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Plans and Motivation 

• Tractable lattice gases: Repulsion Processes (RPs), 
Exclusion Processes with Avalanches (EPA), etc.

• Lattice gases shed light on fundamental issues 
such as derivation of hydrodynamic equations for 
dense gases, large deviations, etc. 

• Many of these insights were gained from simplest 
models like simple exclusion processes (SEPs); the 
hope is to learn more by using RPs as a vehicle.  



Emergence of RPs

• 2D Ising Model with a zero temperature 
spin-flip (Glauber) dynamics.

• Evolution of an interface is described by the 
SEP (in one basic example).  

• RPs emerge when we consider Ising models 
with long-ranged interactions. 
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Simplest Ising Interface



Equivalent to Asymmetric Exclusion Process

downslope ! particle
upslope      ! hole



Ising Model with NNN 
interactions (RP)
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Repulsion Process, 
Hydrodynamic Approach
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Ising Finger
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Ising Finger
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Corner in a Magnetic Field
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Magnetic Field  =>  Totally 
Asymmetric RPs
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Simplest RP: Definition

ni =

�
1 site i is occupied
0 site i is empty

There is an energy cost when particles occupy adjacent sites.

A zero-temperature dynamics associated with above Hamiltonian.

A hop to a neighboring empty site is performed with rate






2 #(NN pairs of particles decreases)
1 #(NN pairs of particles remains the same)
0 #(NN pairs of particles increases)

H1 = J1

�
nini+1



Generalized RPs: Definition

Only the number of NN pairs of particles matters if it changes.

If it remains the same, the number of NNN pairs of particles matters.

Jk > Jk+1 + . . . + Jm, k = 1, . . . ,m− 1

Then the magnitudes of J ’s are irrelevant and
we can treat interactions in a lexicographic order.

H2 = J1

�
nini+1 + J2

�
nini+2

Hm = J1

�
nini+1 + . . . + Jm

�
nini+m

Zero temperature dynamics is the same for all J1 > J2 > 0.



Steady States

• Let’s consider the asymmetric RP and try to 
classify the steady states.

• The same results are valid for the symmetric 
RP.

• Similar arguments apply to generalized RPs.



Finite Ring  (density > 1/2)

4 islands
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6 islands

Finite Ring  (density > 1/2)
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6 islands

number of islands:
   non-decreasing until a   
   steady state is achieved

Finite Ring  (density > 1/2)



6 islands

number of islands:
   non-decreasing until a   
   steady state is achieved

Finite Ring  (density > 1/2)

isolated vacancies



Steady State on the Ring

claim:  all maximal-island states are equiprobable

P (C)
�

C�

R(C → C �) =
�

C�

P (C �) R(C � → C)

# of active 
leading triplets

# of active 
leading triplets

steady state for P(C)= constant



Steady State on the Ring

P (C) = C−1 C =
number of maximal-island 
configurations with N 
particles & V vacancies

if site i empty

N particles
N-1 possibilities for V vacancies
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Steady State on the Ring
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�
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Steady States (SSs) for GRPs

When ρ < 1
3 , the steady states are maximal-island configurations

with islands of vacant sites of length ≥ 2:

• ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦

The total number of admissible maximal-island configurations is

C =
L

N

�
V −N − 1

N − 1

�
, ρ < 1

3

When 1
3 < ρ < 1

2 , admissible maximal-island configurations
have islands of vacant sites of length 1 or 2:

• ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ • ◦ C =
L

N

�
N

V −N
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Generally for the GRP with Hamiltonian

J(ρ) =

�
ρ[1−(m+1)ρ]

1−mρ 0 < ρ < 1
m+1

[(k+1)ρ−1][1−kρ]
ρ

1
k+1 < ρ < 1

k

where k = 2, 3, . . . ,m.

the steady state current in the low-density region (ρ < 1
2 ) is given by

In the high-density region ( 1
2 < ρ < 1) we determine the steady state

current from the mirror symmetry J(ρ) = J(1− ρ).

Hm = J1

�
nini+1 + . . . + Jm

�
nini+m



Correlation Functions
We consider only the simplest RP and the low-density phase.

�ninj�c ≡ �ninj� − ρ2 = ρ(1− ρ)
�
− ρ

1− ρ

�|j−i|

�ninjnk� =
�ninj��njnk�

�nj�
for all i ≤ j ≤ k.

This is reminiscent to the Kirkwood’s superposition approximation.

�
k�

a=1

nia

�
=

1
ρk−2

k−1�

a=1

�
niania+1

�



Diffusion Coefficient
The idea is to apply a Green-Kubo formula (Spohn, 1991).
Schematically it reads

D(ρ) =
J(ρ)
χ(ρ)

−
� ∞

0
dt C(t)

This integral contribution has never been computed, apart from a few cases
where it has been proven to be zero. This occurs for a 1d lattice gase if the
current can be written in a gradient form. The RP satisfies this requirement.

Thus we need to compute:

The compressibility χ(ρ) =
�∞

�=−∞�n0n��c

The current J(ρ) in the asymmetric version (known).



Compressibility
For the simplest RP: χ(ρ) = ρ(1− ρ)|1− 2ρ|

Generally one gets (in the low-density regime):

χ =

�
ρ[1− (m + 1)ρ][1−mρ] 0 < ρ < 1

m+1

ρ[(k + 1)ρ− 1][1− kρ] 1
k+1 < ρ < 1

k

D(ρ) =






(1−mρ)−2 0 < ρ < 1
m+1

ρ−2 1
m+1 < ρ < 1

2

(1− ρ)−2 1
2 < ρ < m

m+1

(mρ−m + 1)−2 m
m+1 < ρ < 1



Self-Diffusion
We tag a particle and probe its long time behavior. For the 1d RP
(and other 1d lattice gases with nearest-neighbor hopping and exclusion),
the mean-square displacement of the tagged particle grows as

�X2(t)� = D(ρ)
√

t

For the simplest RP

D(ρ) =
2√
π

1
ρ2
×

�
ρ(1− 2ρ) 0 < ρ < 1

2

(1− ρ)(2ρ− 1) 1
2 < ρ < 1

The self-diffusion coefficient vanishes at half-filling: D( 1
2 ) = 0.

The mean-square displacement still grows algebraically at half-filling:

�X2(t)�
��
ρ=1/2

∼ t1/4



Exclusion Process with 
Avalanches

• Particles hop to nearest neighbors, only to empty 
sites (exclusion).

• If a hopping particle joins an island, the front particle 
from this island hops in the same direction.

• This 2nd hop may trigger the 3rd, etc. No limits on 
the duration of the avalanche. 

• More details:    U. Bhatt and PLK, arXiv:1406.1937



SEP

EPA

A particle (empty disc) hops to the vacant site on the right. This completes the
hopping event in the case of SEP. In the case of EPA, the initial hop triggers
an avalanche with three induced hops. The initial configuration has 4 islands.
After the hopping event there are 3 islands for the SEP and 4 islands for the
EPA: In the latter case, the total number of islands cannot decrease.



Steady states

• The same as for the simplest RP: The number 
of islands is maximal, and these steady states 
have equal weight. 

• The EPA is well defined when the density is 
less than 1/2; otherwise a never-ending 
avalanche will emerge.

• All the correlation functions are the same as 
for the simplest RP.



Basic Results

J =

�
ρ(1−ρ)
1−2ρ ρ < 1

2

∞ ρ ≥ 1
2

D = (1− 2ρ)−3

D =
2√
π
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ρ
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Simulation
Theory

Density ρ versus the scaled spatial coordinate ξ = x/L. Theoretical predictions
are in excellent agreement with simulation results in the bulk.



Conclusions
• Transport coefficients depend on the density. They can 

be computed for a few tractable lattice gases. 

• More precisely, the diffusion coefficient has been 
computed. Then it is easy to find the mobility. 

• The self-diffusion coefficient is much harder to 
compute, it is unknown even for the SEP in two 
dimensions. In one dimension with NN hopping and 
exclusion constraint, the self-diffusion coefficient 
vanishes. The tagged particles exhibits an anomalous 
behavior, which is quantitatively understood for 
simplest lattice gases. 



Thank you !




