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Active matter

m Definition: Energy is spent locally to produce directed,
persistent, non-random motion

m Examples abound: in biology (animals, cells, motor
proteins...) but not only (micro- and nano-swimmers, ‘smart
colloids, robots...)

m Largely unexplored, novel collective properties

m “Swarm intelligence”, self-organized dynamical structures,
new materials...
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Minimal setting for collective motion / active matter:

Alignment of self-propelled/active particles in competition with
noise (Vicsek et al., 1995)

+Effective alignment
+no attraction, no repulsion, neglect surrounding fluid...
*No momentum conservation (substrate as sink)

Minimal situation of theoretical interest,
but some direct experimental relevance

Most convincing examples so far:
+shaken granular particles,
emicrotubule motility assay
+possibly Bartolo’s rolling colloids



Shaken granular particles:

Nematic

(Narayan et al.) Polar

(Deseigne et al.)
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In vitro motility assay: dyneins + microtubules

(Sumino et al.)

Plus end 10-20um

® Dynein-c motor proteins, grafted on a substrate, move stabilized
microtubules

" with high density of motors (1000/um?), smooth, constant-speed
motion of single MT
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Near-perfect nematic alignment via collisions

Acute incoming angle: ' V Y
Complete alignment -
0.33s 0.66 s

Obtuse incoming angle:
Complete anti-alignment

(Near-) right incoming angle:
Crossing (or stopping)
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Collective motion of millions
of microtubules

Local nematic order

Key ingredients (smooth
random walks, nematic
alignment) enough to
account for emergence fo
large-scale vortices

=>» Alignment vs noise
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Outline of rest of talk

m 3 classes of Vicsek-style models
m Global view on phenomenology of particle models
m ‘Boltzmann-Ginzburg-Landau’ approach

m Global view on hydrodynamic descriptions
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Vicsek-style models:

m Constant-speed point particles move off-lattice
m |ocal alignment within unit distance

m |n competition with noise

m 2 main parameters: global density and noise strength

3 possible classes depending on symmetry:

m Polar particles with ferromagnetic alignment (original VM)
m Apolar nematic particles with nematic alignment (“active nematics”)

m Polar particles with nematic alignment (“self-propelled rods”)

Today only original VM and active nematics
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Why study such silly models?

m “Ising models” of collective motion, if not active matter
(genericity, universality...)

m Good starting point to derive continuous descriptions in a
controlled manner, with explicit dependence of all transport
coefficients on local density and « microscopic » parameters

m Reference framework to evaluate faithfulness of continuous
theories

m Continuous descriptions hopefully mostly contain crucial
terms

m Most of more « realistic » models include Vicsek ingredients
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Common features at microscopic level:

m Disordered gas phase at low

density/strong noise microscopic
disorder
. - as
m (Quasi-) ordered liquid phase J e‘,ata“"d
at high density/low noise, p“aa‘:'\’;&gas

with giant number
fluctuations and
superdiffusion

Variance of noise

(quasi) ordered

m In between: phase-separated “liquid”
Inhomogeneous phase with
dense and ordered regions

density
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Vicsek model

LRO liquid:
typical profiles

1.5

?
1 Smectic order
(bands)

0.5

LRO liquid:
« giant » density
fluctuations

+ transversal superdiffusion



Vicsek model

20438
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Active nematics

Y homogeneous
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From particle models to (deterministic, mean-field) continuous
theories: “Boltzmann Ginzburg-Landau” approach

m Start with the simple Boltzmann equation of ideal gases for
the probability function 7 (r,0,t)

of [of of of
E B <E>force i <E>diff N <E)coll

m No external forces but a self-propulsion given by an advection
(or diffusion) term

(%) — e (6) -V (10,1
ot self —propulsion
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Angular diffusion integral

m The angular diffusion is given by the integral
Idiﬁ‘ [f] = —)\f T, 0 t
+>\/ d9’/ dEP ()5 (6 +&—6) f (r.0,1)
m Where A is a diffusion probability and P(¢) is a wrapped-

Gaussian angular distribution function of variance o2, which
plays the role of the Vicsek angular noise strength n
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Collision integral

m \We suppose that our system is dilute
=>»Binary collision integral

m \We suppose a molecular chaos hypothesis

> f(A,B) = f(A4) x f(B)

Looit [9,h] = —g (.0, 1) / 4631 (6. 62)h (1 0, 1)

/d91/ deg/ de.P (&) K (0,05)

Xg?“@l, (7“927)5(\11091,@2)4_5_9)

m K depends on particle type
m ¥ depends on collision type
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Fourier expansion

m Introduce the angular Fourier expansion
©.@)

f(r,0,t) = % Z Fie (r,t) e~

k=—o0
7T .

fnt) = [ dof (o0 en

— 7T

m The first three modes give the density, the polar, and the nematic
order parameters

A Ref1 RefQ Imf2
p— P — A~ = A A~
P fO P ( Imf1 > pQ ( Ime —Ref2
m Use complex notations for simplicity, including:
V=0;+10,, and V* =0, —1i0,
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Closure of the expansion (polar case)

m Use Ginzburg-Landau approach to close the Fourier series

a) — BY)° b + Vb = 0

m Near transition ¢ ~ €
= We suppose p(7,t) = po + Ap(r,t) Ap ~ ¢

m Near transition the angular distribution is quasi-homogeneous

A

fi ~ el®

m Keeping only terms at order 3 and below, obtain well-behaved
minimal nonlinear pdes.
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Common features
(hydrodynamic level)

-===Omin [

m Linear instability of disordered phase via continuous transition (black line)

m Bifurcated homogeneous ordered state is linearly unstable in region
bordering onset (between solid black line and dotted purple line)

m Inhomogeneous solutions in region including this linear instability domain
(between yellow and red lines) =»coexistence regions

m Irrelevance of linear thresholds in fluctuating systems



Hydrodynamic equations in polar case
Continuity equation  0;p = — R (V*fl)

“Toner-Tu” equation

O f1 + %Vﬂ = (M —¢ \fl\Q) J1+ %Aﬁ
+ufiVii—xfiV' fi

With all transport coefficients depending on local density
and noise strength
(in particular linear coefficient py increases with p )



Polar case: Inhomogeneous solutions

From ODE ansatz, existence and multiplicity of inhomogeneous solutions

0015 = >~ T (3) 0015}
oot0f | By TToooieemT 0010}
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Ordered domain

Stability and selection of solutions in 2D still under investigation
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-1x10-3



Hydrodynamic equations in nematic case

Continuity equation

Oip = %Ap + %Re (V*zfg)

Equation for nematic field

0o = (11— €102l7) o+ 920+ SAL

With all transport coefficients depending on local density
and noise strength
(in particular linear coefficient py increases with p )
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Inhomogeneous nematic band solution

0.09

pband
0.08

pgas
0.07

0.06 -

|
0 100 200

m Explicit exact solution in closed form
m Observed (stable) in moderate-size domains

m But proof of linear instability in two dimensions: long-wavelength instability



In large-enough domains, spatiotemporal “band” chaos
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Summary:

® Even simplest setting for active matter/collective motion reveals
a wealth of unexpected collective phenomena

®  Agreement between continuous field equations and particle
models is very good but of course semi-quantitative at best

® General lessons:

® density/order segregation (phase separation, liquid/gas
transition) due to feedback between local density and order

" Importance of nonlinear features/irrelevance of linear stability
thresholds (inhomogeneous solutions coexist with homog.)
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Outlook: a fluctuating world...

® Recap: generic long-range correlations and anomalously strong
fluctuations ubiquitous in these systems.

® Evidence that fluctuations are crucial in pattern selection (polar
case)

®" Toner-Tu calculation predicts their existence, but the « proof » is
not that solid; growing evidence of possibly more general origin.

® Next: ‘reintroduce’ fluctuations in the form of carefully calculated
effective noise terms, then numerics or RG on these Langevin
equations... for proper understanding of role of correlations/
fluctuations (actual thresholds, selection mechanisms)



