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What is NLO parton shower?

A litle bit of warm-up: What is the LO parton shower?
I The LO parton shower MC is built using LO class evolution kernels

and/or LO PDFs for each incomming/ougoing shower/ladder.
I LO PS MC implements LO DGLAP evolution of the total cross

section and of semi-inclusive distributions (structure functions).
I If hard process is corrected to the NLO level (N+LO), the all

collinear/soft singularities of the LO PS MC are subtracted from
the hard proces ME in the exclusive form.

I In N+LO schemes certain partons originally generated by the LO
PS MC get promoted to the hard process, where their distributions
get corrected to NLO level.
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What is NLO parton shower?

Now everything one order higher:
I The NLO parton shower MC is built using NLO class evolution

kernels and/or NLO PDFs for each shower/ladder.
I NLO PS MC implements NLO DGLAP evolution of the total cross

section and of semi-inclusive distributions (structure functions).
I If hard process is corrected to the N2LO level (N+NLO),

collinear/soft singularities of the NLO PS MC are subtracted from
the hard proces ME in the exclusive form.

I In N+NLO scheme certain partons originally generated by the
NLO PS MC get incorporated into the hard process, where their
distributions get corrected to N2LO level.
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Problems and solutions

I NLO kernels have to be recalculated in the exclusive form.
I We have recalculatet all NLO kernels using

Curci-Furmanski-Petronzio (CFP) scheme – explicit diagramatic
calculation in axial gauge (also Ellis+Voghesang, Kunst+Heinrich).

I Technical improvements were proposed (Skrzypek+Gituliar)
I LO parton shower may miss some phase space regions which are

present in NLO kernels/evolution, like q → qG∗, G∗ → GG spliting
I One could add G∗ → GG after LO PS generation is finished,
I Luckily, some modern LO PS MCs already populated this ph.sp.

I Introducing complete NLO real and virtual corrections into PS MC
in the exclusive form, in accordance with the collinear factorization
theorems (CFP), a formidable problem, theoreticaly and practicaly.

I Theoretical framework CFP-compatible formulated and tested,
I 3 methods of practical implementation of NLO corrections in the PS

MC formulated and tested. One of them quite promissing.
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Remarks on NLO kernel re-calculation

I Why CFP? Because there is nothing else in the literature.
I All inclusive MS kernels were reproduced, but we have

listed/exploited all exclusive 2-real and 1real+1virtual distributions,
before the phase space integration.

I CFP was modified in order to eliminate spurious 1/ε3 poles
obscuring relation to MC at d = 4 dimensions. The so-called NPV
prescription by Skrzypek and Gituliar, pulished recently.

I For subsets of diagrams in 2-real parton contributions, soft gluon
limit was analyzed carefully. Expected gauge cancellations found.

I In CFP NLO kernel is extracted as coefficient of 1/ε. An
alternative method of taking derivative ∂/∂(ln µ2) was tested.

I MS scheme produces technical artefact ∼ ε/ε2, which are source
of the problems in the MC implementation of NLO corrections.
These terms were clasified and their role was analyzed.
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Theoretical framewework of PS MC: Collinear Factorization

I What is collinear factorization?

Fbare(qh/µ, ε) =
σBare

σBorn
=

∏
Ladders

C(∞)
(
α,

qh

µ

)
⊗ Γ

(∞)
ladder (α, ε)

⊗ in lightcone x and parton type, Γ inclusive, C can be kept
unintegrated/exclusive.

Case LO : F (1)
bare(qh/µ, ε) = [1+ C[1](α, qh/µ)]⊗ [1+ Γ[1](α, ε)]

I Physical distributions: Γ → PDF. LO example:

FPhys. = [1+C[1](α, qh/µ)]⊗PDF(µ), C[1](qh/µ) ≡ F [1]
bare(qh/µ, ε)−Γ[1](ε)

FPhys. factor. scheme independent; both C and PDFs are dependent:

Γ[1](ε) → Γ[1] + ∆Γ[1], C[1] → C[1] −∆Γ[1], ∆C[1] = −∆Γ[1].

I Evolution of F and/or PDFs and evolution kernels:
∂

∂ ln µ2 F (µ) = P⊗F (µ), P = αP [0]+α2P [1]+... = Res1Γ(ε) =
∂ ln⊗C(q/µ)
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Collinear Factorization – Fixed order calculations

I Fixed order calculation (like MCFM):

F (qh) = [1+ C[1]]J ⊗ PDF(µ), C[1] ≡ [F [1]
bare(qh/µ, ε)− Γ[1](ε)]qh=µ

[...]J means experimental acceptance J(x , y) kept in integrand.
I Typical example: ISR gluonstrahlung part of DIS, def. y = q/qh ∈ (1, 0):

C[1](z, y) = δz=1δy=0(1+∆SV )+
CF α

π

(1
y

)
+

( P̄(z)

1− z

)
+

+β(z, y)+δy=0Σ(z)

β(z, y) = |MEexact |2 −
CF α

π

1
y

P̄(z)

1− z
, Σ(z) =

CF α

π

( P̄(z)

1− z
(1− z)2

z

)
+

where P̄(z) = (1− z)Pqq(z) = (1 + z2)/2.
I Soft-collinear counterterm technique (eg. Catani-Seymour) often used to

facilitate computing codes (MCFM):

C[1] = [F [1]
bare−CSC ]d=4+[CSC−Γ[1]]d 6=4, CSC(z, y) =

CF α

π

1
y1−2ε

( P̄(z)

1− z

)
+
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LO and N+LO parton shower MC

I Pure LO parton shower MC, again ep with single ISR ladder:

F (qh) = Gq0→qh ⊗ PDFµ=q0'1GeV

Gq0→qh = expy−ordering

( Z 1

0
dy

“ 1
y

”
+

Z 2π

0
dφ

Z 1

0
dz

CF α

π
(P [0](z))+

)
where y = q/qh and (1/y)+ regulated using y > ∆ = q0/qh.

I N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

F (qh) = [1+ C̃[1]]⊗Gq0→qh ⊗ PDFµ=q0'1GeV

where in C[1] → C̃[1] LO MC part is subracted, to omit 2-counting:
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where y = q/qh and (1/y)+ regulated using y > ∆ = q0/qh.

I The above is forward evol. Backward evolution PS MC starts from qh:
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−1
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I Pure LO parton shower MC, again ep with single ISR ladder:
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( Z 1

0
dy

“ 1
y

”
+

Z 2π

0
dφ

Z 1

0
dz

CF α

π
(P [0](z))+

)
where y = q/qh and (1/y)+ regulated using y > ∆ = q0/qh.

I N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

F (qh) = [1+ C̃[1]]⊗Gq0→qh ⊗ PDFµ=q0'1GeV

where in C[1] → C̃[1] LO MC part is subracted, to omit 2-counting:

C̃[1] = δz=1δy=0(1 + ∆SV ) + β(z, y) + δy=0Σ(z)

but the peculiar Σ(z), artefact of MS, due to ε/ε terms remains!
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KRLnlo variant of N+LO parton shower MC
A simpler alternative to POWHEG or MC@NLO

I Backward evolution version with NLO corrected hard process

F (qh) = [1+ C̃[1]]⊗ PDFMS
µ=qh

⊗ (Gq0→qh)
−1

C̃[1] = δz=1δy=0(1 + ∆SV ) + β(z, y) + δy=0Σ(z)

I is reorganized as follows:

F (qh) = [1+ C̄[1]]⊗ PDFMC
µ=qh

⊗ (Gq0→qh)
−1,

C̄[1](y , z) = δz=1δy=0(1 + ∆SV ) + β(z, y),

I where PDFMS is translated to MC factorization scheme outside PS MC:

PDFMC(µ) ≡ (1− Σ)⊗MCMS(µ)

I In reality Σ is matrix in fravour space and mixes q ↔ G ↔ q̄.
Its element are fixed from inspecting at least two processes.

I It was tested for DY process, see later on...
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NLO Fixed order variant of KRLnlo

I On may notice that collecting all step, we have

C̄[1] = F [1]
bare(ε)|qh=µ − CMC

SC (ε) = (1 + ∆SV )1+ β(z, y).

CMC
SC (y , z, ε) = δy=0Γ

[1](z, ε) + δy=0Σ(z) +
CF α

π

(1
y

)
+

( P̄(z)

1− z

)
+
,

I where CMC
SC (ε) is the 1-st order part of the evolution operator of the LO

PS MC in d = 4 + 2ε:

Gd=4+2ε
q0→qh

= 1+ G[1](ε) + ..., CMC
SC (ε) = G[1](ε) !!!

I CMC
SC may be also employed/tested as a soft-collinear counterterm in the

NLO fixed order calculation (MCFM-style), with PDFs in the MC scheme:

F (qh) =
[
1+ C̄[1] +

CF α

π

(1
y

)
+

( P̄(z)

1− z

)
+

]
J
⊗ PDFMC|µ=qh ,

I It was tested in the modified version of MCFM for DY process.
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NLO ladder in N+NLO parton shower MC
I Use collinear factoriz. of Curci-Furmanski-Petronzio (CFP) as a basis.

The 2-nd order version reads:

F (2)
bare(qh, ε) = C(2)(qh/µ)⊗

∏
Ladders

Γ
(2)
L (ε), C(2) = F (2)

bare ⊗
∏

L

(Γ
(2)
L )−1

and exploit the experience gained in the previous N+LO case.
I Fixed order N2LO with collinear MS PDFs (one ladder) is now:

F (2)
phys.(qh) = C(2)|qh=µ ⊗ PDFMS(µ)

I Generalizing N+LO case, we define/use MC distribution truncated to
2-nd order G(2)

MC as a soft-collinear counreterm:

F (2)(qh) = {F (2)
bare ⊗ (G(2)

MC)−1}d=4 ⊗ {G(2)
MC(ε)⊗ (Γ(2)(ε))−1} ⊗ PDFMS(µ)

I The key point is to construct the NLO evolution operator GMC such that
I G(∞)

MC,D=4 represents NLO parton shower MC (single ladder) and
I G(2)

MC,d=4+2ε encalsulates ALL of collinear and soft singularies in the
CFP construction of the NLO MS evolution kernel P(2)(z).
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NLO ladder in N+NLO parton shower MC

I Explicit example of NLO evolution operator GMC in d = 4,
again for the gluonstrahlung branch (extension to d = 4 + 2ε is trivial).

dG(2)
MC,d=4 = 1+ dy1dz1 g[1]

MC(y1, z1)
`
1 + V [1](z1)

´
+ dy1dz1dy2dz2θy2>y1

ˆ
g[1]

MC(y1, z1)g
[1]
MC(y2, z2) + β[1](y2/y1, z2/z1)

˜¯
g[1]

MC(y , z) =
CF α

π

“ 1
y

”
+

“ P̄(z)

1− z

”
+
,

where LO component g[1]
MC is already known from N+LO exercise.

I NLO corrections V [1](z) and β[1](y , z) from
comparing/matching/analyzing G(2)

MC,d 6=4 and elements of CFP scheme.

I The above matching procedure is formulated, but still getting
consolidated.

I Basic elements of CFP, see next slide...
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dG(2)
MC,d=4 = 1+ dy1dz1 g[1]

MC(y1, z1)
`
1 + V [1](z1)

´
+ dy1dz1dy2dz2θy2>y1

ˆ
g[1]

MC(y1, z1)g
[1]
MC(y2, z2) + β[1](y2/y1, z2/z1)

˜¯
g[1]

MC(y , z) =
CF α

π

“ 1
y

”
+

“ P̄(z)

1− z

”
+
,

where LO component g[1]
MC is already known from N+LO exercise.

I NLO corrections V [1](z) and β[1](y , z) from
comparing/matching/analyzing G(2)

MC,d 6=4 and elements of CFP scheme.

I The above matching procedure is formulated, but still getting
consolidated.

I Basic elements of CFP, see next slide...
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Elements of the CFP (EGMPR) scheme

I CFP actorization formula for sigle ladder with two-particle-irredudible (2PI)
kernels K0 in the axial gauge:

F = C0 ·
1

1− K0
= C0 ·

X
n=0

K n
0 .

I It is reorganized using projection operator P = Pspin Pkin PP,
with kinematic Pkin, Pspin spin parts and PP extracting pole part ∼ 1/εk .

F = C
„

α,
Q2

µ2

«
⊗Γ

„
α,

1
ε

«
= C0 ·

1
1− [(1−P)K0]

⊗ 1

1−
n
PK0 · 1

1−[(1−P)K0]

o
⊗

.

I Second order truncation exploiting 2-nd order K (2)
0 = K [1]

0 + K [2]
0 :

Γ(2) = 1+PK (2)
0 +P(K [1]

0 · (1−P)K [1]
0 ) + (PK (1)

0 )⊗ (PK (1)
0 )

I An example of the diagramatic content of K (2)
0 = K [1]

0 + K [2]
0 for gluonstrahlung is

shown on the next slide...
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Contributions to example 2PI ∼ C2
F kernel K0(q → q):

K0 = K [1]
0 + K [2]

0 ,

K [1]
0 =

,
K [2]

0 = + +

ZF = 1 + Z [1]
F + Z [2]

F , Z [1]
F =

,
Z [2]

F = +
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Determining NLO corrections V [1](z) and β[1](y , z) for the MC ladder

I As a calibration exercise we apply CFP machinery of extracting Γ(ε) and
NLO kernel, to MC distributions in d = 4 + 2ε for V [1] = 0 and β[1] = 0

I Surprisingly (?) a non-zero NLO corrections to kernel is found:

∆P(z) = −
“ CF α

π

”2
∆CFP(z)

∆CFP(z) =

Z 1

0
dz1dz2 (P(z1))+ ln(z2)P(z2)δ(z − z1z2)

=
1 + z2

2(1− z)
ln z

»
ln

1− z
z1/2

+
3
4

–
+

1
8

ln z [(1 + z) ln z − 2(1− z)],

which (up to normalization) is the ∆(z) function in CFP paper, eq. (6.44), responsible for
violation of the Gribov rule relating NLO kernels of the intitial and final state ladders.

I Its origin is traced back to kinematics: for instance in DY, 1st real
emission (going backwards toward hadron beam), changes assignment
µ2 = ŝ = q2

h into µ2 = ŝ/z. This induces ∼ ∆CFP(z) to NLO kernel.
I In the standard CFP kernel calculation. this contribution is cancelled in

the end by another similar term, but in the MC it may be kept or not in
V [1], depending how NLO PDFs are defined and used.
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Determining NLO 2-real corrections β[1](y , z) for the MC ladder

I Within the same gluonstrahlung example,
determination of β[1](y,z) is rather simple:

β[1](y2/y1, z2/z1) = |ME2r|2 − g[1]
MC(y2, z2)g

[1]
MC(y1, z1).

I The same RHS diagramatically:

+ −

I NB. The internal subtraction of the (LOMC)2 contribution is necessary
only for a small subset of NLO diagrams.
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Determining NLO corrections V [1](z) for the MC ladder

I 1real + 1virtual contribution to V [1](z) comes from diagrams:

Z [1]
F =

,
K [2]

0,1r1v = +

all the time ∼ C2
F glunstrahlung example...

I Determination of V [1](z) is not easy – it involves several issues:
I Extracting Γ(ε) from 1r1v part of MC in d = 4 + 2ε requires

(i) either extension of CFP subtraction recipe or
(ii) adjusting IR cut-off (1− z) < δ in such that some terms disappear.

I CFP subtraction have to be done separately for the virtual Sudakov formfactor.
I In principle V [1] could also depend on y variable.

This dependence in fact materializes from the UV subtraction.
However, such terms contribute only pure 1/ε2 to Γ (pure (LOMC)2 in finite part)
and have to be removed, to avoid double counting with the exponetiated LO MC.

I The presence/absence of ∼ ∆CFP has to be decided.

I Finally we find: P̄(z) ≡ (1 + z2)/2

V [1](z) = −1
2

P̄(z)

1− z
ln(z) ln(1− z) +

1
2

P̄(z)

1− z
Li2(1− z) +

z
8

.

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29



Determining NLO corrections V [1](z) for the MC ladder

I 1real + 1virtual contribution to V [1](z) comes from diagrams:

Z [1]
F =

,
K [2]

0,1r1v = +

all the time ∼ C2
F glunstrahlung example...

I Determination of V [1](z) is not easy – it involves several issues:
I Extracting Γ(ε) from 1r1v part of MC in d = 4 + 2ε requires

(i) either extension of CFP subtraction recipe or
(ii) adjusting IR cut-off (1− z) < δ in such that some terms disappear.

I CFP subtraction have to be done separately for the virtual Sudakov formfactor.
I In principle V [1] could also depend on y variable.

This dependence in fact materializes from the UV subtraction.
However, such terms contribute only pure 1/ε2 to Γ (pure (LOMC)2 in finite part)
and have to be removed, to avoid double counting with the exponetiated LO MC.

I The presence/absence of ∼ ∆CFP has to be decided.

I Finally we find: P̄(z) ≡ (1 + z2)/2

V [1](z) = −1
2

P̄(z)

1− z
ln(z) ln(1− z) +

1
2

P̄(z)

1− z
Li2(1− z) +

z
8

.

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29



Determining NLO corrections V [1](z) for the MC ladder

I 1real + 1virtual contribution to V [1](z) comes from diagrams:

Z [1]
F =

,
K [2]

0,1r1v = +

all the time ∼ C2
F glunstrahlung example...

I Determination of V [1](z) is not easy – it involves several issues:
I Extracting Γ(ε) from 1r1v part of MC in d = 4 + 2ε requires

(i) either extension of CFP subtraction recipe or
(ii) adjusting IR cut-off (1− z) < δ in such that some terms disappear.

I CFP subtraction have to be done separately for the virtual Sudakov formfactor.
I In principle V [1] could also depend on y variable.

This dependence in fact materializes from the UV subtraction.
However, such terms contribute only pure 1/ε2 to Γ (pure (LOMC)2 in finite part)
and have to be removed, to avoid double counting with the exponetiated LO MC.

I The presence/absence of ∼ ∆CFP has to be decided.

I Finally we find: P̄(z) ≡ (1 + z2)/2

V [1](z) = −1
2

P̄(z)

1− z
ln(z) ln(1− z) +

1
2

P̄(z)

1− z
Li2(1− z) +

z
8

.

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29



Examples of numerical implementations

A litle bit of numerical implementation results for:
I NLO corrections to hard process

(an alternative to MCatNLO and/or POWHEG)
I NLO corrections in the ladder

(for NLO parton shower MC + NNLO hard process)
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N+LO correcting HARD process, KRKnlo method

qu
ar

k

1−st order corrections

Born

γ* Z

gl
uo

n

gluon

protonproton
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MC weight with NLO corrs. to DY hard proc.
NLO correction introduced using simple positive MC weight
(only one term in the sums may be kept in case of kT-ordering):

W NLO
MC = 1 + ∆S+V +

∑
j∈F

β̃1(ŝ, p̂F , p̂B; aj , zFj)

P̄(zFj) dσB(ŝ, θ̂)/dΩ
+

∑
j∈B

β̃1(ŝ, p̂F , p̂B; aj , zBj)

P̄(zBj) dσB(ŝ, θ̂)/dΩ
,

P̄(z) ≡ 1+z2

2 . The IR/Col.-finite real emission part is

β̃1(p̂F , p̂B; q1, q2, k) =
h (1− α)2

2
dσB

dΩq
(ŝ, θF1) +

(1− β)2

2
dσB

dΩq
(ŝ, θB2)

i
− θα>β

1 + (1− α− β)2

2
dσB

dΩq
(ŝ, θ̂)− θα<β

1 + (1− α− β)2

2
dσB

dΩq
(ŝ, θ̂),

the kinematics independent virtual+soft correction is

∆V+S =
CF αs

π

(
1
3

π2 − 4
)

+
CF αs

π

1
2

Terms like
(

f (z)
1−z

)
+

in virt. corrs completely absent!

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 20 / 29



4. Redefine PDFs: MS → MC scheme

Ratios with respect to standard MS PDFs for light quarks.
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MCFM MS vs. MCFM in MC scheme at NLO
Technical cross-check (using modified MCFM)

σMS
tot = fq ⊗ (1 + αs CMS

q )⊗ fq̄
σMC

tot = (fq + αs∆fq)⊗ (1 + αs CMC
q )⊗ (fq̄ + αs∆fq̄)

= fq ⊗ fq̄ + αs
(
∆fq ⊗ fq̄ + ∆fq̄ ⊗ fq + CMC

q ⊗ fq ⊗ fq̄
)

+O(α2
s) +O(α3

s)

Drell-Yan, qq̄ channel, αs = αs(mZ ):

CMS
q ⊗ fq ⊗ fq̄ = ∆fq ⊗ fq̄ + ∆fq̄ ⊗ fq + CMC

q ⊗ fq ⊗ fq̄
(336.36± 0.09) pb = 25.79 pb + 25.79 pb + 284.77 pb︸ ︷︷ ︸

(336.35± 0.09) pb

I Final result is scheme independent up to O(α2
s).

I Terms O(α2
s) ' 16 pb, for this example; O(α3

s) ' 0.2 pb.
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MCFM MS vs. MCFM in MC scheme at NLO

Total cross section for DY, qq̄ channel, 8 TeV

σtot [pb]
MCFM (MS PDFs) 1344.1 ± 0.1
MCFM (MC PDFs) 1361.6 ± 0.3
PS+full NLO (MC PDFs) 1355.9 ± 0.8

I The difference between fully corrected PS+NLO is at the level of
0.8% w.r.t. MCFM in MS scheme and 0.4% w.r.t. to MCFM in MC
scheme.
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pT and rapidity distributions, KRKnlo vs MCFM

our results

MCFM
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ratio w.r.t. our result ratio w.r.t. our result

I Our KRKnlo on top of Sherpa LO MC, qq̄ chanel only.
I yZ distribution from KRKnlo agrees with MCFM at NLO.
I pT distribution suppressed at low pT due to Sudakov.
I Virtual correction spread over a range of pT .
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KRKnlo vs. POWHEG and MC@NLO

our results

Powheg

MC@NLO
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I yZ and pT distributions very close to POWHEG
(difference at low pT due to slightly different evolution variable)

I yZ very close to MC@NLO, same for low and intermediate pT (differences
for the tail of pT distributions due to higher orders as expected)

I The above is for qq̄ chanel. Results for qG chanel still validated.
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NLO-corrected middle-of-the-ladder kernel, C2
F

γ *

gluon
qu

ar
k

1−st order corrections

Born

quark
gluon

proton

Virt

W (2, 1) ∼
∣∣∣ 2

1

∣∣∣2 =
∣∣∣ +

2

1

2

1

∣∣∣2 − ∣∣∣ 2

1

∣∣∣2

D̄[1]
B (x , Q) = e−SISR

∞X
n=0

(
2

1

n

2

n−1

x

+
nX

p=1

2

1

n

2

n−1

p
+

nX
p=1

p−1X
j=1

2

p

n

1

j

)
= e−SISR

(
δx=1+

+
∞X

n=1

„ nY
i=1

Z
Q>ai >ai−1

d3ηi ρ
(1)
1B (ki )

«»
1 +

nX
p=1

β
(1)
0 (zp) +

nX
p=1

p−1X
j=1

W (k̃p, k̃j )

–
δx=

Qn
j=1 xj

)
.
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Define variable upj for “u-ordering”
in the middle of the ladder

proton

η

j

p

ln(1−z  )

η −ηp j

ln(1−z  )

hard process

j p

j

p

ln(1−z)
upj

upj = |ηp − ηj |+ λ ln(1− zj), λ ∼ 1− 2.
Variable η is rapitity, z is conventional lightcone variable.
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Location and size of the (real) NLO correction
in the ladder on the Sudakov log space

LO inclusive distribution features triple-log IR/coll. singularity,
seen as a plateau in 2-dim. projection.
NLO correction IR/coll. finite, nonzero in the corner of the size ∼ 1.
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Repetition of test for NLO-corrected ladder
OLD: NLO MC vs. analyt. NLO kernels. Perfect agreement

log10(x)
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Single ladder, 1GeV-1TeV, 1 or 2 kernels NLO-corrected. (Slow in CPU time).
S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 29 / 29



Repetition of test for NLO-corrected ladder
NEW: NLO contrib. to 1 kernel, 1 and 2 gluons with max. kT
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This difference ∼ 15% is formally the NNLO/NLO class. (Faster in CPU time).
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Summary

I An alternative (to MC@NLO or POWHEG) scenario for
NLO-corrected hard proc. and LO PSMC is worked out.

I Parton shower MC implementing complete NLO DGLAP in the
ladders in exclusive way is progressing well.

I Long term N+NLO: NLO ladder + NNLO hard process,
(but LO ladder + NLO hard proc. to be optimized first!)

I Most likely application: high quality QCD+EW+QED MC with hard
process like W/Z/H boson production.

I Potential gains from new QCD methods are:
– reducing h.o. QCD uncertainties
– easier implementation of NLO and NNLO corrections to hard process.
– better environment for low x resumm. (BFKL, CCFM),
– and more...
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