Nonequilibrium Markov processes conditioned on large deviations

Hugo Touchette

National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa

Advances in Nonequilibrium Statistical Mechanics Galileo Galilei Institute for Theoretical Physics Florence, Italy

• Work with Raphaël Chetrite, Université de Nice, France

Hugo Touchette (NITheP)	Conditioned processes	June 2014	1 / 21

Problem

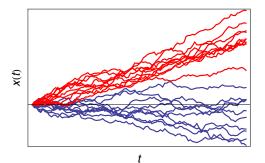
- Markov process: $\{X_t\}_{t=0}^T$
- Observable (rv): A_T
- Conditioned process: $X_t | A_T = a$

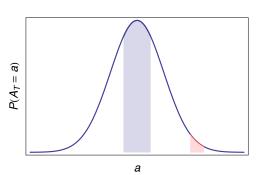
Questions

- 1 Conditional process Markov?
- 2 Generator?
- **3** Relation with X_t ?

Connections

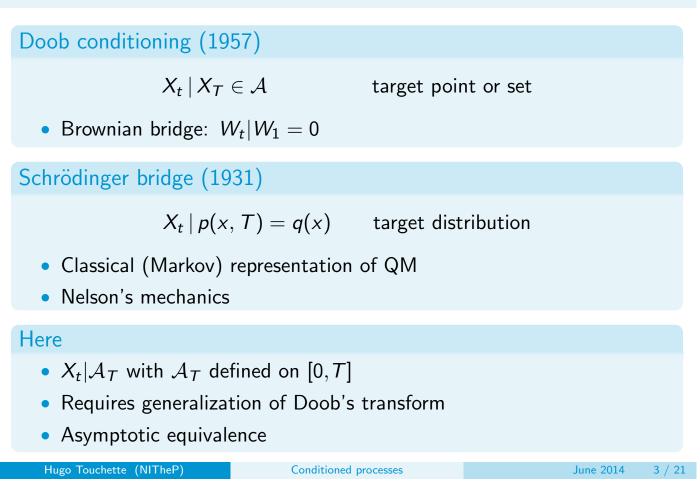
- Markov conditioning (Doob)
- Nonequilibrium systems
- Rare event simulations
- Quasi-stationary distributions
- Stochastic control (Fleming)



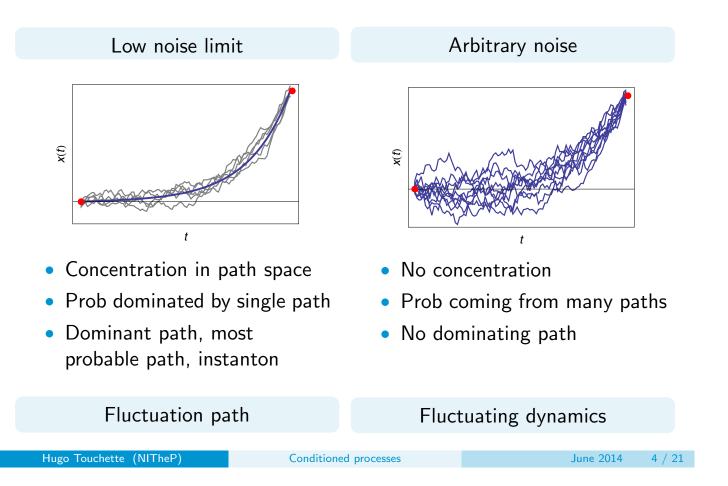


Conditioned processes

Markov conditioning



Comparison with optimal paths



Process

- Markov process: $X_t \in \mathcal{E}$
- State space: ${\cal E}$
- Time interval (horizon): $t \in [0, T]$
- Generator:

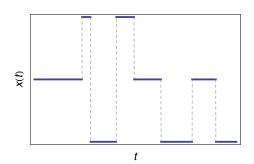
$$\partial_t E_x[f(X_t)] = E_x[Lf(X_t)]$$

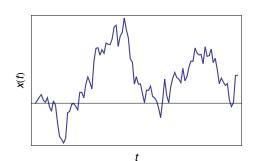
• Master (Fokker-Planck) equation:

$$\partial_t p(x,t) = L^{\dagger} p(x,t)$$

• Path measure:

$$P[x] = P(\{x_t\}_{t=0}^T)$$





Hugo Touchette (NITheP)	Conditioned processes	June 2014	5 / 21

Examples of Markov processes

Pure jump process

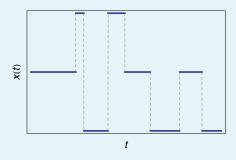
• Transition rates:

$$W(x,y) = P(x \rightarrow y \text{ in } dt)/dt$$

• Escape rates:

$$\lambda(x) = \sum_{y} W(x, y) = (W1)(x)$$

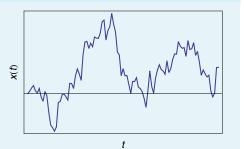
• Generator: $L = \underbrace{W}_{\text{off-diag}} - \underbrace{\lambda}_{\text{diag}}$



Pure diffusion

- SDE: $dX_t = F(X_t)dt + \sigma dW_t$
- Generator:

$$L = F \cdot \nabla + \frac{D}{2} \nabla^2, \qquad D = \sigma \sigma^T$$



Hugo Touchette (NITheP)

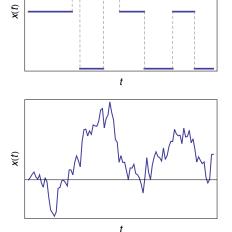
Conditioning observable

- Observable: $A_T[x]$
- Jump processes:

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt + \frac{1}{T} \sum_{\Delta X_t \neq 0} g(X_{t^-}, X_{t^+})$$

• Diffusions:

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt + \frac{1}{T} \int_0^T g(X_t) \circ dX_t$$



June 2014

7 / 21

Examples

- Occupation time $X_t \in \Delta$
- Mean number jumps (activity), current
- Work, heat, entropy production,...

```
Hugo Touchette (NITheP)
```

Conditioned processes

Rare event conditioning

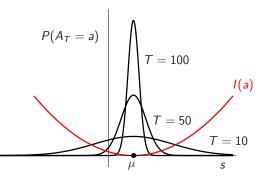
Large deviation principle

$$P(A_T = a) \asymp e^{-TI(a)}$$

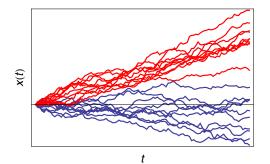
• Meaning of \asymp :

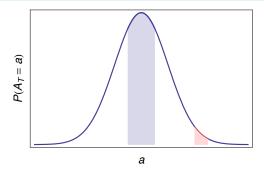
$$\lim_{T \to \infty} -\frac{1}{T} \ln P(A_T = a) = I(a), \qquad P(A_T = a) = e^{-TI(a) + o(T)}$$

- Rate function: *I*(*a*)
- Zero of *I* = Law of Large Numbers
- Concentration point(s): $I(a^*) = 0$
- Small fluctuations = Central Limit Theorem



Conditioned process





- Conditioned process: $X_t | A_T = a$
- Path measure:

$$P^{a}[x] = P[x|A_{T} = a] = \frac{P[x, A_{T} = a]}{P(A_{T} = a)} = P[x] \frac{\delta(A_{T}[x] - a)}{P(A_{T} = a)}$$

- Path microcanonical ensemble
- Not Markov for $T<\infty$
- Becomes equivalent to Markov process as $\mathcal{T}
 ightarrow \infty$
- Non-conditioned process realizing conditioning

Hugo Touchette (NITheP)	Conditioned processes	June 2014 9 / 21

Spectral elements

Scaled cumulant function

$$\Lambda_k = \lim_{T o \infty} rac{1}{T} \ln E[e^{TkA_T}]$$

• $k \in \mathbb{R}$

Feynman-Kac-Perron-Frobenius

$$\mathcal{L}_k r_k = \Lambda_k r_k$$

- Tilted (twisted) operator: \mathcal{L}_k
- Dominant eigenvalue: Λ_k
- Dominant eigenfunction: r_k

Jump processes

$$\mathcal{L}_k = W e^{kg} - \lambda + kf$$

Diffusions

$$\mathcal{L}_k = F \cdot (\nabla + k\mathbf{g}) + \frac{D}{2}(\nabla + k\mathbf{g})^2 + k\mathbf{f}$$

Gärtner-Ellis Theorem

 Λ_k differentiable, then

 $(a) = \sup_{\iota} \{ka - \Lambda_k\}$

1 LDP for A_T

Hugo Touchette (NITheP)

June 2014 10 / 21

Driven process

Definition

- Process Y_t
- Generator:

$$L_k = r_k^{-1} \mathcal{L}_k r_k - r_k^{-1} (\mathcal{L}_k r_k)$$

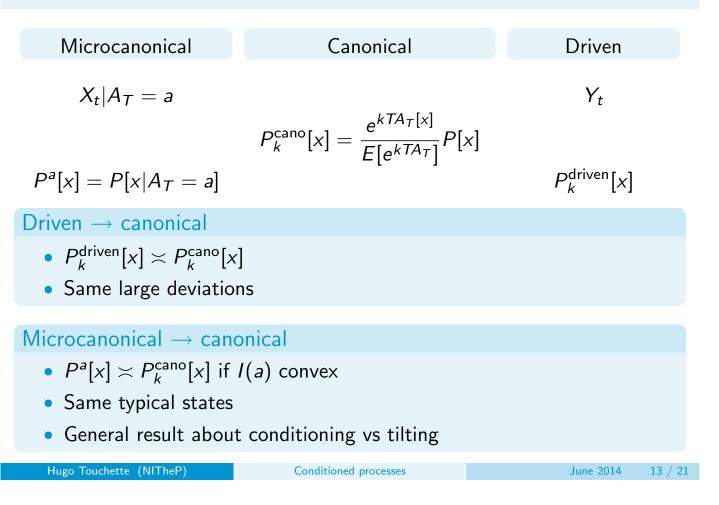
- Generalized Doob transform
- Positive, Markov operator: $(L_k 1) = 0$
- Path measure:

$$\frac{P_k^{\text{driven}}[x]}{P[x]} = r_k^{-1}(X_0) e^{T(kA_T - \Lambda_k)} r_k(X_T)$$

• Radon-Nikodym derivative

Hugo Touchette (NITheP)		Conditioned processes			June 2014	11 / 21
Main result						
Hypotheses						
• A _T satisfies LDP						
• Rate function <i>I(a)</i>	conve	<				
• Other properties o	fspect	ral elements (g	ap, re	gular <i>r_k</i>)		
Result						
$X_t A_T = a$	$\stackrel{T \to \infty}{\cong}$	Y _t	k(a)	= I'(a)		
$P^{a}[x]$)($P_{k(a)}^{driven}[x]$	almo	st everywł	nere	
$B_T o b^*$	\Rightarrow	$B_T \to b^*$	in pr	obability		
$A_T = a$		$A_T ightarrow a$				
 Same typical state 	S					
• Different fluctuation	ons (LE	Ps) in general				
Hugo Touchette (NITheP)		Conditioned processes			June 2014	12 / 21

Idea of the proof



Driven process: Explicit form

Jump process

- Original process: W(x, y)
- Driven process:

$$W_k(x,y) = r_k^{-1}(x) W(x,y) e^{kg(x,y)} r_k(y), \qquad k = l'(a)$$

• Evans PRL 2004, Jack and Sollich PTPS 2010

Diffusion

• Reference SDE:

$$dX_t = F(X_t)dt + \sigma dW_t$$

Driven SDE:

$$dY_t = F_k(Y_t)dt + \sigma dW_t$$

Modified drift:

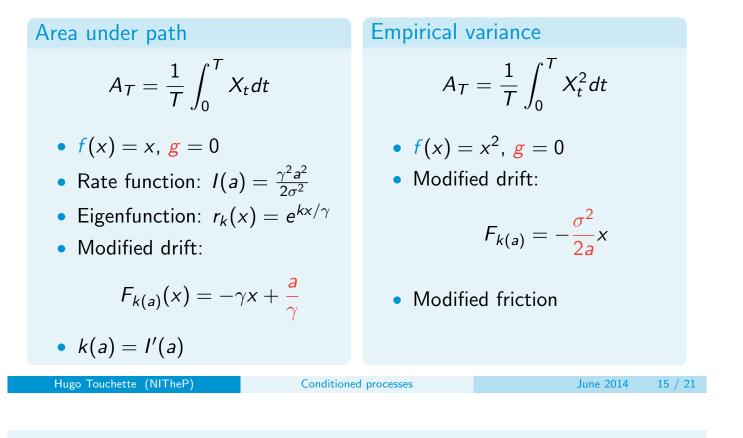
$$F_k(y) = F(y) + D(kg + \nabla \ln r_k), \qquad k = I'(a)$$

Hugo Touchette (NITheP)

Application: Langevin equation

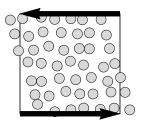
$$dX_t = -\gamma X_t dt + \sigma dW_t$$

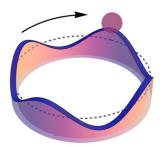
$$\longrightarrow X_t | A_T = a$$

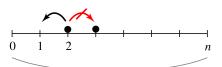


Other applications

- Sheared fluids
 - R.M.L. Evans PRL 2004; JPA 2005
 - Baule & Evans PRL 2008; PRE 2008
- Diffusion on circle
 - Conditioning on current
 - Chetrite & HT PRL 2013
 - Nemoto & Sasa PRE 2011, PRL 2014
- Interacting particles on lattices
 - Conditioning on current
 - TASEP: Schütz et al. JSTAT 2010; JSP 2011
 - Zero-range: Harris et al. 2013
 - Glauber-Ising: Jack & Sollich PTPS 2010
 - East model: Jack & Sollich JPA 2014
 - Rotators: Knezevic & Evans PRE 2014

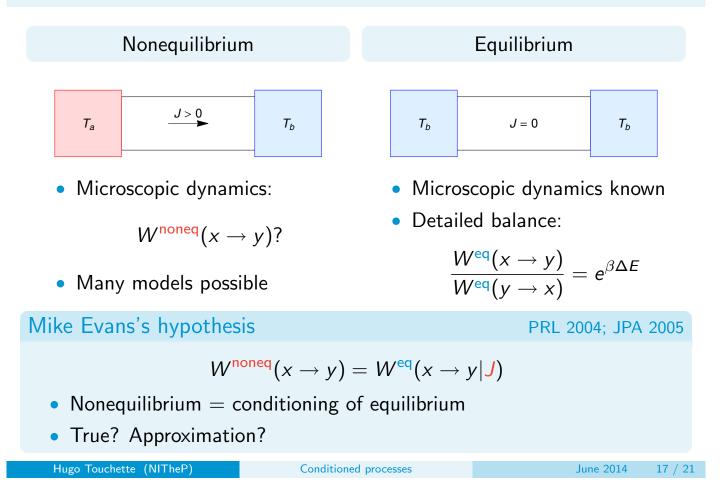






Conditioning typically induces long-range interaction

Nonequilibrium systems



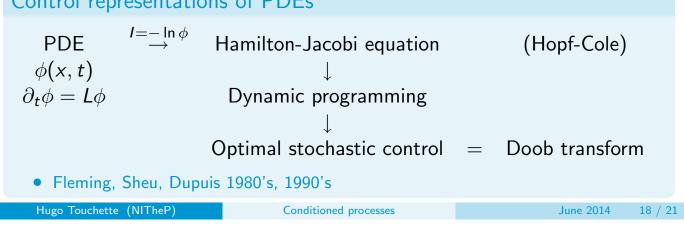
Other connections

Conditional limit theorems

- Sequence of rvs: X_1, X_2, \ldots, X_n , $X_i \sim P(x)$
- Sample mean: $S_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$
- Conditional marginal:

$$\lim_{n\to\infty} P(X_i = x | S_n = s) = \frac{e^{kf(x)}}{E[e^{kf(X)}]} P(x)$$

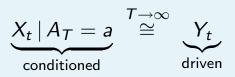
Control representations of PDEs



Large deviation simulations

• $A_T = a$ exponentially rare • Direct sampling: sample size $\sim e^{T}$ $P(A_T = a)$ Importance sampling (reweighting) Change process • Make $A_T = a$ typical $P(A_T = a) = E_X[\delta(A_T - a)] = E_Y \left[\frac{dP_X}{dP_Y}\delta(A_T - a)\right]$ Driven process Y_t • Makes $A_T = a$ typical Good (optimal) change of process • Problem: Y_t based on r_k , Λ_k and I(a)Learning algorithm [Borkar 2008] **1** Direct sampling + feedback \rightarrow iterative estimation of r_k 2 Control leading to driven process June 2014 Hugo Touchette (NITheP) Conditioned processes 19 / 21

Conclusions



- Effective Markov dynamics for rare events
- Explicit interpretation of asymptotic equivalence
- Similar to equivalence of equilibrium ensembles
- Generalization of Markov conditioning and bridges
- Links: QSD, stochastic control, conditional limit theorems

Future work

- Large deviation simulations
- Consequences for nonequilibrium systems

References

