I. Antoniadis

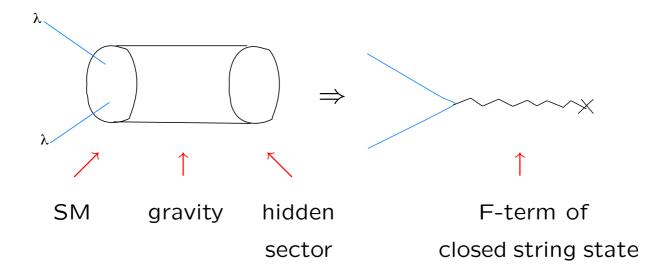
Gaugino masses

from

string loops

problem:

 $m_{1/2} = 0$ to lowest order


⇒ generated by string loop corrections

Framework: type I string theory

• effective field theory: may be still tree-level

closed string gravity exchange ⇒

SUGRA tree-level

Gaugino masses: protected by R-symmetry

but broken in 4d SUGRA by the gravitino mass

Two possible ways for generating $m_{1/2}$:

(1) via gravity (brane susy) \Rightarrow

generate $m_{1/2}$ from $m_{3/2}$

one gravitational loop: 1 handle + 1 boundary

$$\Rightarrow m_{1/2} \sim g_s^2 \frac{m_{3/2}^3}{M_s^2}$$
 I.A.-Taylor '04

(2) keep gravity subdominant \Rightarrow generate $m_{1/2}$ from brane α' -corrections

two gauge loops: 3 boundaries

$$\Rightarrow m_{1/2} \sim g_s^2 \frac{m_0^4}{M_s^3}$$
 I.A.-Narain-Taylor '05

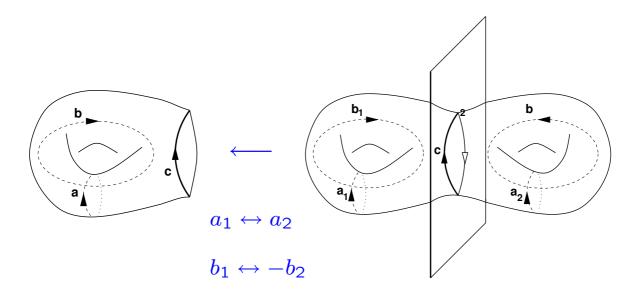
gauginos: open strings

 \Rightarrow at least one boundary (brane) $h \ge 1$

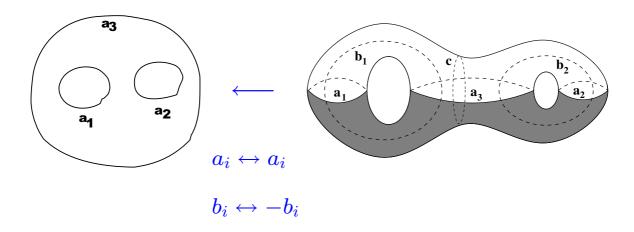
N=2 superconformal charge:

3/2 units for each (chiral) gaugino

 ± 1 unit for each 2d supercurrent insertion T_F


 \Rightarrow at least 3 T_F insertions

lowest order (effective genus): g + h/2 = 3/2


independently of the source of SUSY breaking!

Oriented case

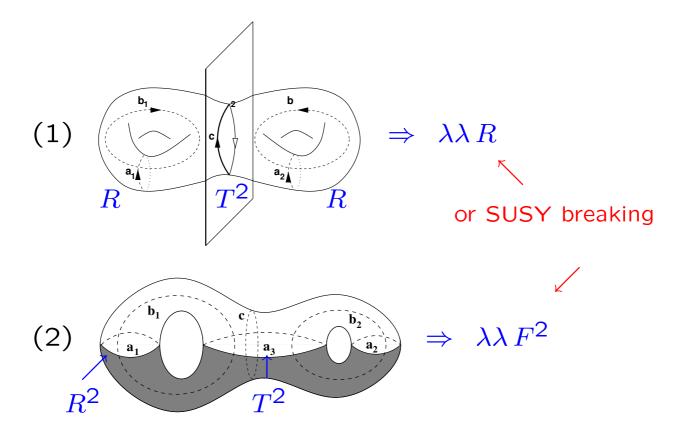
(1) g = 1 h = 1 from mirror involution of g = 2

(1) g = 0 h = 3 from mirror involution of g = 2

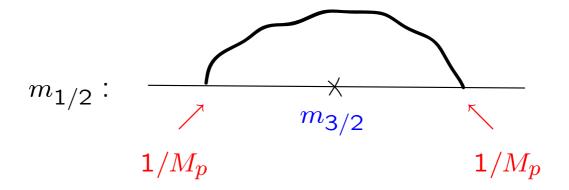
Topological partition function F_g genus g computes N=2 SUSY F-terms AGNT, BCOV '93

$$F_g \int d^4 \theta \ W_{N=2}^{2g} \quad \to \quad F_g R^2 T^{2g-2}$$

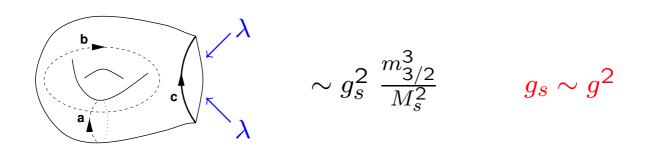
 F_g : moduli dependent function


Weyl superfield: $W_{N=2} = T + \theta^2 R + \cdots$

T: graviphoton field strength


R: Riemann tensor

$$F_2 \int d^4 \theta \ W_{N=2}^4 \longrightarrow F_2 R^2 T^2$$


- graviphoton vertex $T = (gaugino)^2$
- graviton vertex = $(gauge field)^2$

SUSY breaking: $R \to \langle \text{gravity auxiliary field} \rangle$ $F \to \langle \mathsf{D} \rangle$

$$\sim \, \frac{m_{3/2}}{M_p^2} \times \left\{ \begin{array}{cc} \Lambda_{\rm UV}^2 & {\rm if~quadr.~divergent} \\ \\ m_{3/2}^2 & {\rm if~convergent} \end{array} \right.$$

but it vanishes for orbifolds

I.A.-Taylor '04

- anomaly mediation:

$$m_{1/2} \sim g^2 m_{3/2}$$
 $g^2 \sim g_s$

- ullet power of g_s does not match one loop correction always vanishes by N=2 superconformal charge
- ullet two loops behave $\sim m_{3/2}^3$
- hierarchy between gaugino and scalar masses however numerics not very good unless every loop factor $\sim~10^{-2}\,$

Sherk-Schwarz along an interval ⊥ branes

$$\Rightarrow m_{3/2} \sim 1/R$$

gravity strength
$$\Rightarrow R^{-1}=rac{2}{lpha_G^2}rac{M_s^3}{M_p^2}\sim 10^{13}$$
 GeV for $M_s\sim M_{
m GUT}\sim 10^{16}$ GeV

$$\bullet$$
 $m_{1/2}\sim g_s^2 rac{m_{3/2}^3}{M_s^2}\sim$ 1 TeV
$${
m if\ every\ loop-factor}\sim 10^{-2}$$

•
$$m_0 \gtrsim g_s \frac{m_{3/2}^2}{M_s} \sim 10^8 \text{ GeV}$$

scalar masses induced at one loop

⇒ split supersymmetry framework

heavy scalars, light fermions

Arkani Hamed-Dimopoulos, Giudice-Romanino '04

Break SUGRA keeping R-symmetry

I.A.-Dimopoulos '04

SS breaking on $S^1/\mathbb{Z}_2 \perp \text{brane} \Rightarrow 3/2\text{-KK}$ states

- ullet generic shift $Q\Rightarrow$ Majorana masses, R $Q/R < E < 1/R \Rightarrow$ 4d SUGRA $E>>1/R\Rightarrow$ 5d SUGRA
- $Q=1/2 \Rightarrow$ pairing $|n+Q\rangle_L$ with $|n+1-Q\rangle_R$ \Rightarrow Dirac masses, unbroken R-symmetry no intermediate regime \Rightarrow no 4d SUGRA description

SUSY breaking by internal magnetic fields or equivalently branes at angles

Effective QFT description: D-breaking

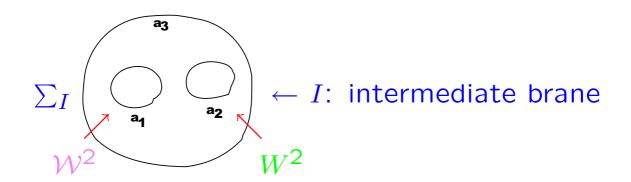
magnetic field
$$H \sim \langle \mathsf{D} \rangle$$
-term of $U(1)$

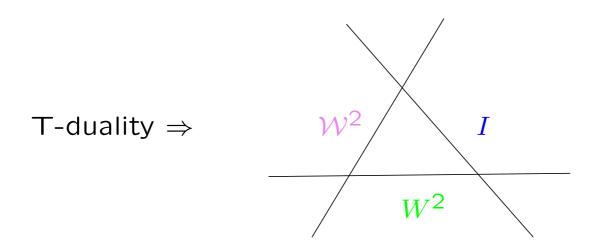
$$\langle \mathsf{D} \rangle \sim m_0^2$$

U(N) brane stack

R-symmetry broken by string corrections

⇒ higher-dim effective operators:


I.A.-Narain-Taylor '05


$$F_{(0,3)}\int d^2\theta \mathcal{W}^2 \mathrm{Tr} W^2 \qquad \langle \mathcal{W} \rangle = \theta \langle \mathsf{D} \rangle$$

$$F_{(0,3)}\int d^2\theta \mathcal{W}^2 \mathrm{Tr} W^2 \qquad \qquad \langle \mathcal{W} \rangle = \theta \langle \mathsf{D} \rangle$$

$$\Rightarrow \ m_{1/2} \sim \epsilon^2 \frac{m_0^4}{M_s^3} \qquad \qquad \epsilon^2 \text{: 2-loop factor}$$

$$\sim$$
 TeV for $m_0 \sim 10^{13}-10^{14}$ GeV

World-sheet with 3 boundaries (2 loops)

 \neq 0 : *I*-brane away from the intersection of the other two

• as gauge mediation with string scale gaugino masses

• Higgsino mass

$$\int d^2\theta \mathcal{W}^2 \bar{D}^2 \bar{H}_1 \bar{H}_2 \Rightarrow \mu \sim \epsilon \frac{m_0^4}{M_s^3} \lesssim m_{1/2}$$

$$\psi_1 \psi_2$$

• Simple toroidal models

gauge multiplets:
$$N = 4$$
 (or $N = 2$) SUSY

⇒ Dirac gaugino masses without R

$$\int d^2\theta \mathcal{W} \mathrm{Tr} W A \ \Rightarrow \ m_D \sim \epsilon \frac{m_0^2}{M_s} \qquad \text{1-loop factor}$$

N=2 vector =N=1 vector W+ chiral A they can still be consistent with unification in inermediate energy scales $\sim 10^7-10^{13}$ GeV

I.A.-Benakli-Delgado-Quirós-Tuckmantel '05