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Introduction

Deterministic walks

Lorentz gas.

A walker on a landscape.

The walker interacts with the landscape during the walk.

Landscape = 2d square lattice with obstacles.

Complex system.

Simple model of anomalous transport.

H. A. Lorentz, Proc. Amst. Acad. 7 438 (1905).

E. G. D. Cohen, L. Bunimovich, J. P. Boon, X. P. Kong, P. M. Binder, H-F. Meng.
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Introduction
The Ehrenfest’s wind-tree model (1911)

dfi

dt
= k(fi+1 + fi−1 − 2fi ), i = 0, . . . 3

f0(0) = 1, f1(0) = f2(0) = f3(0) = 0,
∑
i

fi = 1,

f0 =
1

4

[
1 + e(−2kt)

]2
, f1 = f3 =

1

4

[
1 + e(−2kt)

] [
1− e(−2kt)

]
,

f2 =
1

4

[
1− e(−2kt)

]2
.
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P. Ehenfest, T. Ehrenfest, Begriffliche Grundlagen der Statistische Auffassung in der Mechanik, Encyklopädie der Mathematische Wissenschaften vol. 4 pt

32 (Leipzig: Teubner), 1911. Engl. Trans. M. J. Moravcsik, The Conceptual Foundations of the Statistical Approach in Mechanics, Ithaca, Cornell

University Press, 1959. R. Rechtman, A. Salcido, A. Calles, EPL 12 27 (1991).
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Introduction

flipping mirror landscape

right mirror left mirror
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flipping rotor landscape

right rotor left rotor
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Introduction

A walker moves on a 2D square lattice, the landscape, in discrete time steps to a nearest neighbor site
according to the landscape. In so doing, he alters the landscape locally. At time t the walker is at (x, y) with
one of four velocities v0 = (1, 0), v1 = (0, 1), v2 = (−1, 0), or v3 = (0,−1). The state of the landscape,
m(x, y), is either 1 or -1 and after the walker passes, m changes sign. The landscape is made of flipping rotors
or flipping mirrors. In the first case, the particle turns right or left according to m(x, y), and in the second one,
the particle is reflected by a “mirror” with an inclination of 45◦ or 135◦.

v0

v1

v2

v3

flipping mirror landscape

m(x, y) =

{
1 walker reflects from a mirror at 45◦

−1 walker reflects from a mirror at 135◦

flipping rotor landscape

m(x, y) =

{
1 walker rotates 90◦ to the right

−1 walker rotates 90◦ to the left
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Introduction

flipping mirror landscape

v ′x = mvy

v ′y = +mvx

m′ = −m

x′ = x + v ′x

y ′ = y + v ′y

flipping rotor landscape

v ′x = mvy

v ′y = −mvx

m′ = −m

x′ = x + v ′x

y ′ = y + v ′y

The primed (unprimed) quantities refer to t + 1 (t).
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Introduction

At t = 0, m(x, y) = 1 ∀ x, y and the walker is in the center of the lattice with v = v1.

flipping mirror landscape

0
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flipping rotor landscape
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The walker moves alternatively one step vertically, one

horizontally.

The walker has moved during 9,000 time steps. The

colors show the number of times each site has been

visited.

Raúl Rechtman (IER-UNAM) Deterministic walks 10 / 53



Contents

1 Introduction

2 A walker on an initially ordered flipping rotor landscape

3 A walker on a partially ordered flipping rotor landscape

4 Two walkers on an initially ordered flipping rotor landscape

5 A walker on an initially disordered flipping rotor landscape

6 Concluding remarks
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape
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Initially ordered flipping rotor landscape

At t = 0, m(x, y) = 1 ∀(x, y) and the walker is in the center of the lattice with v = v1.
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t = 11000
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v ′x = mvy

v ′y = −mvx

m′ = −m

x′ = x + v ′x

y ′ = y + v ′y

v′ = vk−m

m′ = −m

r′ = r + v′

After almost 10,000 time steps, T0, the walker begins to move periodically. Every 100 or so time steps, T1, it

moves 2 sites horizontally and 2 vertically.
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Initially ordered flipping rotor landscape

T0 = 9, 977. For t > T0 the particle moves periodically with period T1 = 104.
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Initially ordered flipping rotor landscape

For t > T0, the walker moves periodically with period T1 = 104 and x and y diminish by 2 with a speed

u = 2
√

2/104.

15

30

45

60

T0 T0 + T1 T0 + 2T1 T0 + 3T1

t

x
y

The two straight lines have slope −2/104.
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Initially ordered flipping rotor landscape

t = T0 t = T0 + T1
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At t = T0 the walker is at the site marked by the red circle (left Fig.) with v = v2. At t = T0 + T1 the walker

is at the site marked by the red circle (right Fig.) with v = v2. The walker moved two sites to the left and two

down. In doing so the walker prepared the landscape in such a way that its motion becomes periodic. The state

of the rotors of the two Figs. are the same, except on the top row and the right column, but these sites are not

visited by the particle as shown in the next Fig.
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Initially ordered flipping rotor landscape
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Trajectory of the walker between t = T0 and t = T1 to be compared with the previous Figs. At t = T0 the

walker is in (25, 50), the upper right red circle, and at t = T0 + T1, the walker is in (23, 48), the lower left

circle.
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Initially ordered flipping rotor landscape with periodic boundary conditions

0

200

0 200

After T0 time steps the walker

moves periodically along a

diagonal,reaches a border, enters

on the opposite one. It eventually

goes back to the central part of

the lattice and after some time it

again moves periodically. This

goes on and on. The total time

is T = 80, 000.

This behavior suggests that the

walker will move periodically if

there is a sufficiently large region

with ordered rotors.
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Partially ordered flipping rotor landscape

At t = 0, m(x, y) = 1 (right rotor), with 0 ≤ x < 80, 0 ≤ y < 80. Inside the small box,
20 ≤ x < 60, 20 ≤ y < 60, m(x, y) = −1 (left rotor) with probability q. The landscape is initially disordered
inside the small box and ordered outside of it.
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Partially ordered flipping rotor landscape

q = 0.5 q = 0.8
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Raúl Rechtman (IER-UNAM) Deterministic walks 21 / 53



Partially ordered flipping rotor landscape

q = 0.99 q = 1.0
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As

long as the walker finds an ordered landscape he will move periodically with period T1.
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Partially ordered flipping rotor landscape

p = q = 0.5
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The escape time tesc is the time when x or y cross one of the red lines.
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Partially ordered flipping rotor landscape

Distribution of escape times, φ for diffferent values of p. For every value of q, φ is the result of 10,000
simulations.

q = 0.01 q = 0.20

0
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0 10000 20000 30000 40000

φ

tesc

φ

M(tesc ) = 6, 954, D(tesc ) = 3, 922 M(tesc ) = 7, 200, D(tesc ) = 3, 876

M is the median and D the average absolute deviation.
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Partially ordered flipping rotor landscape

Distribution of escape times, φ for diffferent values of p. For every value of p, φ is the result of 10,000
simulations.
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M(tesc ) = 7, 584, D(tesc ) = 4, 080 M(tesc ) = 8, 874, D(tesc ) = 4, 088
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Two walkers on an initially ordered flipping rotor landscape

Antonio Prohias, Spy vs Spy, Mad magazine, January 1960 to March 1987.
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Two walkers on an initially ordered flipping rotor landscape

Walker Red is chased by walker Blue. Initially they are a distance d apart, both with the same velocity, v0. The
initial positions of the walkers are marked by the filled circles.

d = 1 d = 2
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Blue follows Red in square At t = 8 Blue catches Red
spirals in the red circle
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Two walkers on an initially ordered flipping rotor landscape

d = 3 d = 4
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Blue never catches Red Blue forgets about Red
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Two walkers on an initially ordered flipping rotor landscape

d = 5 d = 6
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Blue never catches Red At t = 84 Blue catches Red
in the black circle

If Blue is after Red, his best strategy is to be two sites away, the next best one is to be 6 sites away.

For d odd Blue “never” catches Red. The patterns have some symmetry.
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Iinitially disordered flipping mirror landscape

Initially m(r) = 1 (right mirror) with probability p and m(r) = −1 (left mirror) with probability q = 1− p, with
0 ≤ x < L, and 0 ≤ y < L.

p = 0.9, T = 334 p = 0.8, T = 659
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At t = 0, x = y = 40, v = v
0
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Iinitially disordered flipping rotor landscape

A landscape of side L. Initially m(r) = 1 (right rotor) with probability p and m(r) = −1 (left rotor) with
probability 0 ≤ x < L, and 0 ≤ y < L, with r = (x, y), x, y ∈ N,

p = 0.9, T = 7, 675 p = 0.8, T = 7, 174
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Initially disordered landscape

〈
(r − r0)2

〉
p

= 2dDtα, d = 2 (1)〈
(r − r0)2

〉
p

=
〈

(r − r0)2
〉

1−p

flipping mirror landscape flipping rotor landscape
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r
0
)2
〉
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p = 0.05
p = 0.10
p = 0.30
p = 0.40
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1e+06

1000 10000 100000

〈 (r
−

r
0
)2
〉

t

p = 0.01
p = 0.06
p = 0.10
p = 0.20
p = 0.40

〈 · 〉p is the average over N samples of initial landscapes with a fraction p of right mirrors. N = 100, 000,

T = 100, 000, and L suficiently large. Two exceptions: in the flipping mirror landscape, for p = 0.05 and

p = 0.10, N = 1, 000. The fit of Eq. (1) to the data is for 10, 000 ≤ t ≤ 100, 000.
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Initially disordered landscape

For comparison we also consider a random walker that at every site turns right with probability p and left with

probability q. 〈
(r − r0)2

〉
p

= 2dDtα, d = 2
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D

p

flipping rotor
flipping mirror
random walk
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1

1.1

0 0.1 0.2 0.3 0.4 0.5

α

p

flipping rotor
flipping mirror
random walk

D and α are taken from the best fits for t > 10, 000.

Note logarithmic vertical scale for D.

Subdiffusion (α < 1) on the flipping rotor landscape for 0 < p <. 0.3 and 0.7 . p < 1.0.

Superdiffusion (α > 1) on the flipping mirror landscape for 0 < p . 0.15 and 0.85 . p < 1.

The error of the fits is smaller than the size of the points of the graphs
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Initially disordered landscape

w(t) =
t∑

s=0

m(x(s), y(s)) = nl (t)− nr (t)

〈w(t)〉p = Btβ (2)

〈w(t)〉p = −〈w(t)〉1−p

nl (t) (nr (t)) are the number of left (right) turns of the walker after t time steps.

flipping mirror landscape flipping rotor landscape
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Initially disordered landscape

〈w(t)〉p = Btβ

〈w(t)〉p = −〈w(t)〉1−p
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For random walks B = (1− 2p)/4, shown in black in the Fig. on the left, and β = 1, Fig. on the right.

B → 0 as p → 1/2 due to the symmetry of 〈w〉. T = 100, 000, N = 100, 000, and L sufficiently large. The fit

of Eq. (2) to the data is for 0 ≤ t ≤ 100, 000.
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Initially disordered landscape

At time t, a walker has visited Ns sites.

〈Ns (t)〉p = Ctγ (3)

〈Ns (t)〉p = 〈Ns (t)〉1−p
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T = 100, 000, N = 100, 000, and L sufficiently large. The fit of Eq. (4) to the data is for

10, 000 ≤ t ≤ 100, 000.
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Initially disordered landscape

The one dimensional kurtosis Kx is defined by

Kx =

〈
(x − x0)4

〉
− 3
〈

(x − x0)2
〉

〈(x − x0)2〉2

flipping mirror landscape flipping rotor landscape
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T = 100, 000, N = 100, 000, and L sufficiently large. The fit of Eq. (4) to the data is for

10, 000 ≤ t ≤ 100, 000.
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Initially disordered landscape

φ(x, y , t)∆x∆y is the probability of finding a walker at (X ,Y ) with x < X < x + ∆x and y < Y < y + ∆y
at time t.

flipping mirror landscape flipping rotor landscape

x
y

φ

x
y

φ

random walk

x
y

φ

p = 0.20, T = 10, 000, N = 20, 000 and L suficiently large.
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Initially disordered flipping rotor landscape

φ = φ(x, L/2,T )

p = 0.01 p = 0.02
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T = 200, 000, N = 100, 000, L = 3, 000, and ∆x = 9. Normal distribution φ(x) = 1
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exp
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Initially disordered landscape

From the previous results, 〈Kx〉 is the average of Kx after a transient that is taken as one half the final time.

flipping rotor landscape
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p

T = 100, 000, N = 100, 000, and L sufficiently large.
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Initially disordered landscape

The “observed probability” pobs is the average fraction of right obstacles the wallkers encounter.

flipping mirror landscape flipping rotor landscape
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Initially disordered landscape

The “observed probability” pobs is the average fraction of right obstacles the wallkers encounter.

flipping mirror landscape flipping rotor landscape

pobs (t = 0) pobs (t = 105) pobs (t = 0) pobs (t = 105)

0.30 0.458106 0.01 0.474162

0.40 0.481395 0.10 0.468232

0.20 0.464660

0.30 0.471276

0.40 0.484226

Raúl Rechtman (IER-UNAM) Deterministic walks 44 / 53



Initially disordered landscape

flipping mirror landscape
p = 0.06 p = 0.07
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1e+07
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100 1000 10000 100000

〈 (r
−

r
0
)2
〉

t

p t0 D α t1 D α

0.06 10,000 0.193 1.784 10,000 97.669 1.042

0.07 1,000 0.273 1.702 10,000 49.559 1.06

Two scalings, one for t < t0, the other one for t1 < t. T = 10, 000, N = 1, 000. For p = 0.06, L = 40, 000

and for p = 0.07, L = 35, 000.
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Initially disordered landscape

flipping rotor landscape
p = 0.03 p = 0.07
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t

p t0 D α t1 D α

0.03 3,000 0.102 0.838 10,000 0.311 0.714

0.05 3,000 0.159 0.812 10,000 0.311 0.741

Two scalings, one for t < t0, the other one for t1 < t. T = 10, 000, N = 100, 000, and L = 5, 000.
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Concluding remarks

A simple example of a complex system.

A walk on an initial ordered rotor landscape.

A walk on a partially ordered rotor landscape.

Two walkers on an initially ordered landscape.

A model for anomalous transport〈
(r − r0)2

〉
= 2dDtα

Crowded biological media.

Polymeric networks.

Porous materials.

Cytoskeletal fibers and molecular motors.
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