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Motivation

Mainly two kinds of semi-realistic compactifications:

• Compactifications with intersecting D-branes

R(3,1)I

O6D6 D6’

σ

M

(see talk by M.Cvetic)

• Heterotic strings on Calabi-Yau with bundles
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Motivation

Usually, one uses SU(4) and SU(5) vector bundles + discrete
Wilson lines to get realistic string models. (Bouchard,Cvetic, Donagi),

(Braun, He, Ovrut, Pantev)

Alternatively:

• Consider the E8 × E8 heterotic string equipped with the
specific class of bundles

W = V ⊕ L

with structure group G = SU(4) × U(1).

• Embedding this structure group into one of the E8

factors leads to the breaking t H = SU(5) × U(1)X ,
where the adjoint of E8 decomposes as follows into
G × H representations.
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Motivation

reps. Cohomology

10−1 H∗(M, V ⊗ L−1)

104 H∗(M, L4)

53 H∗(M, V ⊗ L3)

5−2 H∗(M,
∧2

V ⊗ L−2)

1−5 H∗(M, V ⊗ L−5)

Table 1: Massless spectrum of H = SU(5) × U(1)X models.

Candidate for a flipped SU(5) model → need to understand
structure of E8 × E8 compactification with U(N) bundles.
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Motivation

• Direct breaking of E8 to the Standard Model group by a
bundle with structure group SU(5) × U(1).

SU(3) × SU(2) × U(1)Y Cohom.

(3,2) 1

3

H∗(V )

(3,2)
−

5

3

H∗(L−1)

(3,1) 2

3

H∗(
∧2

V )

(3,1)
−

4

3

H∗(V ⊗ L−1)

(1,2)−1 H∗(
∧2

V ⊗ L−1)

(1,1)2 H∗(V ⊗ L)

(1,1)1 H∗(L−1)
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Plan

• Compactifications of the Heterotic String

• Loop corrected Donaldson-Uhlenbeck-Yau condition

• Flipped SU(5) vacua

• Cohomology classes of FMW vector bundles

• Conclusions and Outlook
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Compactifications of Heterotic String

E8 × E8 HS with vector bundles of the following form

W = W1 ⊕ W2,

where W1,2 is embedded into the first/second E8.
We choose

Wi = VNi
⊕

Mi
⊕

mi=1

Lmi

with U(Ni) bundle VNi
and the complex line bundles Lmi

.

c1(Wi) = c1(VNi
) +

Mi
∑

mi=1

c1(Lmi
) = 0.

W can be embedded into an SU(Ni + Mi) ⊂ E8.
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Tadpole cancellation

• The Bianchi identity for the three-form H implies the
tadpole cancellation condition

0 =
1

4(2π)2

(

tr(F
2
1) + tr(F

2
2) − tr(R

2
)
)

−
∑

a

Naγa,

to be satisfied in cohomology. Here γa are Poincare dual
to two-cycles Γa wrapped by the Na M5-branes.
This can be written as

2
∑

i=1

(

ch2(VNi
) +

1

2

Mi
∑

mi=1

c2
1(Lmi

)

)

−
∑

a

Naγa = −c2(T ).
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Massless spectrum

• The massless spectrum is determined by various
cohomology classes

H∗(X,W ),

where the bundles W can be derived from the explicit
embedding of the structure group into SO(32) or
E8 × E8.

• The net-number of chiral matter multiplets is given by
the Euler characteristic of the respective bundle W

χ(X,W) =

∫

X

[

ch3(W) +
1

12
c2(TX) c1(W)

]

.
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The Green-Schwarz mechanism

• All non-abelian cubic gauge anomalies do cancel,
whereas the mixed abelian-nonabelian, the mixed
abelian-gravitational and the cubic abelian ones do not.
They need to be cancelled by a generalised
Green-Schwarz mechanism involving the terms

SGS =
1

24 (2π)5 α′

∫

B ∧ X8,

and

Skin = −
1

4κ2
10

∫

e−2φ10 H ∧ ?10 H.

(Lukas, Stelle, hep-th/9911156), (R.B., Honecker, Weigand, hep-th/0504232)
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Hermitian Yang-Mills equation

• At string tree level, the connection of the vector bundle
has to satisfy the hermitian Yang-Mills equations

Fab = Fab = 0, gab Fab = ? [J ∧ J ∧ F ] = 0.

F has to be a holomorphic vector bundle.

• A necessary condition is the so-called
Donaldson-Uhlenbeck-Yau (DUY) condition,

∫

X

J ∧ J ∧ c1(VNi
) = 0,

∫

X

J ∧ J ∧ c1(Lmi
) = 0,

to be satisfied for all ni, m. If so, a theorem by
Uhlenbeck-Yau guarantees a unique solution provided
each term is µ-stable.
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One-loop DUY equation

Computing the FI-terms, reveals a one-loop correction to the
DUY equation in the presence of M5-branes, which leads to
the conjecture.
There exists a corresponding stringy one-loop correction to
the HYM equation of the form

?6

[

J ∧ J ∧ F ab
i −

`4
s

4(2π)2
e2φ10 F ab

i ∧

(

trE8i
(Fi ∧ Fi) −

1

2
tr(R ∧ R)

)

+ `4
se

2φ10

∑

a

Na

(

1

2
∓ λa

)2

F ab
i ∧ γa

]

+

(non − pert. terms) = 0..
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One-loop DUY equation

There exists a unique solution, once the bundle satisfies the
corresponding integrability condition and the bundle is
Λ-stable with respect to the slope

Λ(F) =
1

rk(F)

[

∫

X

J ∧ J ∧ c1(F) − `4
s g2

s

∫

X

c1(F) ∧

(

ch2(VNi
) +

1

2

Mi
∑

ni=1

c2
1(Lni

) +
1

2
c2(T )

)

+ (npt).

If, as for SU(N) Bundles

λ(V ) = µ(V ),

we can immediately conclude that a µ-stable bundle is also
λ-stable for sufficiently small string coupling gs.
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Flipped SU(5) vacua

Consider heterotic string on a Calabi-Yau manifold X with
bundle

W = V ⊕ L

with structure group G = SU(4) × U(1).

reps. Cohomology

10−1 H∗(M, V ⊗ L−1)

104 H∗(M, L4)

53 H∗(M, V ⊗ L3)

5−2 H∗(M,
∧2

V ⊗ L−2)

1−5 H∗(M, V ⊗ L−5)
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Flipped SU(5) vacua

• If this really is flipped SU(5), then GUT breaking via
Higgs in 10.

• However, for c1(L) 6= 0 the U(1) receives a mass via the
GS mechanism → standard SU(5) GUT with extra
exotics + GUT breaking via discrete Wilson lines
(Tatar, Watari, hep-th/0602238), (Andreas, Curio, hep-th/0602247)

• Embed a second line bundle into the other E8, such that
a linear combination of the two observable U(1)’s
remains massless .
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Flipped SU(5) vacua

• Concretely, we embed the line bundle L also in the
second E8, where it leads to the breaking
E8 → E7 × U(1)2 and the decomposition

248
E7×U(1)
−→

{

(133)0 + (1)0 + (56)1 + (1)2 + c.c.
}

.

• The resulting massless spectrum is

E7 × U(1)2 bundle

561 L−1

12 L−2

• More general breakings are possible.
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Flipped SU(5) vacua

• Tadpole cancellation condition

ch2(V ) + 3 ch2(L) −
∑

a

Naγa = −c2(T ).

• The linear combination

U(1)X = −
1

2

(

U(1)1 −
5

2
U(1)2

)

remains massless if the following conditions are satisfied

∫

X

c1(L) ∧ c2(V ) = 0,

∫

Γa

c1(L) = 0 for all M5 branes.
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Flipped SU(5) vacua: spectrum

reps. bundle SM part.

(10,1) 1

2

χ(V ) = g (qL, dc
R, νc

R) + [H10]

(10,1)−2 χ(L−1) = 0 −

(5,1)
−

3

2

χ(V ⊗ L−1) = g (uc
R, lL)

(5,1)1 χ(
∧2

V ) = 0 [(h3, h2) + (h3, h2)]

(1,1) 5

2

χ(V ⊗ L) + χ(L−2) = g ec
R

(1,56) 5

4

χ(L−1) = 0 −

Table 2: Massless spectrum of H = SU(5) × U(1)X × E7

models with g = 1

2

∫

X
c3(V ).
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Flipped SU(5) vacua

• One gets precisely g generations of flipped SU(5) matter.

• Right handed leptons from the second E8 are absent if

∫

X

c3
1(L) = 0.

• The generalised DUY condition for the bundle L

simplifies to

λ(V ) = µ(V ) =

∫

X

J ∧ J ∧ c1(V ) = 0,

Florence, 7. June 2006 – p.21/31



Flipped SU(5) vacua

• One gets precisely g generations of flipped SU(5) matter.

• Right handed leptons from the second E8 are absent if

∫

X

c3
1(L) = 0.

• The generalised DUY condition for the bundle L

simplifies to

λ(V ) = µ(V ) =

∫

X

J ∧ J ∧ c1(V ) = 0,

Florence, 7. June 2006 – p.21/31



Flipped SU(5) vacua

• One gets precisely g generations of flipped SU(5) matter.

• Right handed leptons from the second E8 are absent if

∫

X

c3
1(L) = 0.

• The generalised DUY condition for the bundle L

simplifies to

λ(V ) = µ(V ) =

∫

X

J ∧ J ∧ c1(V ) = 0,

Florence, 7. June 2006 – p.21/31



Flipped SU(5) vacua

• One gets precisely g generations of flipped SU(5) matter.

• Right handed leptons from the second E8 are absent if

∫

X

c3
1(L) = 0.

• The generalised DUY condition for the bundle L

simplifies to

λ(V ) = µ(V ) =

∫

X

J ∧ J ∧ c1(V ) = 0,

Florence, 7. June 2006 – p.21/31



Flipped SU(5) vacua: couplings

• GUT breaking via H10 + H10 leads to a natural solution
of the doublet-triplet splitting problem via a missing
partner mechanism in the superpotential coupling

10H
1

2

10H
1

2

5−1.

• Gauge invariant Yukawa couplings

10i
1

2

10
j
1

2

5−1, 10i
1

2

5
j

−
3

2

51, 5
i
−

3

2

1
j
5

2

5−1,

lead to Dirac mass-terms for the d, (u, ν) and e quarks
and leptons after electroweak symmetry breaking.
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Flipped SU(5) vacua: couplings

• Since the electroweak Higgs carries different quantum
numbers than the lepton doublet, the dangerous
dimension-four proton decay operators

l l e ∈ 5
i
−

3

2

1
j
5

2

5
k
−

3

2

, qd l, udd ∈ 10i
1

2

10
j
1

2

5
k
−

3

2

are not gauge invariant.
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Flipped SU(5) vacua: gauge coupl.

• Breaking a stringy SU(5) or SO(10) GUT model via
discrete Wilson lines, the Standard Model tree level
gauge couplings satisfy

α3 = α2 =
5

3
αY = αGUT

at the string scale.

• Since the U(1)X has a contribution from the second E8,
this relation gets modified to

α3 = α2 =
8

3
αY = αGUT
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Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

π : X → B

with the property that the fiber over each point is an elliptic
curve Eb and that there exist a section σ.

• If the base is smooth and preserves only N = 1
supersymmetry in four dimensions, it is restricted to a
del Pezzo surface, a Hirzebruch surface, an Enriques
surface or a blow up of a Hirzebruch surface.

• Friedman, Morgan and Witten have defined stable
SU(N) bundles on such spaces via the so-called spectral
cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

Florence, 7. June 2006 – p.25/31



Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

π : X → B

with the property that the fiber over each point is an elliptic
curve Eb and that there exist a section σ.

• If the base is smooth and preserves only N = 1
supersymmetry in four dimensions, it is restricted to a
del Pezzo surface, a Hirzebruch surface, an Enriques
surface or a blow up of a Hirzebruch surface.

• Friedman, Morgan and Witten have defined stable
SU(N) bundles on such spaces via the so-called spectral
cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

Florence, 7. June 2006 – p.25/31



Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

π : X → B

with the property that the fiber over each point is an elliptic
curve Eb and that there exist a section σ.

• If the base is smooth and preserves only N = 1
supersymmetry in four dimensions, it is restricted to a
del Pezzo surface, a Hirzebruch surface, an Enriques
surface or a blow up of a Hirzebruch surface.

• Friedman, Morgan and Witten have defined stable
SU(N) bundles on such spaces via the so-called spectral
cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

Florence, 7. June 2006 – p.25/31



Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

π : X → B

with the property that the fiber over each point is an elliptic
curve Eb and that there exist a section σ.

• If the base is smooth and preserves only N = 1
supersymmetry in four dimensions, it is restricted to a
del Pezzo surface, a Hirzebruch surface, an Enriques
surface or a blow up of a Hirzebruch surface.

• Friedman, Morgan and Witten have defined stable
SU(N) bundles on such spaces via the so-called spectral
cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

Florence, 7. June 2006 – p.25/31



Fourier-Mukai transform

The idea is to use a simple description of SU(n) bundles over
the elliptic fibers and then globally glue them together to
define bundles over X.
Mathematically, such a prescription is realized by the
Fourier-Mukai transform

V = π1∗(π
∗

2N ⊗PB)

with (

X ×B C, PB ⊗ π∗

2N
)

ππ1 2

(

X, V
) (

C, N
)
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Cohomology classes

(R.B, Moster, Reinbacher, Weigand, to appear)

• The Leray spectral sequence for π2 implies the following
intriguing result

H0(X,Va ⊗ Vb) = 0,

H1(X,Va ⊗ Vb) = H0(Ca ∩ Cb, Na ⊗Nb ⊗ KB),

H2(X,Va ⊗ Vb) = H1(Ca ∩ Cb, Na ⊗Nb ⊗ KB),

H3(X,Va ⊗ Vb) = 0.

For the special case Va = OX and Ca = σ, one finds
Cb = σ2. (Donagi, He, Ovrut, Reinbacher, hep-th/0405014)

• Determine cohomologies of line bundles over complete
intersections of divisors in X → Koszul sequences allow
one relate them eventually to line bundles on B.
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Cohomology classes

The cohomology classes of the anti-symmetric and symmetric
tensor products are more involved but can be computed by
similar methods.
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Outlook

Using bundle extensions

0 → V1 → V → V2 → 0

we have so far found concrete flipped SU(5) models with just
three generations of MSSM quarks and leptons plus one
vector-like GUT Higgs, i.e.

Hi(X,V ) = (0, 1, 4, 0).

The number of weak Higgses and the stability of these
extensions are still under investigation.
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Conclusions

• Heterotic string compactifications with U(N) bundles
provide new prospects for string model building.

• They do have multiple anomalous U(1) gauge
symmetries, which are cancelled by a generalised
Green-Schwarz mechanism.

• There appears a one-loop correction to the DUY
supersymmetry condition, motivating a new notion of
stability of vector bundles.

• Three generation flipped SU(5) and SM like vacua can
be constructed on elliptically fibered CY manifolds.

• Relation between heterotic orbifold constructions and
the smooth Calabi-Yau description? (Buchmüller, Hamaguchi,

Lebedev, Ratz, hep-ph/0511035)

• Heterotic Landscape?
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Corrolar

Sorry, but if our construction is correct then it follows for the
LHC,

i.e. L(ost) H(ope for Italy) C(hampionship)

3. England

2. France

1. Germany

The straightforward proof is left to the audience.
Experimental results are expected July 9, 2006.
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