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0. PRELIMINARIES



From Callen Thermodynamics

“A quasi-static process is thus defined in terms of a dense
succession of equilibrium states. It is to be stressed that a
quasi-static process therefore is an idealized concept, quite distinct
from a real physical process, for a real process always involves
nonequilibrium intermediate states having no representation in the
thermodynamic configuration space. Furthermore, a quasistatic
process, in contrast to a real process, does not involve
considerations of rates, velocities or time. The quasi-static process
simply is an ordered succession of equilibrium states, whereas a
real process is a temporal succession of equilibrium and
nonequilibrium states.”



Typical setting



Assumptions

1. The macroscopic state is completely described by the local
density ρ = ρ(t, x) and the associated current j = j(t, x).

2. The macroscopic evolution is given by the continuity equation

∂tρ+∇ · j = 0 (1)

together with the constitutive equation

j = J(t, ρ) = −D(ρ)∇ρ+ χ(ρ)E(t) (2)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are
d× d positive matrices. The transport coefficients D and χ
satisfy the local Einstein relation

D(ρ) = χ(ρ) f ′′0 (ρ) (3)

where f0 is the equilibrium specific free energy.



The equations (1)–(2) have to be supplemented by the appropriate
boundary condition on ∂Λ due to the interaction with the external
reservoirs. If λ(t, x), x ∈ ∂Λ is the chemical potential of the
external reservoirs, this boundary condition is

f ′0
(
ρ(t, x)

)
= λ(t, x) x ∈ ∂Λ. (4)



Energy balance

Fix T > 0, a density profile ρ(x), an external field E(t, x) and a
chemical potential λ(t, x), 0 ≤ t ≤ T . Let ρ(t, x) the solution of
hydrodynamics with initial condition ρ(x) and j(t, x) the
corresponding current. The total energy involved in the process is

W[0,T ] =

∫ T

0
dt
{
−
∫
∂Λ
dσ(x)λ(t, x) j(t, x)·n̂(x)+

∫
Λ
dx j(t, x)·E(t, x)

}
,

(5)
where n̂ is the outer normal to ∂Λ and dσ is the surface measure
on ∂Λ. The first term on the right hand side is the energy provided
by the reservoirs while the second is the energy provided by the
external field. When T =∞, we denote W[0,T ] by W .



Using the Einstein relation and the divergence theorem W[0,T ] can
be written

W[0,T ] = F (ρ(T ))−F (ρ(0))+

∫ T

0
dt

∫
Λ
dx j(t)·χ(ρ(t))−1j(t) (6)

where

F (ρ) =

∫
Λ
dx f(ρ(x)) .

From this equation the inequality follows

W[0,T ] ≥ F (ρ(T ))− F (ρ(0)) (7)

which is the second law here derived dynamically.



Fix time dependent paths λ(t) of the chemical potential and E(t)
of the driving field. Given a density profile ρ0, let ρ(t), j(t), t ≥ 0,
be the solution of hydrodynamics with initial condition ρ0. Since
f ′(ρ(t)) = λ(t) at the boundary, an application of the divergence
theorem shows that (5) is equal to∫ T

0
dt

∫
Λ
dx
{
j(t) · E(t)−∇ ·

[
f ′(ρ(t)) j(t)

]}
.

Since ∇ · [f ′(ρ(t)) j(t)] = f ′(ρ(t))∇ · j(t)− f ′′(ρ(t))∇ρ(t) · j(t),
since by the continuity equation −∇ · j(t) = ∂tρ, and since by the
Einstein relation f ′′(ρ) = χ(ρ)−1D(ρ), the previous expression is
equal to ∫ T

0
dt

d

dt

∫
Λ
dx f(ρ(t))

+

∫ T

0
dt

∫
Λ
dx j(t) · χ(ρ(t))−1j(t) ,

because j = −D(ρ)∇ρ(t) + χ(ρ(t))E(t).



Therefore our basic equation is∫ T

0
dt
{
−
∫
∂Λ
dσ(x)λ(t, x) j(t, x) · n̂(x) +

∫
Λ
dx j(t, x) · E(t, x)

}
= F (ρ(T ))− F (ρ(0))

+

∫ T

0
dt

∫
Λ
dx j(t) · χ(ρ(t))−1j(t) ,

(8)

where F is the equilibrium free energy functional,

F (ρ) =

∫
Λ
dx f(ρ(x)) . (9)



Splitting of the current

The current can be split into two parts with opposite
transformation properties under time reversal

J(ρ) = JS(ρ) + JA(ρ), (10)

where we define

JS(ρ) = −χ(ρ)∇δV
δρ
. (11)

V (ρ) is the large deviation functional of the stationary ensemble
and is the minimal work necessary to create the fluctuation ρ.

JS(ρ) and JA(ρ satisfy the orthogonality relationship∫
Λ
dx JS(ρ) · χ(ρ)−1JA(ρ) = 0. (12)



Charged particle in a magnetic field

As a simple illustration let us consider a charged particle in a
viscous medium subjected to a magnetic field,

ṗ =
e

mc
p ∧H − 1

τ
p , (13)

where p is the momentum, e the charge, H the magnetic field, m
the mass, c the velocity of the light, and τ the relaxation time.
The dissipative term p/τ is orthogonal to the Lorenz force p ∧H.

We define time reversal as the transformation p 7→ −p, H 7→ −H.
In this case the adjoint equation coincides with the time reversed
dynamics, which is given by

ṗ = − e

mc
p ∧H − 1

τ
p (14)

In this example, JS(p) = p/τ and JA(p) = −(e/mc)p ∧H.



Ideal gas

Another simple example is the case of a system of independent
particles, the corrisponding transport coefficients are D(ρ) = I and
χ(ρ) = ρI where D0, χ0 are scalar and I denotes the identity
matrix.

In the one dimensional case, with Λ = (0, L), λ(0) = λ0,
λ(L) = λ1 the stationary density profile is
ρ̄(x) = ρ0(1− x/L) + ρ1x/L where ρ0 and ρ1 are the densities
associated to λ0 and λ1. In this case

JS(ρ) = −∇ρ+
ρ1 − ρ0

L

ρ

ρ̄

JA(ρ) = − ρ1 − ρ0

L

ρ

ρ̄



Circulation of a fluid in a ring

A more interesting example is provided by the circulation of a fluid
in a ring. In absence of an external field we have an equilibrium
state with constant density ρ̄ and J(ρ̄) = 0. If we switch on a
constant weak driving field E tangent to the ring the system moves
rigidly with a current J(ρ̄) = χ(ρ̄)E and the same equilibrium
V (ρ). Time reversal corresponds to inverting the current, that is
to changing E with −E. In this case JA(ρ) = χ(ρ)E.

A simple calculation shows that JS and JA are orthogonal.



Renormalized work
L. Bertini, D. Gabrielli, G. Jona-Lasinio , C. Landim, (2012), J. Stat. Phys. 149, 773
(2012); Phys. Rev. Lett. 110, 020601 (2013).

Taking into account the orthogonal decomposition of the current
J(ρ) = JS(ρ) + JA(ρ) the dissipative term in (6) can be written∫ T

0
dt

∫
Λ
dx jS(t)·χ(u(t))−1jS(t) +

∫ T

0
dt

∫
Λ
dx jA(t)·χ(u(t))−1jA(t)

(15)
We identify the last term with the work necessary to keep the
system out of equilibrium. This can be seen by writing the
hydrodynamic equation in terms of V

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
−∇JA(ρ) (16)

Consider a stationary state. Since δV
δρ = 0 the stationary current

coincides with JA.



We define the renormalized work

W ren
[0,T ] = F (ρ(T ))− F (ρ(0)) +

∫ T

0
dt

∫
Λ
dx jS(t) · χ(u(t))−1jS(t)

(17)
from which the stronger inequality follows

W ren
[0,T ] ≥ F (ρ(T ))− F (ρ(0)) (18)

Equality is obtained for quasi-static transformations. In fact in
such a case the integral in (17) can be made as small as we want.

The idea of renormalized work was introduced in Y. Oono, M.
Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998).

In equilibrium
W ren

[0,T ] = W[0,T ] (19)



The quasi-potential as excess work

Consider the following transformation: at time t = 0 the system is
in a stationary state ρ̄0(x) corresponding to a chemical potential
λ0(x) which suddenly changes to λ1(x). The system will relax to a
new stationary state ρ̄1(x) following hydrodynamics with new
boundary conditions.

A simple computation shows that

Vρ̄1(ρ̄0) =

∫ ∞
0
dt

∫
Λ
dx jS(t) · χ(ρ(t))−1jS(t)

= lim
T→∞

{W[0,T ] −∆F −
∫ T

0
dt

∫
Λ
dx jA(t) · χ(ρ(t))−1jA(t)}

= W ren −∆F = W ren −minW ren = Wex

(20)



An alternative renormalization
C. Maes, K. Netocny, arXiv:1206.3423

One may ask whether there exist alternative renormalizations of
the total work. For instance, in a recent work, Maes and Netocny
considered the topic of a renormalized Clausius inequality in the
context of a single Brownian particle in a time dependent
environment. To compare their approach to the present one,
consider N independent diffusions in the thermodynamic limit
N →∞. Each diffusion solves the Langevin equation
Ẋ = E(t,X) +

√
2 ẇ, where E is a time dependent vector field

and ẇ denotes white noise. The corresponding stationary measure
with E frozen at time t is denoted by exp{−v(t, x)}.



The scheme discussed here can be now applied. The transport
coefficients are D = 1 and χ(ρ) = ρ. We subtract the energy
dissipated by JA(t, ρ) = ρ

[
E(t, x) +∇v(t, x)

]
. The

renormalization introduced in Maes and Netocny is instead
obtained by introducing a potential field such that the
corresponding stationary state has minimal entropy production.
Namely, they write E = f −∇U and subtract from the energy
exchanged the space-time integral of |Jφt |2/ρ where

Jφt = ρ(f −∇φ)−∇ρ and φ = φ(t, x; ρ) is chosen so that

∇ · Jφt = 0. While the two renormalization schemes are different,
both satisfy a Clausius inequality with F (ρ) =

∫
dx ρ log ρ. Observe

that in this case of independent particles our renormalization is
local while the dependence of Jφt on ρ is nonlocal.



Comment

The splitting of the current appears interesting conceptually.
However the two currents JS and JA, apart some special cases, are
not easily accessible experimentally. In fact what is directly
measurable is the total current which coincides with JA in a
stationary state while JS represents the total current in a
relaxation to an equilibrium state. In the general case their
computation require the knowledge of the quasi-potential. A
measurement of the quasi-potential via rare fluctuations is hopeless
as very large times are involved. It can be either obtained from
calculations by solving a variational principle or from simulations.
Otherwise it can be approximately estimated from measurements
of correlation functions in the stationary state. In fact V is the
Legendre transform of the generating functional of density
correlations in the stationary state.
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Finite time thermodynamics
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio , C. Landim, arXiv:1404.6466

For simplicity we here restrict the discussion to one space
dimension. Let E(s) and λ(s) with s ∈ [0, 1] be a protocol. The
slow transformation is then realized by{

Eτ (t) = E (t/τ) ,
λτ (t) = λ (t/τ) ,

t ∈ [0, τ ] .

Let also ρτ (t) and jτ (t), 0 ≤ t ≤ τ , be the solution to
∂tρ

τ +∇ · J(t/τ, ρτ (t)) = 0,
jτ (t) = J(t/τ, ρτ (t))
f ′(ρτ (t))

∣∣
∂Λ

= λτ (t)

ρτ (0) = ρ̄(0)

(21)

where we recall that

J(t, ρ) = −D(ρ)∇ρ+ χ(ρ)E (t) ,

and ρ̄(0) is the unique stationary solution of the hydrodynamics
with external field E(0) and chemical potential λ(0).



Along the trasformation (ρτ , jτ ) the energy balance can be written

τ

∫ 1

0
ds

∫
Λ
dx jτ (τ s) · E(s)− τ

∫ 1

0
ds

∫
∂Λ
dσ λ(s)jτ (τ s) · n̂

− τ
∫ 1

0
ds

∫
Λ
dxJA

(
s, ρτ (τs)

)
χ
(
ρτ (τs)

)−1
JA
(
s, ρτ (τs)

)
= F

(
ρτ (τ)

)
− F

(
ρ̄(0)

)
+ τ

∫ 1

0
ds

∫
Λ
dxJS

(
s, ρτ (τs)

)
χ
(
ρτ (τs)

)−1
JS
(
s, ρτ (τs)

)
(22)



We now expand in 1/τ

ρτ (τs) = ρ̄(s) + 1
τ r(s) +O

(
1
τ2

)
, s ∈ [0, 1]

where ρ̄(s) is the stationary solution to the hydrodynamic equation
having external field E(s) and chemical potential λ(s).

jτ (τs) = J(s, ρ̄(s)) + 1
τ g(s) +O

(
1
τ2

)
. (23)

JS(s, ρτ (τs)) = − 1
τ χ(ρ̄(s))∇

(
C−1
s ? r(s)

)
+O

(
1
τ2

)
. (24)

C−1
s (x, y) =

δ2Vλ(s),E(s)(ρ̄(s))

δρ(x)δρ(y)
.



r solves
∂sρ̄(s) +∇ · g(s) = 0
g(s) = −D(ρ̄(s))∇r(s)

−r(s)
[
D′(ρ̄(s))∇ρ̄(s) + χ′(ρ̄(s))E(s)

]
r(s, x) = 0, x ∈ ∂Λ

(25)

which has the form of a Poisson equation for r(s).



We obtain to order 0 in 1/τ

F
(
ρ̄(1)

)
− F

(
ρ̄(0)

)
=

∫ 1

0
ds

∫
Λ
dxE(s) · g(s)−

∫ 1

0
ds

∫
∂Λ
dσ λ(s)g(s) · n

−
∫ 1

0
ds

∫
Λ
dx r(s)

χ′
(
ρ̄(s)

)
χ2
(
ρ̄(s)

)J2
(
s, ρ̄(s)

)
.



Renormalized work to order 1/τ

For large finite τ a direct calculation shows that

W ren
[0,τ ] = ∆F +

1

τ
B +O

(
1
τ2

)
. (26)

where

B =

∫ 1

0
ds

∫
Λ
dxχ(ρ̄(s))

[
C−1
s ? r(s)

]2
> 0 (27)

and

C−1
s (x, y) =

δ2Vλ(s),E(s)(ρ̄(s))

δρ(x)δρ(y)
.

We observe that B depends on the protocol and it has a strictly
positive lower bound. We can select the “best” protocol by
minimizing B.



Optimization problems
We compute the optimal protocol in the case of homogeneous
equilibrium states. We thus assume that the external field vanishes
and that the chemical potential does not depend on the space
variable. The protocol is thus defined by a real function λ(s),
s ∈ [0, 1]. The associated stationary solution ρ̄(s) is also constant
in space and solves λ(s) = f ′(ρ̄(s)).
The Poisson equation for r is solved by

r(s, x) =
∂sρ̄(s)

D(ρ̄(s))

∫
Λ
dy G0(x, y) (28)

where G0 is the Green function of the Dirichlet Laplacian on Λ.
Since

δ2Vλ(s),E(s)(ρ̄(s))

δρ(x)δρ(y)
=
D(ρ̄(s))

χ(ρ̄(s))
δ(x− y) (29)

the term B is given by

B =

∫ 1

0
ds

[∂sρ̄(s)]2

χ(ρ̄(s))

∫
Λ
dx
[ ∫

Λ
dy G0(x, y)

]2
. (30)



Observe that the dependence on space and time factorizes and
that the result does not depend at all on the diffusion coefficient.
It is now straightforward to minimize B with respect to ρ̄(s) with
the constraints ρ̄(0) = ρ̄0, ρ̄(1) = ρ̄1. The minimizer is the unique
function satisfying the constraints such that

∂sρ̄√
χ(ρ̄)

= const. (31)

The optimal λ is then obtained by the relationship λ = f ′(ρ̄).



We next show that in the case of independent particles it is not
convenient to pass through non-equilibrium states. For simplicity
we restrict to the one dimensional case and we assume that the
external field vanishes. We define a protocol in terms of the time
dependence of the boundary values ρ̄−(s) = ρ̄(s, 0) and
ρ̄+(s) = ρ̄(s, 1), s ∈ [0, 1].

The functional B can be written as

B =
∫ 1

0 ds
∫

Λdx
1
4x

2(1− x)2

×
{

˙̄ρ−(s)+ 1
3

(1+x)[ ˙̄ρ+(s)− ˙̄ρ−(s)]
}2

ρ̄−(s)+x[ρ̄+(s)−ρ̄−(s)]

By writing the Euler-Langrange equations, one can check that the
protocol ρ̄−(s) = ρ̄+(s) = ρ̄(s) satisfying (31) is a stationary point
for B.



Dissipation

The infinitesimal version of the identity (6) gives the istantaneous
energy balance which reads

Ẇ =

∫
Λ
dx
[
f ′(ρ)ρ̇+ j · χ(ρ)−1j

]
(32)

where Ẇ is the power injected by the reservoirs and external field
in the system. Accordingly, f ′(ρ)ρ̇ represents the rate of change of
the free energy while j · χ(ρ)−1j is the dissipated power.



In general the dissipation is not minimal in the stationary state.

As a simple example let us consider the case of independent
particles. the minimizer of the second term on the right with the
prescribed boundary conditions ρ(0) = ρ0, ρ(L) = ρ1 is

ρ̂(x) =
[√
ρ0(1− x/L) +

√
ρ1x/L

]2
while the stationary profile is ρ̄(x) = ρ0(1− x/L) + ρ1x/L.
Observe that, in accordance with the Prigogine principle,
ρ̄− ρ̂ = O([(ρ1 − ρ0)/L]2).


