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Two directions
* Dissipative (gain and losses):

e Random lasers

CD e Hamiltonian case:

 Transverse localization

Introduction

*Effect of nonlinearity
*Disordered fiber experiments
*Action at a distance
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This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It iz shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

 Above a certain amount of disorder no fransport is
possible ,Anderson localization®

 The reason: localized states due 1o disorder
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1D Bosons (BEC)

» Billy et Nature 2008
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Localization length versus strenght of disorder
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Also Roati et al Nature 2008



« Kondov et al. SC|ence 201 1

Fig. 1. (A) Ultracold
gas expanding into
an optical speckle field
(green) and separat-
ing into localized (blue)
and mobile (red) compo-
nents. (B) The measured
optial depth, propor-
tional to the atomic den-
sity integrated through
¥, is shown in false col-
or. The image depicts a
480-nK gas that has
expanded for 20 ms
through the disordered
potential with A =
kg>240 nK. All images
shown in this manusaipt
are averaged over at
least five experimental
realizations. Slices are
shown through the image
along x (C) and z (D).
The filled curves are
fits to independent mo-
bile (red) and localized
(blue) components.
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3D Photon

« Sperling et al.
Nature Photonics 2013
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Figure 4 | Inverse of the mean-square width o2 of the plateau versus k/*
for different samples. As can be seen, the width (corresponding to the
localization length) diverges at [* == 4.5, indicating the transition from a
localized to a non-localized state. The increase of the localization length
approaching the critical turbidity can also be used to estimate the

critical exponent. All error bars correspond to systematic errors.

Figure 1| Light at the onset of the Anderson localization superimposed over a scanning electron
microscopy image of a disordered sample.

HUL

Diffusion of light in a disordered, cloudy medium at intervals of 1 ns. After about 4 ns, the
light stops spreading any further. (Courtesy of the University of Zurich)




TRANSVERSE Anderson Loc

T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)
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O

The effect of nonlinearity on the
2D Anderson localization profile

« T.Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)
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The simplest model



The model

 One-dimensional NLS with a random potential

XZO Linear P = f ‘w‘QdI
X = +1 Focusing
X = —1 Defocusing o
o .
|
(V(@)V () = V§o(z — ') ‘W\/‘ |
2 |

3 2 4 0 1 2
CC, PRA 86, 061801R (2012) position x



Nonlinear Anderson localization

 Bound stfate equation

) = pexp(—iEt)

* This is solved numerically by a pseudo-
spectral Newton-Raphson algorithm



The simplest Anderson localization

—@za + V(¥)p = Loy = Ep, Y =20

* One dimensional LINEAR Schroedinger
eqguation with random potential

» Specific case:
- a Gaussianly distributed random potential
 KNnown issues:

- Existence of exponentidlly localized states
(negative eigenvalues)

— Distribution of eigenvalues

- Locdlization length



Linearly localized states

« Gaussian potentia

* Negative eigenvalue:

« Decays aS exp(—v—Elz|)

E=-5
* Link between 0.8 V=4
localization length %08
and § 04}
. <
eigenvalue 0ol
2 0 2

position x



The statistical distribution of
eigenvalues

* There is a ftail of negative energies
corresponding to

exponentially highly localized states

Distribution of negative eigenvalues

0.8
(V(@)V () = Vis(x — a') o6l V=2
0.4}

ELE— 4L/3/3 0.2}

The localization length decreases as the E) _ '
4 2 0

Inverse square root of the |energy|, hence
the localization length decreases with the amount of disorder Energy E

(as observed experimentally)



Localization length [

 |tis calculated by the inverse participation ratio

- | [ pdx]®

P2

[pide [ p*dx

P = [ |Y|*dx

* For an exponentially localized stafe




Link between localization length
and eigenvalue in the LINEAR case

* The locdlization length scales as inverse
squares root of the eigenvalue

* The lower the negative energy,
the more localized



Parameters for the nonlinear case

+ INPUTPOWER P = [ |¢|?dx

« Controls the amount of nonlinearity

« What happens when increasing nonlinearity 7

* In The presence of nonlinearity we have

 POWER DEPENDENT EIGENVALUE F — E(P)

« POWER DEPENDENT LOCALIZATION

| = 1(P)




Two regimes

» Strong pertubation regime (soliton for
focusing)

HIGH POWER, LARGE P

« Weak perturbation regime (Anderson
localization)

LOW POWER, SMALL P




STRONG PERTURBATION
(SOLITON)



Strong perturbation theory

* A simple multiple scale approach on the NLS shows that
the random potential becomes negligible when
INncreasing power

p = Pn(Px) - diy
High P expansion

.
rp = Px dxp

-xn® = Epn,

In this regime the only supported localization is the bright soliton

p = V—2F/ cosh(r/—Ex)

FOCUSING CASE

E=FEs=—P?/16 negave:
[=lg = 12/P.



Solitons

e Features in common with Anderson
localization

« Locafion (they can be locafted anywhere in
space)

e Exponential localization
* Negative (nonlinear) eigenvalue

* Link between localization length and the
eigenvalue 2

V=F




Calculated exact profiles

* The linear fundamental stafte is numerically
prolongated to high power

» Profiles for different powers —Qu: + Viz)p - WB = ko,
1

FOCUSING CASE soliton fraction

O
0o

o O
~ OO

O
N

nonlinear Anderson state

position X



WEAK PERTURBATION
(Anderson states)



Perturbation of the Anderson state

* |t is possible to develop a perturlbation theory in terms
of the power P

* We derive expressions for the localization length and
for the eigenvalue valid at small P

w = VP(yy + Py + P2y@ 4+ )

0.8}
» 0.6f
f o
0.4}

0.2}

The lowest order term is the Anderson state with the smallest negative energy



Perturbation of the Anderson state

defoc

* Eigenvalue (E<0)

» [T1
<&

P
E = EQ = Es

lo

\ N\

Linear negative energy

Linear localization length

* In The DEFOCUSING CASE there is a power
at which the eigenvadlue becomes posifive




Perturbation of the Anderson state

e Localization length Z
defoc

foc

* In The FOCUSING CASE fthere is power at
which the locdlization length becomes
negative




Focusing Vs Defocusing case
(weak perturbation theory results)

* In the defocusing case the energy increases

* The wave delocalizes with P -
A \/

* There is a power af which

fhe eigenvalue changes sign P=1E_I |

* In the focusing case the energy decreases

 |EI| Increases with P
 The wave becomes more localized

* There is a power aft which

fhe localization length becomes zero (P=P )



TWO critical powers |

e In the defocusing case for delocalization

Pdefocusing — ZO‘EO‘

* In the focusing case for solitonization

Psoliton — PO

CC PRA 86, 061801 (2012)



nonlinear Anderson state

Comparing the weak expansion
with the numerical results

* Localization length I(P)
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Statistical distribution of the critical
power in the focusing case

o Critical power to become a soliton




NON PERTURBATIVE APPROACH
(disorder averaged variational ansatz)



Results from
the variational approach

* Final exact expression for the nonlinear Anderson
state features

E = E(P)

Ec =

P2 1IPO
16 P

2
) Nonlinear eigenvalue

| = I(P)

— 12/ P Localization length
(1+ Pc/P) 3

lc

One single parameter P = 4V02f?/\/§ \/ —F



Strong and weak limits

As P grows
12/P
=15 ro/P "~ ls=12/P
As r grows
p2 Pe\’
— | . _ . 2 :

Also the weak limit provides the correct result, and P
furns out to be a good approx for P

The found expressions correctly reproduce the two
perturbative limits (sfrong and weak) !



Numerical localization length

* compdare
5
4l phase space approach
% numerical
c 3 R
Q
c
Q
N 2
3
S | .
LQ A bright soliton (strong)
linear (weak)
0 . : : : :
0 5 10 15 20 25 30

=

0

power P



Distribution of critical power

- P_gives the peak of the distribution
30 v v

20t

counts

10}




Transverse localization in 2D fibers

Our experiments on
transverse localization
in two dimensional
fibers




Mixture of PS and PPMA
Index contrast 0.1
Propagation >7 cm

40000 pieces of PMMA and 40000 pieces of PS randomly mixed and fused together
n(PS)=1.59
n(PMMA)=1.49

2304 OPTICS LETTERS / Vol. 37, No. 12 / June 15, 2012

Observation of transverse Anderson localization
in an optical fiber

Salman Karbasi,' Craig R. Mirr,' Parisa Gandomkar Yarandi,' Ryan J. Frazier,' Karl W. Koch,” and Arash Mafi'*



Absence of diffusion

homogeneous fiber disordered fiber




Multicolor transverse
Anderson-localization

- we excite several
localizations at different
wavelengths simultaneously
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At any spatial location
there are several

localized modes at
different frequencies




Nonlinear regime

- at any wavelength we
study the localization profile
Vs power



Measurement of critical power

Homogeneous
fiber
d) 300 . :
Homogeneous PMMA

200fA A A A A A A |
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100 } Homogeneous PS | Disordered fiber
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2D SELF-FOCUSING of
Anderson localizations

Experiments

Localization length
Versus

Intensity

(50 modes)

Inten5|tyr (Arb unlts)

05 |l Theory from
the variational approach
0 : : : : Folli, Conti, OL 2011

0 20 40 60 80 100 .
Intensity (arb. units) Conti, PRA, 2012

Numerically calculated
bound states of the 2D-NLS
with Gaussian disorder

loc length




Which the origin of the
observed nonlinear focusing ?

- it's thermal !



Intensity (Arb. Units)

2000 3000 4000 5000 6000 7000

time (ms)

0 1000

Timescale is compatible with thermal effects
(PMMA and PS absorb the infrared light)



Action at a distance between
Anderson localizations In
nonlinear nonlocal media

- thermal nonlinearity is
nonlocal!



MODIFIED SETUP

Ti-Shapphire Laser
ND:Yag Laser




Probe Anderson mode (532nm
( ) Pump Anderson Mode (800nm)

20 microns



D (m)

The size of the probe

changes with the pump power !

Probe Anderson mode (532nm)

DISPLACEA/IENT
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The migration of the
multicolor Anderson
localization

A form of transport in the Anderson regime



Density map of localizations

 We count the states in any spatial location

300 microns

Here localizations

FIBER OUTPUT

25 microns



Density map of locs Vs power
MW —14 mW +-20mW —+28 mW

25 microns
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Model with nonlocal nonlinearity

IA B
Qik=—+ V, ,A+2k2=2A =0,
07 o no

ﬁ” —_— ”PS - ”PN]N]:’\. —_— ﬁ”H * A”NL

Ang(x,y) due to the disorder

Anyg = / K(x—=x',y—y) AP, y)dxXdy .

Anyp = K(x, y) / A|%dr =~ P(AJ?] . %Ang).



Collective coordinates

dzr An
B NL
F32 /Ip(r_rp)v_r_}, ” dr.
N N
- P,An,
An. =) Ainpg =) qz r—r,)’
q=1 g=1
d’r N |Any|P,P
p . 21848 p B )
P,{') d:z _v_rp?y;} Z 2!’10 I'p rq‘ :
q=1
(a)_
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|
- m _
@ ) ;
H N 5_LIIT'| =
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Action at a distance for two states

Any| 72
D(&) = D)1 =52 Prung )
” 2N

D (um)
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Leonetti, Karbasi, Mafi, CC, PRL 112, 193902 (2012)
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Conclusions

Nonlinearity and nonlocality in 2D disorder fibers
Action at a distance

Transport in the Anderson regime .
Incoherent Anderson states ?ée_j”&
and inferative focusing (see poster)
Variational theoretical approaches

after optimization

THANKS !

www.complexlight.org



http://www.complexlight.org/
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