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SNS: Microscopic description

Lattice: ΛN

Configuration of particles: η ∈ {0, 1}ΛN or η ∈ NΛN

ηt(x) = number of particles at x ∈ ΛN at time t
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SNS: Microscopic description

• Stochastic Markovian dynamics

• r(η, η′) = rate of jump from configuration η to
configuration η′

• η′ = local perturbation of η

• µN (η) = invariant measure of the process, probability
measure on the state space

µN (η)
∑

η′ r(η, η
′) =

∑
η′ µN (η′)r(η′, η)

µN =⇒ MICROSCOPIC description of the SNS
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SNS: Macroscopic description

• η =⇒ πN (η) Empirical measure (positive measure on [0, 1])

πN (η) = 1
N

∑
x∈ΛN

η(x)δx

δx = delta measure (Dirac) at x ∈ [0, 1]; since x ∈ ΛN we have
x = i

N , i ∈ N. Given f : [0, 1]→ R∫
[0,1]

fdπN =
1

N

∑
x∈ΛN

η(x)f(x)
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SNS: Macroscopic description

When η is distributed according to µN and N is large

LAW OF LARGE NUMBERS

πN → ρ̄(x)dx

This means ∫
[0,1]

fdπN →
∫

[0,1]
f(x)ρ̄(x) dx

ρ̄(x) = typical density profile of the SNS
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SNS: Macroscopic description

When η is distributed according to µN and N is large, a
refinement of the law of large numbers

LARGE DEVIATIONS

P
(
πN (η) ∼ ρ(x)dx

)
' e−NV (ρ)

V = Large deviations rate function

V =⇒ MACROSCOPIC DESCRIPTION OF THE SNS

V contains less information than µN but is easier to compute
and is independent from microscopic details of the dynamics
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Example: Equilibrium SEP

• Equilibrium: CL = CR = C; AL = AR = A
• Microscopic state: product of Bernoulli measures of

parameter p = C
A+C

µN (η) =
∏
x∈ΛN

pη(x) (1− p)1−η(x)
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Example: Equilibrium SEP

MACROSCOPIC DESCRIPTION

P
(
πN (η) ∼ ρ(x)dx

)
=

∑
{η,:πN (η)∼ρ(x)dx}

µN (η)

=
∑

{η,:πN (η)∼ρ(x)dx}

e
−N
( ∫

[0,1] dπN (η) log 1−p
p
−log(1−p)

)

Using the combinatorial estimate∣∣∣ {η, : πN (η) ∼ ρ(x)dx}
∣∣∣ ' e−N ∫ 1

0 ρ(x) log ρ(x)+(1−ρ(x)) log(1−ρ(x)) dx

V (ρ) =
∫ 1

0 ρ(x) log ρ(x)
p + (1− ρ(x)) log (1−ρ(x))

(1−p) dx
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Contraction

Average number of particles

1

N

∑
i

η(i) =

∫
[0.1]

dπN (η)

satisfies LDP

P

(
1

N

∑
i

η(i) ∼ y

)
' e−NJ(y)

BY CONTRACTION

J(y) = inf{ρ :
∫ 1
0 ρ(x) d x=y} V (ρ)
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Relative entropy

Relative entropy of the probability measure µ2
N with respect to

µ1
N

H
(
µ2
N

∣∣∣µ1
N

)
=
∑

η µ
2
N (η) log

µ2N (η)

µ1N (η)

H ≥ 0, not symmetric!!
Density of relative entropy

h = limN→+∞
1
NH

(
µ2
N

∣∣∣µ1
N

)
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An example

µ1
N (η) =

∏
x∈ΛN

pη(x) (1− p)1−η(x), product of Bernoulli
measures of parameter p
µ2
N (η) =

∏
x∈ΛN

ρ(x)η(x) (1− ρ(x))1−η(x), slowly varying
product of Bernoulli measures associated to the density profile
ρ(x)

1

N
H
(
µ2
N

∣∣∣µ1
N

)
=
∑
η

µ2
N (η)

 1

N

∑
x∈ΛN

η(x) log
ρ(x)

p
+ (1− η(x)) log

(1− ρ(x))

(1− p)


=

1

N

∑
x∈ΛN

ρ(x) log
ρ(x)

p
+ (1− ρ(x)) log

(1− ρ(x))

(1− p)

Riemann sums, convergence when N → +∞ to V (ρ)
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From microscopic to MACROSCOPIC

• Driving parameters (λ,E)

• λ =⇒ rates of injection and annihilation at the boundary

• E =⇒ external field driving the particles on the bulk

• µλ,EN =⇒ corresponding invariant measure

• ρ̄λ,E =⇒ corresponding typical density profile

• Vλ,E(ρ) =⇒ corresponding LD rate function

Vλ1,E1(ρ̄λ2,E2) = limN→+∞
1
NH

(
µλ2,E2

N

∣∣∣µλ1,E1

N

)
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From microscopic to MACROSCOPIC

• This relation between relative entropy and LD rate
function can be easily verified for the boundary driven Zero
Range Process

• It is true also for boundary driven SEP; proof based on
matrix representation of µN

• In general the computation of V through relative entropy is
difficult

• An alternative powerful approach to compute V is the
dynamic variational one of the Macroscopic Fluctuation
Theory
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Boundary driven TASEP: a microscopic view
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Boundary driven TASEP: a microscopic view

• Duchi E., Schaeffer G A combinatorial approach to
jumping particles, J. Comb. Theory A (2005)
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Boundary driven TASEP: a microscopic view

• η =⇒ configuration of particles above

• ξ =⇒ configuration of particles below

• (η, ξ) =⇒ full configuration of particles

• Stochastic Markov dynamics for (η, ξ)

• Observing just η =⇒ still Markov and boundary driven
TASEP

• νN (η, ξ) =⇒ invariant measure for the joint dynamics, it
has a combinatorial representation

µN (η) =
∑

ξ νN (η, ξ)
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Boundary driven TASEP: a microscopic view

Complete configurations

E(x) =
∑
y≤x

(η(y) + ξ(y))−Nx− 1

(η, ξ) is a complete configuration if{
E(x) ≥ 0
E(1) = 0

νN is concentrated on complete configurations
(η, ξ) complete =⇒ N1(η, ξ), N2(η, ξ)

νN (η, ξ) = 1
ZN
AN1(η,ξ)CN2(η,ξ)

Special case A = C = 1 =⇒ νN uniform measure on complete
configurations
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Boundary driven TASEP: a macroscopic view

Joint Large deviations

P
(

(πN (η), πN (ξ)) ∼ (ρ(x), f(x))
)
' e−NG(ρ,f)

Contraction principle

P
(
πN (η) ∼ ρ(x)

)
' e−NV (ρ)

V (ρ) = inff G(ρ, f)
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Boundary driven TASEP: a macroscopic view

Complete density profiles

E(x) =

∫ x

0
(ρ(y) + f(y)) dy − x

The pair (ρ, f) is a complete density profile if{
E(x) ≥ 0
E(1) = 0

When C = A = 1 since νN is uniform on complete
configurations a classic simple computation gives

G(ρ, f) =

∫ 1

0

[
h 1

2
(ρ(x)) + h 1

2
(f(x))

]
dx

if (ρ, f) is complete; here

hp(α) = α log
α

p
+ (1− α) log

(1− α)

1− p
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Boundary driven TASEP: a macroscopic view

V (ρ) = inf
f : (ρ,f)∈C

∫ 1

0

[
h 1

2
(ρ(x)) + h 1

2
(f(x))

]
dx

To be compared with B. Derrida, J.L. Lebowitz, E.R. Speer
Exact large deviation functional of a stationary open driven
diffusive system: the asymmetric exclusion process J. Stat.
Phys. (2003)

V (ρ) = sup
f

∫ 1

0

{
ρ(x) log [ρ(x)(1− f(x))]

+ (1− ρ(x)) log [(1− ρ(x))f(x)]
}
dx+ log 4

where f(0) = 1, f(1) = 0 and f is monotone
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Boundary driven TASEP: a macroscopic view

Both variational problems have the same minimizer

fρ(x) = CE
(∫ x

0
(1− ρ(y)) dy

)
V (ρ) = G(ρ, fρ)

See Bahadoran C. A quasi-potential for conservation laws with
boundary conditions arXiv:1010.3624 for a dynamic variational
approach, using MFT
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2-class TASEP
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The invariant measure
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Collapsing particles

(η̃1, η̃T ) :
∑
x

η̃1(x) ≤
∑
x

η̃T (x) =⇒ (η1, ηT ) = C
[

(η̃1, η̃T ))
]

Flux across bond (x, x+ 1)

J(x) = sup
y

[ ∑
z∈[y,x]

η̃1(z)− η̃T (z)
]

+
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Collapsing measures

(ρ̃1, ρ̃T )) :

∫
S1
dρ̃1 ≤

∫
S1
dρ̃T =⇒ (ρ1, ρT ) = C

[
(ρ̃1, ρ̃T ))

]
Definition∫

(a,b] dρ1 =
∫

(a,b] dρ̃1 + J(a)− J(b)

where

J(x) := sup
y

[∫
(y,x]

dρ̃1 −
∫

(y,x]
dρ̃2

]
+
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Collapsing measures
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Large deviations

LD for the (η̃1, η̃T ) variables

Ṽ (ρ̃1, ρ̃T ) =

∫
S1

[hm1 (ρ̃1) + hm2 (ρ̃T ))] d x

LD for the SNS (not convex!)

V (ρ1, ρT ) = inf
{(ρ̃1,ρ̃T ) : C[(ρ̃1,ρ̃T )]=(ρ1,ρT )}

Ṽ (ρ̃1, ρ̃T )

=

∫
S1

[hm1 (ρ̂1) + hm2 (ρT ))] d x

On any (a, b) where ρ1 = ρT∫ x

a
ρ̂1(y)dy = CE

[∫ x

a
ρ1(y)dy

]
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