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Maxwell Demon (1867)

Does the physical implementation of a computational operation
have a fundamental thermodynamic cost, purely by virtue of its

logical properties?
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Maxwell Demon

Smoluchowski (1914) replaces demon by a physical device.

Includes free energy of the springs.
⇒ Agreement with the Second Law in the long run.
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Szilard Engine (1929)

Idea: Measure where the particle is and extract work.

Second Law holds only if there was a compensating cost
to perform the measurement.
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Cost of information processing

von Neumann (1949), Brillouin (1951, 1956), Gabor (1964) and Rothstein (1951)

Acquisition of information through a measurement requires a
dissipation of at least kBT ln 2 energy for each bit.

(T is the temperature in which the measurement takes place)

Landauers principle (1961):

Erasure of memory requires work.

(kBT ln 2 per bit)

Reversible information processing
(e.g. NOT) does not require work.
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Cost of information processing

Bennett (1973):

If the measurement device (memory) is in a well-defined state,
we can carry out a reversible measurement:

Sys. Mem. → Sys. Mem.
0 0 → 0 0
1 0 → 1 1
0 1 → 0 1
1 1 → 1 0

M =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ⇒ M2 = 1
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Cost of information processing

Having measured the system, bring it into a definite state.
This feedback operation is also reversible:

Sys. Mem. → Sys. Mem.
0 0 → 0 0
1 1 → 0 1
0 1 → 0 1
1 0 → 1 0

F =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ⇒ F2 = 1

The whole feedback loop is reversible.
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Cost of information processing
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Cost of information processing

⇐ Entropy
recorded here!
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Information processing inequalities

Idea: Measure on which level the particle is and extract work.
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Information processing inequalities

T. Sagawa and M. Ueda, PRL 102, 250602 (2009)

Mean extracted work ≤ Mutual information

T. Sagawa and M. Ueda, PRL 109, 180602 (2012)

Fluctuation theorem 〈e−∆H tot
S +∆I〉 = 1

Mean extracted work ≤ Mutual information difference
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Information processing inequalities

T. Sagawa and M. Ueda, PRL 109, 180602 (2012):

“The entropy of a system can be decreased without any heat
dissipation if we use the correlation as a resource of entropy

decrease, although, in conventional thermodynamics, the
entropy of the system is decreased only in the presence

of heat dissipation.“
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Information processing inequalities

〈e−∆H tot
S +∆I〉 = 1

• It is possible to obey the inequality sharply
T. Sagawa and M. Ueda, PRE 85, 021104 (2012)
J. M. Horowitz, T. Sagawa and J.M.R. Parrondo, PRL 111, 010602 (2013)

• Result be generalized to finite-time relaxation
D. Abreu and U. Seifert, EPL 94, 10001 (2011)
M. Bauer, D. Abreu, and U. Seifert, JPA 45, 162001 (2012)

• One can construct continuous feedback schemes
H. Sandber, J-C. Delvenne, N.J. Newton, and S. K. Mitter,
arXiv:1402.1010 (2014)

• Experimental confirmation (single electron box)
J. V. Koski, V. F. Maisi, T. Sagwa, and J. P. Pekola,
arXiv:1405.1272 (2014)



Introduction Information inequalities Minimal model Heat, Work and Efficiency

Information processing inequalities

Problem: Depending on the setup there are
different bounds for the extracted work.

⇒ Look for unifying description.

A. C. Barato, D. Hartich, and U. Seifert, J. Stat. Phys. 153, 460 (2013)
A. C. Barato and U. Seifert. EPL 101, 60001 (2013)
A. C. Barato, D. Hartich, and U. Seifert, PRE 87, 042104 (2013)
A. C. Barato and U. Seifert, PRL 112, 090601 (2014).
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Information processing inequalities

Strategy:
Implement system and memory physically.

Study the joint bipartite system.

Memory=0 Memory=1

⇒ Unifying master FT for feedback and tape models.

A. C. Barato and U. Seifert, PRL 112, 090601 (2014).
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Strategy

• Define a minimal model in terms of states
and transition rates.

• Study entropy production and fluctuation theorem
solely on this basis.

• Then introduce notion of energy and heat baths.

• Carefully distinguish flow of heat and work.
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Notations

• System/memory jointly described by configurations c ∈ Ω

• Markov processes defined in by transitions rates wc→c′

• Probabilities Pc(t) and currents Jc→c′ = Pc(t)wc→c′

• Master equation d
dt Pc(t) =

∑
c′(Jc′→c(t)− Jc→c′(t))

• For simplicity: Restrict to infinite-time relaxation

• Entropy H = 〈Hc(t)〉 with Hc(t) = − ln Pc(t)

• Entropy production according to Schnakenberg formula:
Whenever the system jumps to a different configuration, it
generates a certain amount of entropy in the environment:

c → c′ ⇒ ∆Henv
c→c′ = ln

wc→c′

wc′→c
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Minimal model – Closed feedback loop
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Step 1: Relaxation

LR =

(
k+ −k−
−k+ k−

)
︸ ︷︷ ︸

System

⊗
(

1 0
0 1

)
︸ ︷︷ ︸

Memory

=

 k+ 0 −k− 0
0 k+ 0 −k−
−k+ 0 k− 0

0 −k+ 0 k−


Introduce rate ratio

δ :=
k+

k−
Consider infinite-time relaxation into stationary state:

R := lim
t→∞

e−LR t =


1

δ+1 0 1
δ+1 0

0 1
δ+1 0 1

δ+1
δ

δ+1 0 δ
δ+1 0

0 δ
δ+1 0 δ

δ+1
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Step 2: Measurement

system ⊗ memory:

0⊗ 0/1 7→ 0⊗ 0
1⊗ 0/1 7→ 1⊗ 1

M =

(
1 0
0 0

)
⊗
(

1 1
0 0

)
+

(
0 0
0 1

)
⊗
(

0 0
1 1

)

M =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 ⇐ write this asM = limt→∞ e−LM t
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Step 2: Measurement

system ⊗ memory:

0⊗ 0/1 7→ 0⊗ 0
1⊗ 0/1 7→ 1⊗ 1

M =

(
1 0
0 0

)
⊗
(

1 1
0 0

)
+

(
0 0
0 1

)
⊗
(

0 0
1 1

)

M =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 ⇒ Infinite entropy production
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Step 2: Measurement
Realistic measurements:
Error parameter ε� 1

M =

(
1− ε 0

0 ε

)
⊗
(

1 1
0 0

)
+

(
ε 0
0 1− ε

)
⊗
(

0 0
1 1

)

M =

1− ε 1− ε 0 0
ε ε 0 0
0 0 ε ε
0 0 1− ε 1− ε


⇒ Finite entropy production
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Step 2: Measurement

The measurement can be represented
as a stochastic process

LM =


ε ε− 1 0 0
−ε 1− ε 0 0
0 0 1− ε −ε
0 0 ε− 1 ε



M := lim
t→∞

e−LM t =


1− ε 1− ε 0 0
ε ε 0 0
0 0 ε ε
0 0 1− ε 1− ε
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Step 3: Feedback

If memory=1 flip system state, else do nothing.

F =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


F2 = 1

⇒ F interchanges the second and fourth vector component

⇒ Reversible, no entropy production
⇒ Not representable as a stochastic process
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Total cycle of the engine
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Total cycle of the engine

Stationary probability vectors in the cycle:

FMR|P0〉 = |P0〉 ⇒ |P0〉 =
{

1−ε
δ+1 ,

δ−δε
δ+1 ,

δε
δ+1 ,

ε
δ+1

}
|P1〉 = R|P0〉 =

{
(δ−1)ε+1

(δ+1)2 , δ(−ε)+δ+ε
(δ+1)2 , δ((δ−1)ε+1)

(δ+1)2 , δ(δ(−ε)+δ+ε)
(δ+1)2

}
|P2〉 =M|P1〉 =

{
1−ε
δ+1 ,

ε
δ+1 ,

δε
δ+1 ,

δ−δε
δ+1

}
...all depending
only on δ and ε.



Introduction Information inequalities Minimal model Heat, Work and Efficiency

Questions

• System entropy H(s)

• Memory entropy H(m)

• Compound entropy H(sm)

• Mutual information I = H(s) + H(m) − H(sm)

• Entropy production ∆H(env)

• Heat ∆Q
• Work ∆W

Heat and work need
thermal reservoirs.
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Component entropies and mutual information

H(s)
0 = (ε− 1) ln(1− ε)− ε ln(ε)

H(m)
0 = (−δε+ε−1) ln((δ−1)ε+1)+((δ−1)ε−δ) ln(δ(−ε)+δ+ε)+(δ+1) ln(δ+1)

δ+1

H(sm)
0 =

(δ+1)ε ln( 1
ε−1)+ln( δ+1

1−ε )+δ ln( δ+1
δ−δε )

δ+1

I0 = (−δε+ε−1) ln((δ−1)ε+1)+((δ−1)ε−δ) ln(δ(−ε)+δ+ε)+δ ln(δ)
δ+1

Memory correlated
from previous cycle.
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Component entropies and mutual information

H(s)
1 = ln(δ + 1)− δ ln(δ)

δ+1

H(m)
1 = (−δε+ε−1) ln((δ−1)ε+1)+((δ−1)ε−δ) ln(δ(−ε)+δ+ε)+(δ+1) ln(δ+1)

δ+1

H(sm)
1 = (−δε+ε−1) ln((δ−1)ε+1)+(δ(ε−1)−ε) ln(δ(−ε)+δ+ε)−δ ln(δ)+2(δ+1) ln(δ+1)

δ+1

I1 = 0 Memory uncorrelated
after infinite relaxation.
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Component entropies and mutual information

H(s)
2 = ln(δ + 1)− δ ln(δ)

δ+1

H(m)
2 = (−δε+ε−1) ln((δ−1)ε+1)+((δ−1)ε−δ) ln(δ(−ε)+δ+ε)+(δ+1) ln(δ+1)

δ+1

H(sm)
2 =

(δ+1)ε ln( 1
ε−1)+ln( δ+1

1−ε )+δ ln( δ+1
δ−δε )

δ+1

I2 = 1
δ+1

[
δ ln(−(δ + 1)(ε− 1)) + ln

(
− (δ+1)(ε−1)

(δ−1)ε+1

)
+

ε
(
δ ln
(
− ε

(ε−1)((δ−1)ε+1)

)
+ ln

(
ε(−δε+ε−1)

ε−1

))
+ ((δ − 1)ε− δ) ln(δ(−ε) + δ + ε)

]
System entropy unchanged.



Introduction Information inequalities Minimal model Heat, Work and Efficiency

Entropy production

Generally entropy production has to be computed by integration

d
dt

Henv (t) =
∑
c 6=c′

Jc→c′ ln
wc→c′

wc′→c

=
∑
c 6=c′

Pc(t)wc→c′ ln
wc→c′

wc′→c

Solve master equation to get Pc(t) and compute the integral

∆Henv =

∫ T

0
dtḢenv (t)

But the present model all processes obey detailed balance.
In this case the entropy production is easy to compute.
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Detailed balance
• Standard definition:

Probability currents balance one another in equilibrium:

Pstat
c wc→c′ = Pstat

c′ wc′→c ∀c, c′

• Equivalent definition without using stationary state:
For all closed stochastic paths c1 → c2 → . . .→ cN → c1
we have

wc1→c2wc2→c3 · · ·wcN→c1

wc1→cN wcN→cN−1 · · ·wc2→c1

=
∏

i

wci→ci+1

wci+1→ci

= 1

• Equivalent definition via entropy production:
The entropy production on closed stochastic paths
vanishes: ∑

i

ln
wci→ci+1

wci+1→ci

=
∑

i

∆Henv
c→c′ = 0.
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Detailed balance and entropy production

Detailed balance⇔ No entropy production along closed paths.

Then there exists a potential Vc such that ∆Henv
c→c′ = Vc′ − Vc

⇒ wc→c′

wc′→c
=

exp(vc′)

exp(vc)

⇒ Vc = const + ln Pstat
c

⇒ ∆Henv
c→c′ = ln

Pstat
c′

Pstat
c

Direct computation without integration:

∆Henv = −
∑

c

(
Pc(T )− Pc(0)

)
ln Pstat

c
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Entropy production

∆Henv
R = −(δε− δ + ε) ln δ

δ + 1
positive or negative

∆Henv
M =

2δ(1− 2ε) ln
(1
ε − 1

)
(δ + 1)2 always positive

∆Henv
F = 0
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Entropy production

ε = 0.1
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Negative entropy production during relaxation
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Heat
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Heat

There could be two different heat baths.
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Work extraction during feedback
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Work extraction during feedback

Upper level: probability p1 = δ
δ+1 ∼ e−βEu

Lower level: probability p0 = 1
δ+1 ∼ e−βEd

Energy difference between levels: ∆E = − 1
β ln pu

pd
= − 1

β ln δ

system memory probability energy gain
0 0 1−ε

δ+1 0
0 1 ε

δ+1 −∆E
1 0 εδ

δ+1 0
1 1 (1−ε)δ

δ+1 +∆E

Average energy gain per cycle: 〈∆E〉 = δε+ε−δ
β(δ+1) ln δ = 1

βHenv
R
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Work extraction during feedback

Energy conservation?
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Work extraction and supply
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Heat and work in general

In stoachastic dynamics, Energy is implemented as a map

c 7→ Ec

The actual energy of a system can change by

• the stochastic evolution:
Spontaneous transition c → c′, causing ∆E = Ec′ − Ec ,
compensated by an energy export ∆Q = −∆E to the
environment, called heat.

• an explicit change of the map:
realiazed by an (adiabatic) modification of the Hamiltonian
Ec → Ec + δEc , taken from or delivered to the environment,
called work δW = δE .
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Heat and Work in general
• Average flow of heat:

d
dt
〈Q(t)〉 = − d

dt
〈E(t)〉 = −

∑
c 6=c′

Jc→c′ ∆Ec→c′

=
∑

c

Pc(t)
∑
c′

wc→c′(Ec − Ec′)

• Average work done on the system:

〈δQ(t)〉 =
∑

c

Pc(t)δEc

Any change of the energy levels requires work.
Only in special cases the average work may vanish.
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Cost of changing transition rates

In systems in contact with a heat bath obeying detailed
balance, the rates and the temperature determine

the energy levels up to a constant:

{wc→c′} ⇒ {Pstat
c } ⇒ Ec = −1

β
ln Pstat

c + const

• Each change of the transitions rates requires/renders work.
• Choosing the constant the average work can be set to zero.
• In a closed cycle this cannot be done everywhere.
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Heat transfer happens in two places:



Introduction Information inequalities Minimal model Heat, Work and Efficiency

Efficiency

Conventional heat engine

Total work:

∆W = ∆WR + ∆WM

Total efficiency:

η = ∆W
∆QR

Maximum for η, δ → 0:

η = 1− 2Tcold
Twarm

worse than Carnot!

η =
γ(1 + δ)(δ(ε− 1) + ε) ln δ + 2βδ(2ε− 1) ln(1/ε− 1)

γ(1 + δ)(δ(ε− 1) + ε) ln δ
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Fluctuation theorems in two steps
• During relaxation:

∆HSM = ∆I

⇒ 〈βe−∆WR−∆I〉 = 1

⇒ 〈β∆WR + ∆I〉 ≥ 0

β〈WR〉 ≥ −∆I

• During measurement:
∆HSM = −∆I

⇒ 〈γe−∆WR+∆I〉 = 1

⇒ 〈γ∆WM −∆I〉 ≥ 0

γ〈WR〉 ≥ +∆I
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Conclusions

• Describe Maxell-Deamon and Szilard setups purely in
terms of stochastic processes and reversible
transformations.

• Entropy production in all steps is well-defined.
• FT’s hold individually for the total entropy production in all

steps.
• Change of rates requires work from outside.
• Efficiency of the system without memory→ known results.
• Efficiency of the system and memory together like ordinary

heat engine.

Thank you!
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