning typically induces long-range interaction
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Nonequilibrium systems

Nonequilibrium

Ta Tb
J > 0

• Microscopic dynamics:

W noneq(x → y)?

• Many models possible

Equilibrium

Tb TbJ = 0

• Microscopic dynamics known

• Detailed balance:

W eq(x → y)

W eq(y → x)
= eβ∆E

Mike Evans’s hypothesis PRL 2004; JPA 2005

W noneq(x → y) = W eq(x → y |J)

• Nonequilibrium = conditioning of equilibrium

• True? Approximation?
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Other connections

Conditional limit theorems

• Sequence of rvs: X1,X2, . . . ,Xn, Xi ∼ P(x)

• Sample mean: Sn =
1

n

n∑
i=1

f (Xi )

• Conditional marginal:

lim
n→∞

P(Xi = x |Sn = s) =
ekf (x)

E [ekf (X )]
P(x)

Control representations of PDEs

PDE
I=− lnφ→ Hamilton-Jacobi equation (Hopf-Cole)

φ(x , t) ↓
∂tφ = Lφ Dynamic programming

↓
Optimal stochastic control = Doob transform

• Fleming, Sheu, Dupuis 1980’s, 1990’s
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Large deviation simulations

• AT = a exponentially rare

• Direct sampling: sample size ∼ eT

• Importance sampling (reweighting)

• Change process
• Make AT = a typical

P(AT = a) = EX [δ(AT−a)] = EY

[
dPX

dPY
δ(AT − a)

] a

PHA
T
=
aL

Driven process Yt

• Makes AT = a typical

• Good (optimal) change of process

• Problem:Yt based on rk , Λk and I (a)

Learning algorithm [Borkar 2008]

1 Direct sampling + feedback → iterative estimation of rk

2 Control leading to driven process
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Conclusions

Xt |AT = a︸ ︷︷ ︸
conditioned

T→∞∼= Yt︸︷︷︸
driven

• Effective Markov dynamics for rare events

• Explicit interpretation of asymptotic equivalence

• Similar to equivalence of equilibrium ensembles

• Generalization of Markov conditioning and bridges

• Links: QSD, stochastic control, conditional limit theorems

Future work
• Large deviation simulations

• Consequences for nonequilibrium systems
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