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Stochastic model for non-equilibrium systems

Equation of motion:

q̇(t) = F (q(t)) +
√

D ξ(t)

+ z(t)− a

Poissonian shot noise (PSN)

z(t) =
Nt∑

i=1

Aiδ(t − ti )

I Nt Poisson distribution

I Times ti uniform in [0, t]

I Ai are i.i.d. with density ρ(A)
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Lévy noise: Γ(t) =
√

Dξ(t) + z(t)− a, a = 〈z(t)〉
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Poissonian shot noise

Average number of shots: 〈N(t)〉 = λt

〈z(t)〉 = λ 〈A〉
Cov(z(t), z(t ′)) = λ

〈
A2
〉
δ(t − t ′)

Infinite hierarchy of cumulants

Non-local diffusion

∂

∂t
p(q, t) = − ∂

∂q
(F (q)− a)p(q, t) +

D

2

∂2

∂q2
p(q, t)

+λ

∫ ∞

−∞
dA p(q − A, t)ρ(A)− λp(q, t)

Weak-noise limit?
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Characteristic functional of PSN

Poissonian shot noise (PSN)

z(t) =
Nt∑

i=1

Aiδ(t − ti )

Nt Poisson distribution

Times ti uniform in [0, t]

Ai are i.i.d. with density ρ(A)
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Calculate noise functional

Gz [g ] =

〈
exp

{
i

∫ t

0
g(s)z(s)ds

}〉
= exp

{
λ

∫ t

0
(φ(g(s))− 1) ds

}

where φ(k) =
〈
e iAk

〉
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Path-integral formalism

Propagator given as path-integral over path weight P[q]

f (q, t|q0) =

∫ (q,t)

(q0,0)
DqP[q]

=

∫ (q,t)

(q0,0)
Dq

∫
Dg exp

{
−
∫ t

0
L(q, g)ds

}

Write P[q] as inverse functional FT

P[q] =

∫
Dg exp

{
−i

∫
g(s)(q̇ − Fa(q))ds

}
Gξ[g ]Gz [g ]

Lagrangian:

L(q, g) = ig(q̇ − Fa(q)) +
1

2
Dg 2 − λ(φ(g)− 1)

Conjugate momentum: ∂L/∂q̇ = ig
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Path-integral formalism
Lagrangian

L(q, g) = ig(q̇ − Fa(q)) +
1

2
Dg 2 − λ(φ(g)− 1)

Want: L → L̃/D. Introduce the scaling:

g → g̃/D
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Path-integral formalism

Lagrangian

L(q, g) = ig(q̇ − F (q)) +
1

2
Dg 2 + λ

(〈
A2
〉 g 2

2!
+
〈
A3
〉 ig 3

3!
+ ...

)

Want: L → L̃/D. Introduce the scaling:

g → g̃/D

λ → λ̃/Dµ

A0 → Ã0Dν

0 1 2 3

1

2

3

Μ

Ν

I

II

III

Gaussian weak-noise limit:

ν =
1

2
(µ+ 1), µ > 1

PSN weak-noise limit: µ = ν = 1
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Euler-Lagrange equations

Saddle-point approximation for D → 0

f (q, t|q0) = ψ(q∗, g∗) exp

{
− 1

D

∫ t

0
L(q∗, g∗)ds

}
(1 +O(D))

Optimal paths determined by coupled EL equations

q̇ = Fa(q) + ig − iλφ′(g)

ġ = −F ′a(q)g

with boundary conditions q(0) = q0 and q(t) = qt

Prefactor ψ(q∗, g∗) can be calculated by recursion relation

Gaussian case (λ = 0)

g = −i(q̇ − F (q)) → q̈ − F ′(q)F (q) = 0

→ L =
1

2
(q̇ − F (q))2
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Weak-noise limit of non-equilibrium systems

1 Escape from metastable potential → asymptotic scaling of 〈τex〉
2 Large deviations of non-equilibrium observables

Ω[q] =

∫ t

0
U(q̇, q)ds

I (ω) = lim
D→0

D log PΩ(ω)

3 Piecewise linear transport model

I Simple model for noise induced transport
I Stationary properties
I Weak-noise approximation of finite time propagator
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Escape from metastable potential

Kramer’s rate

r =
1

〈τex〉
∝ e−β∆V

q

V
Hq

L

È

È

q0

qm

Exact asymptotics of 〈τex〉 (Freidlin & Wentzell):

lim
D→0

D log 〈τex〉 = inf
t≥0

S(qm, t; q0)

Action for PSN:

S(qm, t; q0) =

∫ t

0
L(q∗, g∗)ds
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Escape path

Gaussian case (λ = 0)

q̈ − F ′(q)F (q) = 0 → d
dt

1

2
(q̇2 − F (q)2) = 0

Optimal paths:

q̇ = F (q)

Relaxation: zero action

q̇ = −F (q)

Excitation: non-zero action

Escape path is the time-reverse of a deterministic relaxation path.
Action:

S =
1

2

∫ t

0
(q̇ − F (q))2ds = 2∆V
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Escape path

q

V
Hq

L

È

È

q0

qm

Gaussian case (λ = 0)

s

qH
sL

q0

qm

S

DV
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Escape path

PSN case (λ 6= 0)

q̇ = Fa(q) + ig − iλφ′(g)

ġ = −F ′a(q)g

with boundary conditions q(0) = q0 and q(t) = qm

Action:

S(qm, t; q0) =

∫ t

0
L(q∗, g∗)ds

Noise-free deterministic relaxation:

g = 0 → S = 0
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Escape path
Gaussian case (λ = 0)

s

qH
sL

q0

qm

S

DV

PSN case (λ 6= 0)

s

qH
sL

q0

qm

S
DV
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Time-reversal symmetry

Optimal paths break time-reversal symmetry

s

qH
sL

Gaussian noise

s

qH
sL

PSN

Relation with fluctuation theorems

Ratio of path probabilities

log
p[q(s)|q0]

p[q̃(s)|q̃t ]
=




β∆E thermal noise
β∆S driving

? PSN
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Large deviations of non-equilibrium observables

Consider functionals of q(s)

Ω[q] =

∫ t

0
U(q̇, q)ds

We are interested in large deviations

I (ω) = lim
D→0
−D log PΩ(ω)

Consider scaled cumulant generating function

Λ(α) = lim
D→0

D log
〈

eα
R t

0 U(q̇,q)ds
〉

Legendre transform

I (ω) = sup
α

(αω − Λ(α))
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Large deviations of non-equilibrium observables

Obtain from path-integral

Λ(α) = − inf
qt

S̃(qt , t; q0)

Modified Lagrangian

L̃(q∗, g∗) = L(q∗, g∗)− αU(q̇∗, q∗)

Euler-Lagrange equations

q̇ = Fa(q) + ig − iλφ′(g)

ġ = −F ′a(q)g−iα

(
d
dt

∂U

∂q̇
− ∂U

∂q

)
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Exact solution for linear force

Consider linear force and linear functional (dragged particle model)

F (q) = −γq + f

U(q̇, q) = q

EL equations with boundary conditions q(0) = q0 and q(t) = qt

q̇ = −γq + f − a + ig − iλφ′(g)

ġ = µg + iα

Action: S̃(qt , t; q0; g0). Integration constant g0

∂

∂g0
S̃(qt , t; q0; g0) = 0
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ġ = µg + iα

Action: S̃(qt , t; q0; g0). Integration constant g0

∂

∂g0
S̃(qt , t; q0; g0) = 0

A. Baule (QMUL) Weak-noise limit GGI Florence, June 2014 18 / 31



Exact solution for linear force

Scaled cumulant generating function

Λ(α) = − inf
qt

S̃(qt , t; q0; g0) = −S̃(q∗t , t; q0; g0)

with ∂
∂q∗t

S̃(q∗t , t; q0; g0) = 0. Solve for g0(q∗t ).

Long time limit

lim
t→∞

1

t
Λ(α) =

α2

2µ2
− α

µ
(f − a) + λ

(
φ

(
iα

µ

)
− 1

)

Result previously obtained for particular φ and arbitrary D
Baule & Cohen, PRE (2009)

Weak-noise approximation yields exact solution for linear systems
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Stochastic model for noise-induced transport

Equation of motion:
v̇(t) = F (v) + z(t)− a

with

F (v) =





F+(v), v > 0

F−(v), v < 0

Piecewise-linear force (dry friction) and PSN

Granular Brownian motors
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Directed motion due to interplay of friction and noise

m 

v 

!!

m 

v 

!!

Brownian motion:
m v̇(t) = −γv(t) + ξ(t)

I linear friction
I average velocity:

〈v〉 =
1

γ
〈ξ(t)〉 = 0 → no directed motion

I fluctuations do not exert a net force:

〈ξ(t)〉 = 0
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Directed motion due to interplay of friction and noise

m 

v 

m 

v 

ξ!

ξ!

Stochastic equation of motion (diffusion process):

m v̇(t) = −γv(t)−m∆f (v) + ξ(t)

I nonlinear friction
I average velocity:

〈v〉 = −∆τ〈f (v)〉6= 0, for 〈ξ(t)〉 = 0

F inertia
F nonlinear response
F asymmetric p(v) → asymmetric ξ(t)
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Granular Brownian motors

Equation of motion:

ω̇(t) = −γω(t)− σ [ω(t)] ∆ + ηcoll(t)
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Brownian ratchet in a thermal bath driven by Coulomb friction

Andrea Gnoli
Istituto dei Sistemi Complessi - CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy and

Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica,
Università ”Sapienza”, p.le A. Moro 2, 00185 Rome, Italy

Alberto Petri, Fergal Dalton, and Giorgio Pontuale
Istituto dei Sistemi Complessi - CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy

Giacomo Gradenigo, Alessandro Sarracino, and Andrea Puglisi
Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica,

Università ”Sapienza”, p.le A. Moro 2, 00185 Rome, Italy

The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained
under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a
thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb
friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demon-
strate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well
known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our
chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-
induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We
have realized a new granular ratchet experiment where both these ratchet effects are observed, as
well as the predicted inversion at their crossover. Our discovery paves the way to the realization of
micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.

PACS numbers: 02.50.Ey, 05.20.Dd, 81.05.Rm

From microscopic organisms to muscle fibres, from
electric motors to power stations, the biosphere, our so-
ciety and our lives critically depend on the conversion of
energy to mechanical work. Thermodynamics provides
precise and well established rules for energy conversion
in macroscopic systems but these rules become blurred
at small scales when thermal fluctuations play a decisive
role [1]. Extracting work under such conditions requires
subtle strategies radically different from those effective
in the macroscopic world [2–7]. Within this framework,
the theory of Brownian motors deals with the rectifica-
tion of thermal fluctuations, a goal which can only be
achieved in the presence of dissipation [8–13]. An in-
teresting class of systems, where both dissipation and
fluctuations are relevant, is represented by granular me-
dia [14, 15]. Indeed, interactions in a granular system are
inherently dissipative, and because of its small number
of constituents when compared with molecular gases or
liquids, a granular fluid presents large fluctuations. The
additional break of spatial symmetry is sufficient for a
motor effect to be generated as demonstrated in a series
of experiments [16–18] and theoretical works [19–24].

In previous work the main source of dissipation was
provided by the inelasticity of collisions, a property nor-
mally not present at micro or nanometric scales. The
remarkable result of our study is a new minimal model
for a motor where energy is extracted from an equilibrium
bath and dissipated only through Coulomb friction [25].
Friction is therefore demonstrated to be an unexpect-
edly efficient source of dissipation, that is able to rectify

unbiased fluctuations also in the case of fully elastic col-
lisions. Such a model can therefore be exploited in micro
and nano apparatuses where friction is still present [26].














FIG. 1: A) Sketch of the model, front view. B) Top view,
with explanation of quantities used in the text for a generic-
shaped rotator. C) Top view, with specific shapes used in the
simulations and in the experiment.

Our model, described pictorially in Fig. 1a, consists of:
a wheel of mass M and inertia I, rotating with angular
velocity ω around a fixed axis (say ẑ). The wheel is
immersed in an equilibrium fluid and collides with the
molecules of mass m, and is subject to a viscous drag
−Γviscω and, most importantly, to a Coulomb friction
torque −Ffrictionσ(ω) (where σ(x) is the sign function),
due to solid-on-solid contacts within its support, e.g. a
spherical bearing. The equation of motion for the angular

Gnoli et al, PRL (2013)
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Rare and frequent collision limits

Consider parameter

β =
τc
τ∆

Angular velocity PDF exhibits
delta-peak for

β →∞

Rare collision limit

Gnoli, Puglisi, Touchette, EPL (2013)

Granular Brownian motion with dry friction
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Fig. 2: (a) Two examples of signal !(t) for di↵erent values of
��1 in the experiment, corresponding to choices of the rescaled
maximum acceleration amax/g = 4.1 and 20.5 respectively; (b)
rescaled experimental pdfs of the angular velocity for a range
of rescaled accelerations going from 4.1 to 21.2. All other pa-
rameters are in the main text.

which estimates the ratio between the stopping time ⌧� ⇠
!0/� due to dissipation (dominated by dry friction) and
the collisional time ⌧c ⇠ (n⌃v0)

�1.1 A transition at � ⇠ 1
is expected between a regime called the rare collision limit
(RCL) at ��1 ⌧ 1, with the rotator at rest most of the
time, and a regime called the frequent collision limit (FCL)
at ��1 � 1, with the rotator always in motion, contin-
uously perturbed by collisions. The di↵erence between
these two regimes is illustrated in Fig. 2a.

The pdfs of the angular velocity obtained experimen-
tally for values of ��1 spanning the RCL and FCL are
reported in Fig. 2b. There is a great variability when
��1 goes from small to large values, i.e., when increasing
the shaking amplitude and, consequently, the collision fre-
quency. At large values of ��1, the pdfs rescaled by !0

tends to superimpose, a sign that !0 becomes the leading

1Talbot et. al. [8] consider a di↵erent parameter, namely, �⇤s =
�I/(⇢L2mv2

0), and consider a very thin rectangular rotator of length
L and a two-dimensional projection of the system with density ⇢, so
that our n⌃ is their ⇢(2L), while our RI is their L/(2

p
3), leading

to the correspondence � !
p

6⇡✏�⇤s .
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Fig. 3: Pdf of the pawl’s angular velocity in the rare collisions
limit (RCL), obtained with a maximum rescaled acceleration
of the shaker given by amax/g = 6.5 (��1 = 1.5). All other
parameters of the experiment are given in the main text. The
theoretical prediction (7) is displayed as the dashed green line,
where only a is fitted with the experimental data. For refer-
ence, we also show the prediction of the theory in the di↵usive
limit with and without dry friction as the dashed red and blue
curves, respectively.

velocity scale. In order to make a more detailed contact
with the theory and understand the basic properties of the
velocity pdf, we discuss next the RCL and FCL regimes
separately.

Rare collision limit. – As seen above, the pawl in
the RCL (��1 ⌧ 1) is often at rest, resulting in a peak
around ! = 0 in the angular velocity pdf. To describe this
peak, we approximate the expected stationary pdf as

p(!) = a�(!) + (1� a)psmooth(!), (5)

where a is a suitable weight, decreasing as ��1 grows, and
psmooth(!) represents the smooth part of the pdf.

This form of stationary pdf has been studied in [8, 17,
23]. In the RCL, the dynamics is reduced to independent
collisions followed by friction-induced relaxations. More
precisely, at a collision time t the rotator velocity changes
from 0 to !⇤, depending on the projected impact velocity
v = v · n̂ and the projected impact point g = r · t̂/RI ,
and then relaxes according to !̇ = ���(!⇤) until a time
t + ⌧ such that !(t + ⌧) = 0. In this case, the stationary
average of any function y(!), restricted to the times where
!(t) 6= 0, can be written as

hyi = ⇢S

Z
dS

S

Z 0

�1
dv |v|�(v)

Z ⌧

0

dt y[!(t)]. (6)

With this formula, we can calculate the characteristic
function of ! by taking y = eik! and then invert the
transform to retrieve the smooth part psmooth(!). For
the Gaussian �(v) of variance v2

0 and the particular shape

p-3
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Formal mapping of collision process to PSN

Master equation (low density gas): Cleuren & Eichhorn, JSTAT (2008)

∂

∂t
p(ω, t) +

∂

∂ω
F (ω)p(ω, t) =

∫
dω′

[
W (ω|ω′)p(ω′, t)−W (ω′|ω)p(ω, t)

]

= λ(ω)

(∫
p(ω − A, t)ρ(ω,A)dA− p(ω, t)

)

Approximate in the rare collision regime

λ(ω) ≈
∫

dωλ(ω)p(ω) ≈ λ(0)

ρ(ω,A) ≈
∫

dωρ(ω,A)p(ω) ≈ ρ(0,A)

→ PSN with frequency λ and amplitude distribution ρ
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Stationary solution

Density p(v , t) satisfies (KF equation)

∂

∂t
p(v , t) +

∂

∂v
F (v)p(v , t) = λ

∫ ∞

−∞
dA p(v − A, t)ρ(A)− λp(v , t)

Diffusion part is non-local

Stationarity condition

F (v)p(v) =

∫ ∞

−∞
dv ′G (v − v ′)p(v ′)

Around v = 0: F (0+)p(0+) = F (0−)p(0−)

I p(v) is discontinuous at v = 0
I p(v) contains delta peak at v = 0 for F (0−)F (0+) < 0
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Stationary regime

Non-monotonic transport for increased friction

Superposition of integrable and non-integrable solutions
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Baule & Sollich (EPL, 2011); (PRE, 2012)
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Finite time propagator in the weak-noise limit

Optimal paths determined by coupled EL equations

v̇ = Fa(v) + ig − iλφ′(g)

ġ = −F ′a(v)g

with boundary conditions v(0) = v0 and v(t) = vt

For piecewise-linear force obtain solution v+(s) for v > 0 and v−(s)
for v < 0

Determine cross-over at v = 0 by second action minimization:

inf
t̄

[S+(0, t̄; q0, 0) + S−(qt , t; 0, t̄)]
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Optimal paths in the velocity-time plane

Direct paths: pure slip motion

s

v+(s)

v*
(s
)

v

s

v+(s)

v-(s)

t-v*
(s
)

v

Indirect paths: stick-slip motion

v*
(s
)

sta tb0

v

v*
(s
)

sta tb
0

v
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Structure of the optimal paths

Dynamical phase diagram

Second action minimization distinguishes direct (slip) and indirect
(stick-slip) paths

v*
(s
)

(v0,t0) (v1,t1)
(v2,t2)

ta s

u+

u-

v

0

Baule, Cohen, Touchette, JPhysA (2011)
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Result for the propagator

Pure PSN case:
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