Experimental investigation of two dimensional Anderson localization of light in the presence of a nonlocal nonlinearity

Claudio Conti

Institute for Complex Systems (ISC-CNR)

Department of Physics

University Sapienza

Rome

www.complexlight.org

Two directions

- Dissipative (gain and losses):
 - Random lasers

- Hamiltonian case:
 - Transverse localization
 - Introduction
 - Effect of nonlinearity
 - Disordered fiber experiments
 - Action at a distance

- Dep Physics Sapienza Rome
 - Marco Leonetti (IPCF-CNR)
 - Viola Folli (IPCF-CNR)

- University of Wisconsin-Milwuakee
 - Salman Karbasi & Arash Mafi

Absence of Diffusion in Certain Random Lattices

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

 Above a certain amount of disorder no transport is possible "Anderson localization"

The reason: localized states due to disorder

Literature

- Observation of Anderson localization in
 - Nonlinear Optics
 - Y. Lahini et al. PRL 100, 013806 (2008)
 - T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)
 - Bose-Einstein condensation
 - J. Billy et al. Nature 453, 891 (2008)
 - G. Roati et al. Nature 453, 895 (2008)
 - S. S. Kondov, Science 66, 334 (2011)
 - Linear disordered media (optics)
 - M. Storzer, P. Gross, C. M. Aegerter, G. Maret, PRL 96, 063904 (2006)
 - A. A. Chabanov, M. Stoytchev, A. Z. Genack, Nature 404, 850 (2000)
 - T. Sperling at al, Nature Photonics 7, 48 (2013)

1D Bosons (BEC)

• Billy et Nature 2008

Localization length versus strenght of disorder

3D Fermions (BEC)

Kondov et al. Science 2011

Fig. 1. (A) Ultracold gas expanding into an optical speckle field (green) and separating into localized (blue) and mobile (red) components. (B) The measured optical depth, proportional to the atomic density integrated through y, is shown in false color. The image depicts a 480-nK gas that has expanded for 20 ms through the disordered potential with $\Delta =$ $k_{\rm B} \times 240$ nK. All images shown in this manuscript are averaged over at least five experimental realizations. Slices are shown through the image along x (**C**) and z (**D**). The filled curves are fits to independent mobile (red) and localized (blue) components.

Localization length Versus disorder

3D Photon

• Sperling et al.

Nature Photonics 2013

Figure 4 | Inverse of the mean-square width σ_∞^2 of the plateau versus kl^* for different samples. As can be seen, the width (corresponding to the localization length) diverges at $l^* \approx 4.5$, indicating the transition from a localized to a non-localized state. The increase of the localization length approaching the critical turbidity can also be used to estimate the critical exponent. All error bars correspond to systematic errors.

Figure 1 | Light at the onset of the Anderson localization superimposed over a scanning electron microscopy image of a disordered sample.

Diffusion of light in a disordered, cloudy medium at intervals of 1 ns. After about 4 ns, the light stops spreading any further. (*Courtesy of the University of Zurich*)

TRANSVERSE Anderson Loc

T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

The effect of nonlinearity on the 2D Anderson localization profile

• T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

The simplest model

The model

One-dimensional NLS with a random potential

$$i\psi_t = -\psi_{xx} + V(x)\psi - \chi|\psi|^2\psi$$

$$\chi = 0$$
 Linear

$$\chi = +1$$
 Focusing

$$\chi = -1$$
 Defocusing

$$P = \int |\psi|^2 dx$$

Nonlinear Anderson localization

Bound state equation

$$\psi = \varphi \exp(-iEt)$$

$$-\varphi_{xx} + V(x)\varphi - \chi\varphi^3 = E\varphi,$$

 This is solved numerically by a pseudospectral Newton-Raphson algorithm

The simplest Anderson localization

$$-\varphi_{xx} + V(x)\varphi = \mathcal{L}\varphi = E\varphi,$$

$$\chi = 0$$

- One dimensional LINEAR Schroedinger equation with random potential
 - Specific case:
 - a Gaussianly distributed random potential
 - Known issues:
 - Existence of exponentially localized states (negative eigenvalues)
 - Distribution of eigenvalues
 - Localization length

Linearly localized states

- Gaussian potential
- Negative eigenvalues
- Decays as $\exp(-\sqrt{-E}|x|)$
- Link between

localization length and eigenvalue

$$-\varphi_{xx} + V(x)\varphi = \mathcal{L}\varphi = E\varphi,$$

The statistical distribution of eigenvalues

 There is a tail of negative energies corresponding to

exponentially highly localized states

$$\langle V(x)V(x')\rangle = V_0^2 \delta(x - x')$$

$$\overline{E}_L \cong -V_0^{4/3}/3$$

The localization length decreases as the Inverse square root of the |energy|, hence the localization length decreases with the amount of disorder (as observed experimentally)

Energy E

Distribution of negative eigenvalues

Localization length l

It is calculated by the inverse participation ratio

$$l = \frac{|\int \varphi^2 dx|^2}{\int \varphi^4 dx} = \frac{P^2}{\int \varphi^4 dx}$$

$$P = \int |\psi|^2 dx$$

For an exponentially localized state

$$\varphi_e = \frac{e^{-2|x|/l}}{\sqrt{l/2}}$$

Link between localization length and eigenvalue in the LINEAR case

 The localization length scales as inverse squares root of the eigenvalue

$$l = \frac{3}{\sqrt{-E}}$$

The lower the negative energy,
 the more localized

Parameters for the nonlinear case

- INPUT POWER $P=\int |\psi|^2 dx$
 - Controls the amount of nonlinearity
 - What happens when increasing nonlinearity?

- In the presence of nonlinearity we have
 - POWER DEPENDENT EIGENVALUE

$$E = E(P)$$

POWER DEPENDENT LOCALIZATION

$$l = l(P)$$

Two regimes

Strong pertubation regime (soliton for focusing)

HIGH POWER, LARGE P $i\psi_t = -\psi_{xx} + V(t)\psi - \chi |\psi|^2 \psi$

Weak perturbation regime (Anderson localization)

LOW POWER, SMALL P

$$i\psi_t = -\psi_{xx} + V(x)\psi - \chi |\chi|^2 \psi$$

STRONG PERTURBATION (SOLITON)

Strong perturbation theory

 A simple multiple scale approach on the NLS shows that the random potential becomes negligible when increasing power

$$\varphi = P\eta(Px) \qquad \qquad \qquad \frac{d\eta^2}{dx_P^2} + \chi\eta^3 = E_P\eta,$$

$$x_P \equiv Px \qquad \qquad \frac{d\eta^2}{dx_P^2} + \chi\eta^3 = E_P\eta,$$

In this regime the only supported localization is the bright soliton

$$arphi = \sqrt{-2E}/\cosh(\sqrt{-E}x)$$
 FOCUSING CASE $E = E_S = -P^2/16$ Negative ! $l = l_S = 12/P$

Solitons

- Features in common with Anderson localization
 - Location (they can be located anywhere in space)
 - Exponential localization
 - Negative (nonlinear) eigenvalue
 - Link between localization length and the eigenvalue

$$l = \frac{3}{\sqrt{-E}}$$

Calculated exact profiles

- The linear fundamental state is numerically prolongated to high power
- Profiles for different powers $-\varphi_{xx} + V(x)\varphi \chi\varphi^3 = E\varphi$,

WEAK PERTURBATION (Anderson states)

Perturbation of the Anderson state

- It is possible to develop a perturbation theory in terms of the power P
- We derive expressions for the localization length and for the eigenvalue valid at small P

$$\psi = \sqrt{P}(\psi_0 + P\psi^{(1)} + P^2\psi^{(2)} + ...)$$

The lowest order term is the Anderson state with the smallest negative energy

Perturbation of the Anderson state

 In the DEFOCUSING CASE there is a power at which the eigenvalue becomes positive

Perturbation of the Anderson state

Localization length

$$l = l_0 \left(1 - \chi \frac{P}{P_0} \right)$$

$$\frac{1}{P_0} = 4l_0 \sum_{n>0} \frac{(\varphi_n, \varphi_0^3)^2}{E_n - E_0}$$

 In the FOCUSING CASE there is power at which the localization length becomes negative

Focusing Vs Defocusing case (weak perturbation theory results)

- In the defocusing case the energy increases
 - The wave delocalizes with P
 - There is a power at which the eigenvalue changes sign $P = I E_0 I I_0$

- In the focusing case the energy decreases
 - IEI increases with P
 - The wave becomes more localized
 - There is a power at which the localization length becomes zero (P=P₀)

TWO critical powers!

In the defocusing case for delocalization

$$P_{defocusing} = l_0 |E_0|$$

In the focusing case for solitonization

$$P_{soliton} = P_0$$

Comparing the weak expansion with the numerical results

Localization length I(P)

FOCUSING

Statistical distribution of the critical power in the focusing case

Critical power to become a soliton

NON PERTURBATIVE APPROACH (disorder averaged variational ansatz)

Results from the variational approach

Final exact expression for the nonlinear Anderson state features

$$E=E(P)$$

$$E_C=-rac{P^2}{16}\left(1+rac{P_C}{P}
ight)^2 \; ext{Nonlinear eigenvalue}$$

$$l_C = rac{12/P}{(1+P_C/P)}$$
 Localization length

One single parameter
$$\;P_{C}=4V_{0}^{2/3}/\sqrt{3}.\;$$

$$l = \frac{3}{\sqrt{-E}}$$

Strong and weak limits

As P grows

As r grows

$$E_C = -\frac{P^2}{16} \left(1 + \frac{P_C}{P} \right)^2 \longrightarrow E_S = -P^2/16$$

- Also the weak limit provides the correct result, and P_c turns out to be a good approx for P_n
- The found expressions correctly reproduce the two perturbative limits (strong and weak)!

Numerical localization length

compare

Distribution of critical power

P gives the peak of the distribution

Transverse localization in 2D fibers

Our experiments on transverse localization in two dimensional fibers

40000 pieces of PMMA and 40000 pieces of PS randomly mixed and fused together n(PS)=1.59 n(PMMA)=1.49

OPTICS LETTERS / Vol. 37, No. 12 / June 15, 2012

2304

Observation of transverse Anderson localization in an optical fiber

Salman Karbasi, Craig R. Mirr, Parisa Gandomkar Yarandi, Ryan J. Frazier, Karl W. Koch, and Arash Mafi^{1,*}

Absence of diffusion

Multicolor transverse Anderson-localization

- we excite several localizations at different wavelengths simultaneously

Nonlinear regime

- at any wavelength we study the localization profile Vs power

Measurement of critical power

Mode profile at 820nm

We observe focalization of any of the localized mode when incresing power

2D SELF-FOCUSING of Anderson localizations

Which the origin of the observed nonlinear focusing?

- it's thermal!

Timescale is compatible with thermal effects (PMMA and PS absorb the infrared light)

Action at a distance between Anderson localizations in nonlinear nonlocal media

- thermal nonlinearity is nonlocal!

Probe Anderson mode (532nm)

Pump Anderson Mode (800nm)

The migration of the multicolor Anderson localization

A form of transport in the Anderson regime

Density map of localizations

We count the states in any spatial location

Density map of locs Vs power

Model with nonlocal nonlinearity

$$2ik\frac{\partial A}{\partial z} + \nabla_{x,y}A + 2k^2\frac{\Delta n}{n_0}A = 0,$$

$$\Delta n = n_{\rm PS} - n_{\rm PMMA} = \Delta n_R + \Delta n_{\rm NL}$$

 $\Delta n_R(x, y)$ due to the disorder

$$\Delta n_{\rm NL} = \int K(x - x', y - y') |A|^2(x', y') dx' dy'.$$

$$\Delta n_{\rm NL} \cong K(x,y) \int |A|^2 d\mathbf{r} \cong P\left(\Delta n_1 + \frac{r^2}{2} \Delta n_2\right).$$

Collective coordinates

$$P_p \frac{d^2 \mathbf{r}_p}{dz^2} = \int I_p(\mathbf{r} - \mathbf{r}_p) \nabla_{x,y} \frac{\Delta n_{NL}}{n} d\mathbf{r},$$

$$\Delta n_{\mathrm{NL}} = \sum_{q=1}^{N} \Delta n_{\mathrm{NL},q} \cong \sum_{q=1}^{N} \frac{P_q \Delta n_2}{2} (\mathbf{r} - \mathbf{r}_q)^2.$$

$$P_p \frac{d^2 \mathbf{r}_p}{dz^2} = -\nabla_{x_p, y_p} \sum_{q=1}^N \frac{|\Delta n_2| P_q P_p}{2n_0} |\mathbf{r}_p - \mathbf{r}_q|^2.$$

Action at a distance for two states

$$D(z) = D(0) \left(1 - \frac{|\Delta n_2| z^2}{2n_0} P_{\text{pump}} \right).$$

Leonetti, Karbasi, Mafi, CC, PRL 112, 193902 (2012)

Conclusions

- Nonlinearity and nonlocality in 2D disorder fibers
- Action at a distance
- Transport in the Anderson regime
- Incoherent Anderson states and interative focusing (see poster)
- Variational theoretical approaches

THANKS!

www.complexlight.org