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Predator-prey interaction

historic Hudson Bay Company data



Predator-prey interaction

Lotka-Volterra model (A. J. Lotka, 1920; V. Volterra, 1926)

predators: A −→ 0 death, rate µ

prey: B −→ B + B birth, rate σ

predation: A+ B −→ A+ A, rate λ

mean-field rate equations for homogeneous densities:

da(t)

dt
= −µ a(t) + λ a(t) b(t)

db(t)

dt
= σ b(t)− λ a(t) b(t)

conserved quantity: K = λ(a + b)− σ ln a− µ ln b

−→ limit cycles, population oscillations



Predator-prey interaction



Predator-prey interaction

Generalization: multi-species Lotka-Volterra rate equations

dxi (t)

dt
= xi(t)



ri +

n
∑

j=1

αi ,jxj(t)





ri : intrinsic growth or decay

αi ,j : represents interaction matrix that encodes competition
between species i and j

very general equations that encompass many different cases (food
chains)

example: cyclic Lotka-Volterra model
A1 + A2 −→ 2A1, A2 + A3 −→ 2A2, · · · , An−1 + An −→ 2An−1,
An + A1 −→ 2An



Predator-prey interaction

original (two-species) Lotka-Volterra model

da(t)

dt
= −µ a(t) + λ a(t) b(t)

db(t)

dt
= σ b(t)− λ a(t) b(t)

stationary states (fixed point)

(a∗, b∗) = (0, 0) −→ extinction

(a∗, b∗) = (0,∞) −→ predators extinct, Malthusian prey
proliferation

(ac , bc) = (σ/λ, µ/λ) −→ species coexistence

linearization about coexistence stationary state
=⇒ purely oscillatory kinetics with characteristic

frequency ω =
√
µσ



Predator-prey interaction

conservation law for K and related purely oscillatory motion are
special features of the deterministic model equations

results unstable with respect to perturbations:

model modifications

spatial degrees of freedom

stochasticity



Stochastic Lotka-Volterra model: no space dependence

A predators and B preys −→ discrete degrees of freedom

dP(A,B; t)

dt
= λ(A− 1)(B + 1)P(A− 1,B + 1; t) + µ(A+ 1)P(A+ 1,B; t) +

−(µA+ σB + λAB)P(A,B; t)

only one stable steady state: PS(A = 0,B = 0) = 1 and
PS (A 6= 0,B 6= 0) = 0
as t −→ ∞, empty (absorbing) state will be reached

at finite times:
erratic population oscillations
(resonant amplification mechanism)
McKane/Newman ’05



Stochastic Lotka-Volterra model on a lattice

each lattice site either empty or occupied by a predator or a prey

mean-field rate equations for the particle densities

da

dt
= −µa(t) + λa(t)b(t)

db

dt
= σ[1− a(t)− b(t)]b(t)− λa(t)b(t)

absorbing state: λ < µ; a −→ 0, b −→ 1

λ > µ: active phase: A and B coexist

active/absorbing phase transition
−→ nonequilibrium phase transition



Stochastic Lotka-Volterra model on a lattice

coarsening in one dimension − final state: system full of prey
predator (red) and prey (blue) domains

complicated space-time pattern in two space dimensions
(Mobilia, Georgiev, Täuber ’07)



Cyclic dominance of competing species

real-world example: competing bacterial strains (Escherichia coli)
(Kerr et al. ’02)



Rock-Paper-Scissors game

three cyclically competing species: Rock-Paper-Scissors game

a + b
ka−→ a + a

b + c
kb−→ b + b

c + a
kc−→ c + c



Rock-Paper-Scissors game

three cyclically competing species: Rock-Paper-Scissors game

a + b
ka−→ a + a

b + c
kb−→ b + b

c + a
kc−→ c + c

three ways of realizing mobility when on a lattice:

exchange of individuals

a + b
sab
⇄ b + a

b + c
sbc
⇄ c + b

c + a
sca
⇄ a + c

conserved quantity: Na + Nb + Nc = N

empty sites

multiple occupancy of sites



Formation of space-time pattern

May-Leonard model

three species on a two-dimensional lattice

separation of predation and reproduction

A+ B −→ A+ 0

A+ 0 −→ A+ A



What about more than three species?

Simplest generalization: four species

a+ b
ka−→ a + a

b + c
kb−→ b + b

c + d
kc−→ c + c

d + a
kd−→ d + d

a

b

c

d



What about more than three species?

Simplest generalization: four species

a+ b
ka−→ a + a

b + c
kb−→ b + b

c + d
kc−→ c + c

d + a
kd−→ d + d

b

c

d

a

formation of partner-pairs!



Well-mixed system

configuration space for four species

ac and bd pairs do not interact

=⇒ final (absorbing) state displays coexistence of these pairs

every point along a− c and b − d edges represents such a state
=⇒ 2(N + 1) absorbing states



Well-mixed system

mean field approximation for the evolution of the averages of the
fractions

A(t) ≡
∑

{Nm}

(Na/N)P ({Nm} ; t) etc.

neglect all correlations and replace averages of products by the
products of averages

MF equations (ka + kb + kc + kd = 1):

∂tA = [kaB − kdD]A

∂tB = [kbC − kaA]B

∂tC = [kcD − kbB ]C

∂tD = [kdA− kcC ]D



Well-mixed system

mean field approximation for the evolution of the averages of the
fractions

A(t) ≡
∑

{Nm}

(Na/N)P ({Nm} ; t) etc.

neglect all correlations and replace averages of products by the
products of averages

MF equations (ka + kb + kc + kd = 1):

∂t lnA = kaB − kdD

∂t lnB = kbC − kaA

∂t lnC = kcD − kbB

∂t lnD = kdA− kcC



Well-mixed system

contributions from a single species to the growth/decay of two
other species:

∂t [kb lnA+ ka lnC ] = λD

∂t [kc lnA+ kd lnC ] = λB

∂t [kc lnB + kb lnD] = −λA

∂t [kd lnB + ka lnD] = −λC

key control parameter: λ ≡ kakc − kbkd

quantity

Q ≡ Akb+kcC kd+ka

Bkc+kdDka+kb

evolves in an extremely simple manner:

Q (t) = Q (0) eλt



Well-mixed system

λ = 0 −→ kakc = kbkd −→ Q is a constant of motion

numerator/denominator of Q are constant

each defines a (generalized) hyperbolic sheet

intersection is a closed loop (∼ edge of a saddle)

saddle-shaped orbits and fixed points



Well-mixed system

λ 6= 0

Q (t) = Q (0) eλt with Q ≡ Akb+kcC kd+ka

Bkc+kdDka+kb

spirals and arrows

starting from symmetry point with λ = −0.0273



Well-mixed system

going beyond mean field approximation: numerical simulations

λ = 0: stochastic effects

1000 particles, (ka, kb , kc , kd ) = (0.4, 0.4, 0.1, 0.1) and
(A0,B0,C0,D0) = (0.02, 0.10, 0.48, 0.40)



Well-mixed system

λ 6= 0: extinction events

(ka, kb, kc , kd ) = (0.1, 0.0001, 0.1, 0.7999) and
(A0,B0,C0,D0) = (0.1, 0.7, 0.1, 0.1)



Well-mixed system

λ 6= 0: extinction events
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Well-mixed system

going beyond mean field approximation: numerical simulations

λ 6= 0: extinction events
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Well-mixed system

extinction time distributions for small systems
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Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for four species

space-time diagrams

k = 0.8, s = 0.2 k = 0.1, s = 0.9 k = 0.01, s = 0.99



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for four species
average domain size (for k + s = 1)
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−→ exchanges speed up the coarsening process!



Coarsening in two dimensions

four species: coexistence, but no well formed space-time patterns

k = 1 and s = 0



Coarsening in two dimensions

four species with exchanges between individuals belonging to a
partner-pair

=⇒ coarsening of partner-pair domains

k = 0.8 and s = 0.2, sn = 0.2



Coarsening in two dimensions

correlation length from the correlation function

C (t,~r) =
∑

i

[〈

ni(t,~r )ni(0,~0)
〉

− 〈ni (t,~r)〉
〈

ni (0,~0)
〉]

.

ni (t,~r): occupation number
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Extinction times

extinction time distributions for small systems
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Generalized May-Leonard games

N different species in two dimensions

Xi : member of species i

reaction scheme:

Xi + Xj

δij−→ ∅+ Xi predation

Xi + ∅ γi−→ Xi + Xi birth

Xi + ∅ βi−→ ∅+ Xi diffusion

Xi + Xj

αij−→ Xj + Xi swapping

model (N, r): generalized May-Leonard model with N species
where each species preys on r other species in a cyclic way

(N, 1): N-species cyclic Lotka-Volterra game discussed until now



Generalized May-Leonard games

space-time pattern and coarsening

model (6,5)
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Generalized May-Leonard games

space-time pattern and coarsening

model (6,4)
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Generalized May-Leonard games

space-time pattern and coarsening

model (6,3)
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Generalized May-Leonard games

space-time pattern and coarsening

model (6,2)
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Generalized May-Leonard games

space-time pattern and coarsening

model (6,1)
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Generalized May-Leonard games

domains grow as t1/2
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Generalized May-Leonard games

interface width: (6,3)
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Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)

1 4

2 3

56



Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)
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adjacency matrix

A =

















0 1 1 1 1 0
0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1
1 1 1 1 0 0



















Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)

1 4

2 3

56

square of the adjacency matrix
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



Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)

1 4

2 3

56

square of the adjacency matrix

bij : number of directed paths of
length 2 from vertex i to vertex j

(i −→ k −→ j)

the enemy of my enemy is my friend

=⇒ preferred ally of species j :
max

i
bij



Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)
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square of the adjacency matrix

B =


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Generalized May-Leonard games

square of the adjacency matrix contains all information about
preferred partnership formations

Example: model (6,4)

1 4

2 3

56

Can be generalized to very complicated food networks using
additional matrices!



Generalized May-Leonard games

analytical expressions describing space-time patterns can be
obtained through a complex Ginzburg-Landau approach

starting point: mean-field rate equations

−→ single coexistence fixed point
−→ unstable invariant manifold
−→ rate equations on unstable manifold in

vicinity of unstable fixed point
−→ Stuart-Landau normal form on

unstable manifold

żs = (c1,s − iωs)zs − c2,s(1 + ic3,s)zs |zs |2

−→ expressions for linear spreading
velocity, wavelength and frequency of
spirals



Conclusion

Stochastic effects very important in population dynamics

mean-field predictions not valid for small populations

formation of complicated space-time patterns for three or
more species that compete against each other

generalized May-Leonard systems: coarsening processes with
internal dynamics inside the growing domains

exact method to predict alliance formation and space-time
patterns for very general ecological networks
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No site restriction

d = 2: always coexistence
=⇒ absence of active/absorbing phase transition

d = 1: always coexistence
diffusion-dominated reaction-dominated



Well-mixed system

λ = 0 −→ kakc = kbkd

Q is a constant of motion



Coarsening in two dimensions

four species with exchanges between individuals belonging to a
partner-pair

=⇒ coarsening of partner-pair domains

k = 0.2 and s = 0.8, sn = 0.8



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for three species

k = 0.9, s = 0.1 k = 0.1, s = 0.9



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for three species

average domain size (for k + s = 1)
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Coarsening and coexistence in one dimension

Asymmetric interaction and swapping rates for three species
asymmetry in the rates =⇒ dominance of a single species

Example: ka = 0.45, kb = kc = 0.4, sbc = sca = 0.4
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Coarsening and coexistence in one dimension

Asymmetric interaction and swapping rates for three species
dynamical phase diagram for kb = kc = 0.4, sbc = sca = 0.4
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Cyclic dominance of competing species

real-world example: lizard populations in southern California
(Sinervo/Lively ’96)


