# **Towards NLO Parton Shower MC**

#### S. JADACH

#### M. Fabiańska, A. Gituliar, A. Kusina, W. Płaczek, M. Sapeta, A. Siódmok, M. Sławińska and M. Skrzypek

#### Institute of Nuclear Physics PAN, Kraków, Poland



Partly supported by the grants of Narodowe Centrum Nauki DEC-2011/03/B/ST2/02632 and UMO-2012/04/M/ST2/00240

Presented at "HP2: High precision for hard process", CGG Florence, Sept. 3-5th, 2014  $\bigcirc$   $\bigcirc$  S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 1/29

## What is NLO parton shower?



A litle bit of warm-up: What is the LO parton shower?

- The LO parton shower MC is built using LO class evolution kernels and/or LO PDFs for each incomming/ougoing shower/ladder.
- LO PS MC implements LO DGLAP evolution of the total cross section and of semi-inclusive distributions (structure functions).
- If hard process is corrected to the NLO level (N+LO), the all collinear/soft singularities of the LO PS MC are subtracted from the hard proces ME in the exclusive form.
- In N+LO schemes certain partons originally generated by the LO PS MC get promoted to the hard process, where their distributions get corrected to NLO level.

## What is NLO parton shower?



Now everything one order higher:

- The NLO parton shower MC is built using NLO class evolution kernels and/or NLO PDFs for each shower/ladder.
- NLO PS MC implements NLO DGLAP evolution of the total cross section and of semi-inclusive distributions (structure functions).
- If hard process is corrected to the N<sup>2</sup>LO level (N+NLO), collinear/soft singularities of the NLO PS MC are subtracted from the hard proces ME in the exclusive form.
- In N+NLO scheme certain partons originally generated by the NLO PS MC get incorporated into the hard process, where their distributions get corrected to N<sup>2</sup>LO level.

## **Problems and solutions**



- NLO kernels have to be recalculated in the exclusive form.
  - We have recalculatet all NLO kernels using Curci-Furmanski-Petronzio (CFP) scheme – explicit diagramatic calculation in axial gauge (also Ellis+Voghesang, Kunst+Heinrich).
  - Technical improvements were proposed (Skrzypek+Gituliar)
- ► LO parton shower may miss some phase space regions which are present in NLO kernels/evolution, like  $q \rightarrow qG^*, G^* \rightarrow GG$  spliting
  - One could add  $G^* \rightarrow GG$  after LO PS generation is finished,
  - Luckily, some modern LO PS MCs already populated this ph.sp.
- Introducing complete NLO real and virtual corrections into PS MC in the exclusive form, in accordance with the collinear factorization theorems (CFP), a formidable problem, theoreticaly and practicaly.
  - Theoretical framework CFP-compatible formulated and tested,
  - 3 methods of practical implementation of NLO corrections in the PS MC formulated and tested. One of them quite promissing.

## **Remarks on NLO kernel re-calculation**



- Why CFP? Because there is nothing else in the literature.
- All inclusive MS kernels were reproduced, but we have listed/exploited all exclusive 2-real and 1real+1virtual distributions, before the phase space integration.
- ► CFP was modified in order to eliminate spurious 1/ε<sup>3</sup> poles obscuring relation to MC at *d* = 4 dimensions. The so-called NPV prescription by Skrzypek and Gituliar, pulished recently.
- For subsets of diagrams in 2-real parton contributions, soft gluon limit was analyzed carefully. Expected gauge cancellations found.
- In CFP NLO kernel is extracted as coefficient of 1/ε. An alternative method of taking derivative ∂/∂(ln μ<sup>2</sup>) was tested.
- MS scheme produces technical artefact ~ ε/ε<sup>2</sup>, which are source of the problems in the MC implementation of NLO corrections. These terms were clasified and their role was analyzed.



What is collinear factorization?

$$F_{bare}(q_h/\mu, \varepsilon) = rac{\sigma_{Bare}}{\sigma_{Born}} = \prod_{Ladders} C^{(\infty)}\left(lpha, rac{q_h}{\mu}
ight) \otimes \Gamma^{(\infty)}_{ladder}(lpha, \varepsilon)$$

 $\otimes$  in lightcone x and parton type,  $\Gamma$  inclusive, C can be kept unintegrated/exclusive.

Case LO: 
$$F_{bare}^{(1)}(\boldsymbol{q}_h/\mu,\varepsilon) = [\mathbbm{1} + C^{[1]}(\alpha, \boldsymbol{q}_h/\mu)] \otimes [\mathbbm{1} + \Gamma^{[1]}(\alpha,\varepsilon)]$$

• Physical distributions:  $\Gamma \rightarrow PDF$ . LO example:

 $\begin{aligned} F_{Phys.} &= [\mathbb{1} + C^{[1]}(\alpha, q_h/\mu)] \otimes \text{PDF}(\mu), \quad C^{[1]}(q_h/\mu) \equiv F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon) \\ F_{Phys.} \text{ factor. scheme independent; both } C \text{ and PDFs are dependent:} \\ \Gamma^{[1]}(\varepsilon) \to \Gamma^{[1]} + \Delta\Gamma^{[1]}, \quad C^{[1]} \to C^{[1]} - \Delta\Gamma^{[1]}, \quad \Delta C^{[1]} = -\Delta\Gamma^{[1]}. \end{aligned}$ 

Evolution of F and/or PDFs and evolution kernels:

S. Jadach (IFJ PAN, Krakow)  $\mathcal{F}(NLO$  corrections in the parton shower Monte Carlo  $\mathcal{F}(Res 1 CGG, Sept.2014_{10}, \underline{6}/29)$ 



What is collinear factorization?

$$F_{bare}(\boldsymbol{q}_{h}/\mu,\varepsilon) = \frac{\sigma_{Bare}}{\sigma_{Born}} = \prod_{Ladders} \boldsymbol{C}^{(\infty)}\left(\alpha,\frac{\boldsymbol{q}_{h}}{\mu}\right) \otimes \Gamma_{ladder}^{(\infty)}(\alpha,\varepsilon)$$

 $\otimes$  in lightcone x and parton type,  $\Gamma$  inclusive, C can be kept unintegrated/exclusive.

Case NLO :  $F_{bare}^{(2)}(\boldsymbol{q}_h/\mu,\varepsilon) = [\mathbbm{1} + \boldsymbol{C}^{[1]} + \boldsymbol{C}^{[2]}] \otimes [\mathbbm{1} + \boldsymbol{\Gamma}^{[1]} + \boldsymbol{\Gamma}^{[2]}]$ 

• Physical distributions:  $\Gamma \rightarrow PDF$ . LO example:

 $F_{Phys.} = [\mathbb{1} + C^{[1]}(\alpha, q_h/\mu)] \otimes PDF(\mu), \quad C^{[1]}(q_h/\mu) \equiv F_{bare}^{[1]}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon)$   $F_{Phys.} \text{ factor. scheme independent; both } C \text{ and PDFs are dependent:}$  $\Gamma^{[1]}(\varepsilon) \to \Gamma^{[1]} + \Delta\Gamma^{[1]}, \quad C^{[1]} \to C^{[1]} - \Delta\Gamma^{[1]}, \quad \Delta C^{[1]} = -\Delta\Gamma^{[1]}.$ 

► Evolution of *F* and/or PDFs and evolution kernels:  $\frac{\partial}{\partial \ln \mu^2} F(\mu) = P \otimes F(\mu), \quad P = \alpha P^{[0]} + \alpha^2 P^{[1]} + \dots = \operatorname{Res}_1 \Gamma(\varepsilon) = \frac{\partial \ln_{\otimes} C(q/\mu)}{\partial \ln \mu^2}$ 

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 6 / 29



What is collinear factorization?

$$F_{\text{bare}}(q_h/\mu,\varepsilon) = \frac{\sigma_{\text{Bare}}}{\sigma_{\text{Born}}} = \prod_{\text{Ladders}} C^{(\infty)}\left(\alpha, \frac{q_h}{\mu}\right) \otimes \Gamma^{(\infty)}_{\text{ladder}}(\alpha,\varepsilon)$$

 $\otimes$  in lightcone x and parton type,  $\Gamma$  inclusive, C can be kept unintegrated/exclusive.

• Physical distributions:  $\Gamma \rightarrow PDF$ . LO example:

$$\begin{split} F_{Phys.} &= [\mathbb{1} + C^{[1]}(\alpha, q_h/\mu)] \otimes \mathrm{PDF}(\mu), \quad C^{[1]}(q_h/\mu) \equiv F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon) \\ F_{Phys.} \text{ factor. scheme independent; both } C \text{ and PDFs are dependent:} \\ \Gamma^{[1]}(\varepsilon) \to \Gamma^{[1]} + \Delta \Gamma^{[1]}, \quad C^{[1]} \to C^{[1]} - \Delta \Gamma^{[1]}, \quad \Delta C^{[1]} = -\Delta \Gamma^{[1]}. \end{split}$$

► Evolution of *F* and/or PDFs and evolution kernels:  $\frac{\partial}{\partial \ln \mu^2} F(\mu) = P \otimes F(\mu), \quad P = \alpha P^{[0]} + \alpha^2 P^{[1]} + \dots = \operatorname{Res}_1 \Gamma(\varepsilon) = \frac{\partial \ln_{\otimes} C(q/\mu)}{\partial \ln \mu^2}$ 

S. Jadach (IFJ PAN, Krakow)



What is collinear factorization?

$$F_{\text{bare}}(q_h/\mu,\varepsilon) = \frac{\sigma_{\text{Bare}}}{\sigma_{\text{Born}}} = \prod_{\text{Ladders}} C^{(\infty)}\left(\alpha, \frac{q_h}{\mu}\right) \otimes \Gamma^{(\infty)}_{\text{ladder}}(\alpha,\varepsilon)$$

 $\otimes$  in lightcone x and parton type,  $\Gamma$  inclusive, C can be kept unintegrated/exclusive.

▶ Physical distributions:  $\Gamma \rightarrow PDF$ . LO example:

$$\begin{split} F_{Phys.} &= [\mathbb{1} + C^{[1]}(\alpha, q_h/\mu)] \otimes \mathrm{PDF}(\mu), \quad C^{[1]}(q_h/\mu) \equiv F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon) \\ F_{Phys.} \text{ factor. scheme independent; both } C \text{ and PDFs are dependent:} \\ \Gamma^{[1]}(\varepsilon) \to \Gamma^{[1]} + \Delta \Gamma^{[1]}, \quad C^{[1]} \to C^{[1]} - \Delta \Gamma^{[1]}, \quad \Delta C^{[1]} = -\Delta \Gamma^{[1]}. \end{split}$$

• Evolution of *F* and/or PDFs and evolution kernels:

$$\frac{\partial}{\partial \ln \mu^2} F(\mu) = P \otimes F(\mu), \quad P = \alpha P^{[0]} + \alpha^2 P^{[1]} + \dots = \operatorname{Res}_1 \Gamma(\varepsilon) = \frac{\partial \ln_{\otimes} C(q/\mu)}{\partial \ln \mu^2}$$

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 6 / 29

#### **Collinear Factorization – Fixed order calculations**



Fixed order calculation (like MCFM):

 $F(q_h) = [\mathbb{1} + C^{[1]}]_J \otimes \text{PDF}(\mu), \quad C^{[1]} \equiv [F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon)]_{q_h = \mu}$ 

 $[...]_J$  means experimental acceptance J(x, y) kept in integrand.

▶ Typical example: ISR gluonstrahlung part of DIS, def.  $y = q/q_h \in (1, 0)$ :

$$C^{[1]}(z,y) = \delta_{z=1}\delta_{y=0}(1+\Delta_{SV}) + \frac{C_F\alpha}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{\bar{P}(z)}{1-z}\right)_+ + \beta(z,y) + \delta_{y=0}\Sigma(z)$$
  
$$\beta(z,y) = |\mathrm{ME}_{exact}|^2 - \frac{C_F\alpha}{\pi} \frac{1}{y} \frac{\bar{P}(z)}{1-z}, \qquad \Sigma(z) = \frac{C_F\alpha}{\pi} \left(\frac{\bar{P}(z)}{1-z} \frac{(1-z)^2}{z}\right)_+$$
  
where  $\bar{P}(z) = (1-z)P_{qq}(z) = (1+z^2)/2.$ 

Soft-collinear counterterm technique (eg. Catani-Seymour) often used to facilitate computing codes (MCFM):

$$C^{[1]} = [F^{[1]}_{bare} - C_{SC}]_{d=4} + [C_{SC} - \Gamma^{[1]}]_{d\neq 4}, \quad C_{SC}(z, y) = \frac{C_F \alpha}{\pi} \frac{1}{y^{1-2\varepsilon}} \left(\frac{\bar{P}(z)}{1-z}\right)_+$$

S. Jadach (IFJ PAN, Krakow)

#### **Collinear Factorization – Fixed order calculations**



Fixed order calculation (like MCFM):

 $F(q_h) = [\mathbb{1} + C^{[1]}]_J \otimes \text{PDF}(\mu), \quad C^{[1]} \equiv [F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon)]_{q_h = \mu}$ 

 $[...]_J$  means experimental acceptance J(x, y) kept in integrand.

▶ Typical example: ISR gluonstrahlung part of DIS, def.  $y = q/q_h \in (1,0)$ :

$$C^{[1]}(z,y) = \delta_{z=1}\delta_{y=0}(1+\Delta_{SV}) + \frac{C_F\alpha}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{\bar{P}(z)}{1-z}\right)_+ + \beta(z,y) + \delta_{y=0}\Sigma(z)$$
  
$$\beta(z,y) = |ME_{exact}|^2 - \frac{C_F\alpha}{\pi} \frac{1}{y} \frac{\bar{P}(z)}{1-z}, \qquad \Sigma(z) = \frac{C_F\alpha}{\pi} \left(\frac{\bar{P}(z)}{1-z} \frac{(1-z)^2}{z}\right)_+$$
  
where  $\bar{P}(z) = (1-z)P_{qq}(z) = (1+z^2)/2.$ 

Soft-collinear counterterm technique (eg. Catani-Seymour) often used to facilitate computing codes (MCFM):

$$C^{[1]} = [F^{[1]}_{bare} - C_{SC}]_{d=4} + [C_{SC} - \Gamma^{[1]}]_{d\neq 4}, \quad C_{SC}(z, y) = \frac{C_F \alpha}{\pi} \frac{1}{y^{1-2\varepsilon}} \left(\frac{P(z)}{1-z}\right)_+$$

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 7 / 29

#### **Collinear Factorization – Fixed order calculations**



Fixed order calculation (like MCFM):

 $F(q_h) = [\mathbb{1} + C^{[1]}]_J \otimes \text{PDF}(\mu), \quad C^{[1]} \equiv [F^{[1]}_{bare}(q_h/\mu, \varepsilon) - \Gamma^{[1]}(\varepsilon)]_{q_h = \mu}$ 

 $[...]_J$  means experimental acceptance J(x, y) kept in integrand.

▶ Typical example: ISR gluonstrahlung part of DIS, def.  $y = q/q_h \in (1, 0)$ :

$$C^{[1]}(z,y) = \delta_{z=1}\delta_{y=0}(1+\Delta_{SV}) + \frac{C_F\alpha}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{\bar{P}(z)}{1-z}\right)_+ + \beta(z,y) + \delta_{y=0}\Sigma(z)$$
  
$$\beta(z,y) = |ME_{exact}|^2 - \frac{C_F\alpha}{\pi} \frac{1}{y} \frac{\bar{P}(z)}{1-z}, \qquad \Sigma(z) = \frac{C_F\alpha}{\pi} \left(\frac{\bar{P}(z)}{1-z} \frac{(1-z)^2}{z}\right)_+$$
  
where  $\bar{P}(z) = (1-z)P_{qq}(z) = (1+z^2)/2.$ 

 Soft-collinear counterterm technique (eg. Catani-Seymour) often used to facilitate computing codes (MCFM):

$$C^{[1]} = [F^{[1]}_{bare} - C_{SC}]_{d=4} + [C_{SC} - \Gamma^{[1]}]_{d\neq 4}, \quad C_{SC}(z, y) = \frac{C_F \alpha}{\pi} \frac{1}{y^{1-2\varepsilon}} \left(\frac{\bar{P}(z)}{1-z}\right)_+$$

S. Jadach (IFJ PAN, Krakow)



▶ Pure LO parton shower MC, again *ep* with single ISR ladder:

$$F(q_h) = G_{q_0 \to q_h} \otimes \text{PDF}_{\mu = q_0 \simeq 1 \text{GeV}}$$
$$G_{q_0 \to q_h} = \exp_{y - \text{ordering}} \left\{ \int_0^1 dy \left(\frac{1}{y}\right)_+ \int_0^{2\pi} d\phi \int_0^1 dz \, \frac{C_F \alpha}{\pi} (P^{[0]}(z))_+ \right\}$$
where  $y = q/q_h$  and  $(1/y)_+$  regulated using  $y > \Delta = q_0/q_h$ .

▶ N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

 $F(q_h) = [\mathbb{1} + \tilde{C}^{[1]}] \otimes G_{q_0 \to q_h} \otimes \mathrm{PDF}_{\mu = q_0 \simeq 1 \, GeV}$ 

where in  $C^{[1]} \rightarrow \tilde{C}^{[1]}$  LO MC part is subracted, to omit 2-counting:



▶ Pure LO parton shower MC, again *ep* with single ISR ladder:

$$F(q_h) = G_{q_0 
ightarrow q_h} \otimes \mathrm{PDF}_{\mu = q_0 \simeq 1 \, GeV}$$

$$G_{q_0 \rightarrow q_h} = \exp_{y - \text{ordering}} \left\{ \int_0^1 dy \left(\frac{1}{y}\right)_+ \int_0^{2\pi} d\phi \int_0^1 dz \; \frac{C_F \alpha}{\pi} (\mathcal{P}^{[0]}(z))_+ \right\}$$

where  $y = q/q_h$  and  $(1/y)_+$  regulated using  $y > \Delta = q_0/q_h$ .

▶ The above is forward evol. Backward evolution PS MC starts from *q<sub>h</sub>*:

$$F(q_h) = \mathrm{PDF}_{\mu=q_h} \otimes (G_{q_0 \to q_h})^{-1}$$

▶ N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

 $F(q_h) = [\mathbb{1} + \tilde{C}^{[1]}] \otimes G_{q_0 \to q_h} \otimes \mathrm{PDF}_{\mu = q_0 \simeq 1 \, GeV}$ 

where in  $C^{[1]} \rightarrow \tilde{C}^{[1]}$  LO MC part is subtracted, to omit 2-counting:

S. Jadach (IFJ PAN, Krakow)



▶ Pure LO parton shower MC, again *ep* with single ISR ladder:

$${\sf F}({\it q}_h)={\it G}_{{\it q}_0
ightarrow {\it q}_h}\otimes {
m PDF}_{\mu={\it q}_0\simeq 1{\it GeV}}$$

$$G_{q_0 \rightarrow q_h} = \exp_{y - \text{ordering}} \left\{ \int_0^1 dy \left(\frac{1}{y}\right)_+ \int_0^{2\pi} d\phi \int_0^1 dz \; \frac{C_F \alpha}{\pi} (P^{[0]}(z))_+ \right\}$$

where  $y = q/q_h$  and  $(1/y)_+$  regulated using  $y > \Delta = q_0/q_h$ .

N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

$$\mathcal{F}(q_h) = [\mathbbm{1} + ilde{\mathcal{C}}^{[1]}] \otimes \mathcal{G}_{q_0 
ightarrow q_h} \otimes ext{PDF}_{\mu = q_0 \simeq 1 \, GeV}$$

where in  ${\cal C}^{[1]} 
ightarrow { ilde C}^{[1]}$  LO MC part is subracted, to omit 2-counting:

$$C^{[1]}(z,y) = \delta_{z=1}\delta_{y=0}(1+\Delta_{SV}) + \frac{C_{F}\alpha}{\pi} \left(\frac{1}{y}\right)_{+} \left(\frac{\bar{P}(z)}{1-z}\right)_{+} + \beta(z,y) + \delta_{y=0}\Sigma(z)$$

S. Jadach (IFJ PAN, Krakow)



▶ Pure LO parton shower MC, again *ep* with single ISR ladder:

$$F(q_h) = G_{q_0 
ightarrow q_h} \otimes \mathrm{PDF}_{\mu = q_0 \simeq 1 \, GeV}$$

$$G_{q_0 \rightarrow q_h} = \exp_{y - \text{ordering}} \left\{ \int_0^1 dy \left(\frac{1}{y}\right)_+ \int_0^{2\pi} d\phi \int_0^1 dz \; \frac{C_F \alpha}{\pi} (\mathcal{P}^{[0]}(z))_+ \right\}$$

where  $y = q/q_h$  and  $(1/y)_+$  regulated using  $y > \Delta = q_0/q_h$ .

N+LO parton shower (POWHEG or MCatNLO) is schematicaly:

$$F(q_h) = [\mathbb{1} + \tilde{C}^{[1]}] \otimes G_{q_0 o q_h} \otimes \mathrm{PDF}_{\mu = q_0 \simeq 1 \, GeV}$$

where in  $\mathcal{C}^{[1]} 
ightarrow \tilde{\mathcal{C}}^{[1]}$  LO MC part is subracted, to omit 2-counting:

$$\tilde{C}^{[1]} = \delta_{z=1}\delta_{y=0}(1+\Delta_{SV}) + \beta(z,y) + \delta_{y=0}\Sigma(z)$$

but the peculiar  $\Sigma(z)$ , artefact of  $\overline{MS}$ , due to  $\varepsilon/\varepsilon$  terms remains!

#### **KRLnlo variant of N+LO parton shower MC** A simpler alternative to POWHEG or MC@NLO



Backward evolution version with NLO corrected hard process

$$egin{aligned} \mathcal{F}(q_h) &= [\mathbbm{1} + ilde{\mathcal{C}}^{[1]}] \otimes \mathrm{PDF}_{\mu=q_h}^{\overline{MS}} \otimes (G_{q_0 o q_h})^{-1} \ & ilde{\mathcal{C}}^{[1]} &= \delta_{z=1} \delta_{y=0} (1 + \Delta_{SV}) + eta(z,y) + \delta_{y=0} \Sigma(z) \end{aligned}$$

is reorganized as follows:

$$\begin{split} F(q_h) &= [\mathbb{1} + \bar{C}^{[1]}] \otimes \mathrm{PDF}_{\mu=q_h}^{\mathrm{MC}} \otimes (G_{q_0 \to q_h})^{-1}, \\ \bar{C}^{[1]}(y, z) &= \delta_{z=1} \delta_{y=0} (1 + \Delta_{SV}) + \beta(z, y), \end{split}$$

▶ where PDF<sup>MS</sup> is translated to MC factorization scheme outside PS MC:

$$\mathrm{PDF}^{\mathrm{MC}}(\mu) \equiv (\mathbb{1} - \Sigma) \otimes \mathrm{MC}^{\overline{\mathrm{MS}}}(\mu)$$

- In reality Σ is matrix in fravour space and mixes q ↔ G ↔ q̄. Its element are fixed from inspecting at least two processes.
- It was tested for DY process, see later on...

#### NLO Fixed order variant of KRLnlo



On may notice that collecting all step, we have

$$\begin{split} \bar{C}^{[1]} &= F^{[1]}_{bare}(\varepsilon)|_{q_h=\mu} - C^{\text{MC}}_{\text{SC}}(\varepsilon) = (1 + \Delta_{SV})\mathbb{1} + \beta(z, y).\\ C^{\text{MC}}_{\text{SC}}(y, z, \varepsilon) &= \delta_{y=0}\Gamma^{[1]}(z, \varepsilon) + \delta_{y=0}\Sigma(z) + \frac{C_F\alpha}{\pi} \Big(\frac{1}{y}\Big)_+ \Big(\frac{\bar{P}(z)}{1-z}\Big)_+, \end{split}$$

where C<sup>MC</sup><sub>SC</sub>(ε) is the 1-st order part of the evolution operator of the LO PS MC in d = 4 + 2ε:

$$G_{q_0 \to q_h}^{d=4+2\varepsilon} = \mathbb{1} + G^{[1]}(\varepsilon) + ..., \qquad C_{\mathrm{SC}}^{\mathrm{MC}}(\varepsilon) = G^{[1]}(\varepsilon) !!!$$

 C<sub>SC</sub><sup>MC</sup> may be also employed/tested as a soft-collinear counterterm in the <u>NLO fixed order</u> calculation (MCFM-style), with PDFs in the MC scheme:

$$F(q_h) = \left[\mathbb{1} + \bar{C}^{[1]} + \frac{C_{F\alpha}}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{\bar{P}(z)}{1-z}\right)_+\right]_J \otimes \mathrm{PDF}^{\mathrm{MC}}|_{\mu=q_h},$$

▶ It was tested in the modified version of MCFM for DY process.

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 10 / 29

#### NLO Fixed order variant of KRLnlo



On may notice that collecting all step, we have

$$\bar{C}^{[1]} = F^{[1]}_{bare}(\varepsilon)|_{q_h=\mu} - C^{\mathrm{MC}}_{\mathrm{SC}}(\varepsilon) = (1 + \Delta_{SV})\mathbb{1} + \beta(z, y).$$

$$C_{\rm SC}^{\rm MC}(y,z,\varepsilon) = \delta_{y=0}\Gamma^{[1]}(z,\varepsilon) + \delta_{y=0}\Sigma(z) + \frac{C_F\alpha}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{P(z)}{1-z}\right)_+,$$

where C<sup>MC</sup><sub>SC</sub>(ε) is the 1-st order part of the evolution operator of the LO PS MC in d = 4 + 2ε:

$$G_{q_0 \to q_h}^{d=4+2\varepsilon} = \mathbb{1} + G^{[1]}(\varepsilon) + ..., \qquad C_{\mathrm{SC}}^{\mathrm{MC}}(\varepsilon) = G^{[1]}(\varepsilon) !!!$$

 C<sub>SC</sub><sup>MC</sup> may be also employed/tested as a soft-collinear counterterm in the <u>NLO fixed order</u> calculation (MCFM-style), with PDFs in the MC scheme:

$$F(q_h) = \left[\mathbb{1} + \bar{C}^{[1]} + \frac{C_F \alpha}{\pi} \left(\frac{1}{y}\right)_+ \left(\frac{\bar{P}(z)}{1-z}\right)_+\right]_J \otimes \mathrm{PDF}^{\mathrm{MC}}|_{\mu=q_h},$$

#### ► It was tested in the modified version of MCFM for DY process.

S. Jadach (IFJ PAN, Krakow)

 Use collinear factoriz. of Curci-Furmanski-Petronzio (CFP) as a basis. The 2-nd order version reads:

$$F_{bare}^{(2)}(q_h,\varepsilon) = C^{(2)}(q_h/\mu) \otimes \prod_{Ladders} \Gamma_L^{(2)}(\varepsilon), \quad C^{(2)} = F_{bare}^{(2)} \otimes \prod_L (\Gamma_L^{(2)})^{-1}$$

and exploit the experience gained in the previous N+LO case.

Fixed order N<sup>2</sup>LO with collinear  $\overline{MS}$  PDFs (one ladder) is now:

$$\mathcal{F}^{(2)}_{phys.}(q_h)=\mathcal{C}^{(2)}|_{q_h=\mu}\otimes \mathrm{PDF}^{\overline{MS}}(\mu)$$

• Generalizing N+LO case, we define/use MC distribution truncated to 2-nd order  $G_{MC}^{(2)}$  as a soft-collinear counreterm:

 $\mathcal{F}^{(2)}(q_h) = \{ \mathcal{F}^{(2)}_{bare} \otimes (\mathcal{G}^{(2)}_{MC})^{-1} \}_{d=4} \otimes \{ \mathcal{G}^{(2)}_{MC}(\varepsilon) \otimes (\Gamma^{(2)}(\varepsilon))^{-1} \} \otimes \mathrm{PDF}^{\overline{MS}}(\mu)$ 

► The key point is to construct the NLO evolution operator G<sub>MC</sub> such that
 ► G<sup>(∞)</sup><sub>MC,D=4</sub> represents NLO parton shower MC (single ladder) and
 ► G<sup>(2)</sup><sub>MC,d=4+2ε</sub> encalsulates ALL of collinear and soft singularies in the CFP construction of the NLO MS evolution kernel P<sup>(2)</sup>(z).

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 \_ 11/29

 Use collinear factoriz. of Curci-Furmanski-Petronzio (CFP) as a basis. The 2-nd order version reads:

$$F_{bare}^{(2)}(\boldsymbol{q}_h,\varepsilon) = \boldsymbol{C}^{(2)}(\boldsymbol{q}_h/\mu) \otimes \prod_{Ladders} \Gamma_L^{(2)}(\varepsilon), \quad \boldsymbol{C}^{(2)} = F_{bare}^{(2)} \otimes \prod_L (\Gamma_L^{(2)})^{-1}$$

and exploit the experience gained in the previous N+LO case.

► Fixed order N<sup>2</sup>LO with collinear *MS* PDFs (one ladder) is now:

$$\mathcal{F}^{(2)}_{
hohys.}(q_h)=\mathcal{C}^{(2)}|_{q_h=\mu}\otimes ext{PDF}^{\overline{ extsf{MS}}}(\mu)$$

► Generalizing N+LO case, we define/use MC distribution truncated to 2-nd order G<sup>(2)</sup><sub>MC</sub> as a soft-collinear counreterm:

 $\mathcal{F}^{(2)}(q_h) = \{ \mathcal{F}^{(2)}_{bare} \otimes (\mathcal{G}^{(2)}_{MC})^{-1} \}_{d=4} \otimes \{ \mathcal{G}^{(2)}_{MC}(\varepsilon) \otimes (\Gamma^{(2)}(\varepsilon))^{-1} \} \otimes \mathrm{PDF}^{\overline{MS}}(\mu)$ 

The key point is to construct the NLO evolution operator G<sub>MC</sub> such that
 G<sup>(∞)</sup><sub>MC,D=4</sub> represents NLO parton shower MC (single ladder) and
 G<sup>(2)</sup><sub>MC,d=4+2ε</sub> encalsulates ALL of collinear and soft singularies in the CFP construction of the NLO MS evolution kernel P<sup>(2)</sup>(z).

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 11/29



• Explicit example of NLO evolution operator  $G_{MC}$  in d = 4, again for the gluonstrahlung branch (extension to  $d = 4 + 2\varepsilon$  is trivial).

$$dG_{MC,d=4}^{(2)} = \mathbb{1} + dy_1 dz_1 g_{MC}^{[1]}(y_1, z_1) (1 + V^{[1]}(z_1)) + dy_1 dz_1 dy_2 dz_2 \theta_{y_2 > y_1} [g_{MC}^{[1]}(y_1, z_1) g_{MC}^{[1]}(y_2, z_2) + \beta^{[1]}(y_2/y_1, z_2/z_1)] \} g_{MC}^{[1]}(y, z) = \frac{C_F \alpha}{\pi} \Big(\frac{1}{y}\Big)_+ \Big(\frac{\bar{P}(z)}{1-z}\Big)_+,$$

### where LO component $g_{MC}^{[1]}$ is already known from N+LO exercise.

- NLO corrections V<sup>[1]</sup>(z) and β<sup>[1]</sup>(y, z) from comparing/matching/analyzing G<sup>(2)</sup><sub>MC,d≠4</sub> and elements of CFP scheme.
- The above matching procedure is formulated, but still getting consolidated.
- Basic elements of CFP, see next slide...



• Explicit example of NLO evolution operator  $G_{MC}$  in d = 4, again for the gluonstrahlung branch (extension to  $d = 4 + 2\varepsilon$  is trivial).

$$dG_{MC,d=4}^{(2)} = \mathbb{1} + dy_1 dz_1 g_{MC}^{[1]}(y_1, z_1) (1 + V^{[1]}(z_1)) + dy_1 dz_1 dy_2 dz_2 \theta_{y_2 > y_1} [g_{MC}^{[1]}(y_1, z_1) g_{MC}^{[1]}(y_2, z_2) + \beta^{[1]}(y_2/y_1, z_2/z_1)] \} g_{MC}^{[1]}(y, z) = \frac{C_F \alpha}{\pi} (\frac{1}{y})_+ (\frac{\bar{P}(z)}{1-z})_+,$$

where LO component  $g_{MC}^{[1]}$  is already known from N+LO exercise.

- NLO corrections V<sup>[1]</sup>(z) and β<sup>[1]</sup>(y, z) from comparing/matching/analyzing G<sup>(2)</sup><sub>MC,d≠4</sub> and elements of CFP scheme.
- The above matching procedure is formulated, but still getting consolidated.
- Basic elements of CFP, see next slide...

#### Elements of the CFP (EGMPR) scheme



CFP actorization formula for sigle ladder with two-particle-irredudible (2PI) kernels K<sub>0</sub> in the axial gauge:

$$F = C_0 \cdot \frac{1}{1 - K_0} = C_0 \cdot \sum_{n=0} K_0^n.$$

It is reorganized using projection operator P = P<sub>spin</sub> P<sub>kin</sub> PP, with kinematic P<sub>kin</sub>, P<sub>spin</sub> spin parts and PP extracting pole part ~ 1/ϵ<sup>k</sup>.

$$F = C\left(\alpha, \frac{Q^2}{\mu^2}\right) \otimes \Gamma\left(\alpha, \frac{1}{\epsilon}\right) = C_0 \cdot \frac{1}{1 - \left[(1 - \mathbb{P})K_0\right]} \otimes \frac{1}{1 - \left\{\mathbb{P}K_0 \cdot \frac{1}{1 - \left[(1 - \mathbb{P})K_0\right]}\right\}_{\otimes}}$$

Second order truncation exploiting 2-nd order  $K_0^{(2)} = K_0^{[1]} + K_0^{[2]}$ :

$$\Gamma^{(2)} = \mathbb{1} + \mathbb{P}K_0^{(2)} + \mathbb{P}(K_0^{[1]} \cdot (1 - \mathbb{P})K_0^{[1]}) + (\mathbb{P}K_0^{(1)}) \otimes (\mathbb{P}K_0^{(1)})$$

An example of the diagramatic content of K<sub>0</sub><sup>(2)</sup> = K<sub>0</sub><sup>[1]</sup> + K<sub>0</sub><sup>[2]</sup> for gluonstrahlung is shown on the next slide...

Contributions to example 2PI  $\sim C_F^2$  kernel  $\mathcal{K}_0(q \rightarrow q)$ :



S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014

14 / 29

#### Determining NLO corrections $V^{[1]}(z)$ and $\beta^{[1]}(y, z)$ for the MC ladder

- As a <u>calibration exercise</u> we apply CFP machinery of extracting Γ(ε) and NLO kernel, to MC distributions in d = 4 + 2ε for V<sup>[1]</sup> = 0 and β<sup>[1]</sup> = 0
- Surprisingly (?) a non-zero NLO corrections to kernel is found:

$$\begin{split} \Delta P(z) &= -\left(\frac{C_F \alpha}{\pi}\right)^2 \Delta_{CFP}(z) \\ \Delta_{CFP}(z) &= \int_0^1 dz_1 dz_2 \ (P(z_1))_+ \ \ln(z_2) P(z_2) \delta(z-z_1 z_2) \\ &= \frac{1+z^2}{2(1-z)} \ln z \left[ \ln \frac{1-z}{z^{1/2}} + \frac{3}{4} \right] + \frac{1}{8} \ln z \ [(1+z) \ln z - 2(1-z)], \end{split}$$

which (up to normalization) is the  $\Delta(z)$  function in CFP paper, eq. (6.44), responsible for violation of the Gribov rule relating NLO kernels of the initial and final state ladders.

- ▶ Its origin is traced back to kinematics: for instance in DY, 1st real emission (going backwards toward hadron beam), changes assignment  $\mu^2 = \hat{s} = q_h^2$  into  $\mu^2 = \hat{s}/z$ . This induces  $\sim \Delta_{CFP}(z)$  to NLO kernel.
- In the standard CFP kernel calculation. this contribution is cancelled in the end by another similar term, but in the MC it may be kept or not in V<sup>[1]</sup>, depending how NLO PDFs are defined and used.

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 15/29

### Determining NLO corrections $V^{[1]}(z)$ and $\beta^{[1]}(y, z)$ for the MC ladder

- As a <u>calibration exercise</u> we apply CFP machinery of extracting Γ(ε) and NLO kernel, to MC distributions in d = 4 + 2ε for V<sup>[1]</sup> = 0 and β<sup>[1]</sup> = 0
- Surprisingly (?) a non-zero NLO corrections to kernel is found:

$$\begin{split} \Delta P(z) &= -\left(\frac{C_F\alpha}{\pi}\right)^2 \Delta_{CFP}(z) \\ \Delta_{CFP}(z) &= \int_0^1 dz_1 dz_2 \ (P(z_1))_+ \ \ln(z_2) P(z_2) \delta(z-z_1 z_2) \\ &= \frac{1+z^2}{2(1-z)} \ln z \left[ \ln \frac{1-z}{z^{1/2}} + \frac{3}{4} \right] + \frac{1}{8} \ln z \ [(1+z) \ln z - 2(1-z)], \end{split}$$

which (up to normalization) is the  $\Delta(z)$  function in CFP paper, eq. (6.44), responsible for violation of the Gribov rule relating NLO kernels of the initial and final state ladders.

- ► Its origin is traced back to kinematics: for instance in DY, 1st real emission (going backwards toward hadron beam), changes assignment  $\mu^2 = \hat{s} = q_h^2$  into  $\mu^2 = \hat{s}/z$ . This induces  $\sim \Delta_{CFP}(z)$  to NLO kernel.
- In the standard CFP kernel calculation. this contribution is cancelled in the end by another similar term, but in the MC it may be kept or not in V<sup>[1]</sup>, depending how NLO PDFs are defined and used.

Determining NLO 2-real corrections  $\beta^{[1]}(y, z)$  for the MC ladder



Within the same gluonstrahlung example, determination of β<sup>[1](y,z)</sup> is rather simple:

$$\beta^{[1]}(y_2/y_1, z_2/z_1) = |\mathrm{ME}_{2\mathrm{r}}|^2 - g^{[1]}_{MC}(y_2, z_2)g^{[1]}_{MC}(y_1, z_1).$$

► The same RHS diagramatically:

 NB. The internal subtraction of the (LO<sub>MC</sub>)<sup>2</sup> contribution is necessary only for a small subset of NLO diagrams.

#### Determining NLO corrections $V^{[1]}(z)$ for the MC ladder



• 1real + 1virtual contribution to  $V^{[1]}(z)$  comes from diagrams:

#### all the time $\sim C_F^2$ glunstrahlung example...

- Determination of  $V^{[1]}(z)$  is not easy it involves several issues:
  - Extracting  $\Gamma(\varepsilon)$  from 1r1v part of MC in  $d = 4 + 2\varepsilon$  requires (i) either extension of CEP subtraction regipe or
    - (ii) adjusting IB cut-off  $(1 z) < \delta$  in such that some terms di
  - CFP subtraction have to be done separately for the virtual Sudakov formfactor.
  - In principle V<sup>[1]</sup> could also depend on y variable. This dependence in fact materializes from the UV subtraction. However, such terms contribute only pure 1/ε<sup>2</sup> to Γ (pure (LO<sub>MC</sub>)<sup>2</sup> in finite part) and have to be removed, to avoid double counting with the exponetiated LO MC.
  - The presence/absence of  $\sim \Delta_{CFP}$  has to be decided.
- Finally we find:  $\bar{P}(z) \equiv (1+z^2)/2$   $V^{[1]}(z) = -\frac{1}{2} \frac{\bar{P}(z)}{1-z} \ln(z) \ln(1-z) + \frac{1}{2} \frac{\bar{P}(z)}{1-z} \text{Li}_2(1-z) + \frac{z}{8}.$

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29

#### Determining NLO corrections $V^{[1]}(z)$ for the MC ladder



• 1real + 1virtual contribution to  $V^{[1]}(z)$  comes from diagrams:

all the time  $\sim C_F^2$  glunstrahlung example...

- Determination of  $V^{[1]}(z)$  is not easy it involves several issues:
  - Extracting  $\Gamma(\varepsilon)$  from 1r1v part of MC in  $d = 4 + 2\varepsilon$  requires (i) either extension of CFP subtraction recipe or
    - (ii) adjusting IR cut-off  $(1 z) < \delta$  in such that some terms disappear.
  - CFP subtraction have to be done separately for the virtual Sudakov formfactor.
  - In principle V<sup>[1]</sup> could also depend on y variable. This dependence in fact materializes from the UV subtraction. However, such terms contribute only pure 1/ε<sup>2</sup> to Γ (pure (LO<sub>MC</sub>)<sup>2</sup> in finite part) and have to be removed, to avoid double counting with the exponetiated LO MC.
  - The presence/absence of  $\sim \Delta_{CFP}$  has to be decided.

Finally we find:  $\bar{P}(z) \equiv (1+z^2)/2$   $V^{[1]}(z) = -\frac{1}{2} \frac{\bar{P}(z)}{1-z} \ln(z) \ln(1-z) + \frac{1}{2} \frac{\bar{P}(z)}{1-z} \text{Li}_2(1-z) + \frac{z}{8}.$ 

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29

#### Determining NLO corrections $V^{[1]}(z)$ for the MC ladder



▶ 1real + 1virtual contribution to  $V^{[1]}(z)$  comes from diagrams:

$$Z_F^{[1]} = \xi \left[ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right], \qquad K_{0,1r1v}^{[2]} = \xi \left[ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right] + \xi \left[ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right]$$

all the time  $\sim C_F^2$  glunstrahlung example...

- Determination of  $V^{[1]}(z)$  is not easy it involves several issues:
  - Extracting Γ(ε) from 1r1v part of MC in d = 4 + 2ε requires
     (i) either extension of CFP subtraction recipe or
    - (ii) adjusting IR cut-off  $(1 z) < \delta$  in such that some terms disappear.
  - CFP subtraction have to be done separately for the virtual Sudakov formfactor.
  - In principle V<sup>[1]</sup> could also depend on y variable. This dependence in fact materializes from the UV subtraction. However, such terms contribute only pure 1/ε<sup>2</sup> to Γ (pure (LO<sub>MC</sub>)<sup>2</sup> in finite part) and have to be removed, to avoid double counting with the exponetiated LO MC.
  - The presence/absence of  $\sim \Delta_{CFP}$  has to be decided.
- Finally we find:  $\bar{P}(z) \equiv (1+z^2)/2$   $V^{[1]}(z) = -\frac{1}{2} \frac{\bar{P}(z)}{1-z} \ln(z) \ln(1-z) + \frac{1}{2} \frac{\bar{P}(z)}{1-z} \text{Li}_2(1-z) + \frac{z}{8}.$

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 17 / 29



A litle bit of numerical implementation results for:

- NLO corrections to hard process (an alternative to MCatNLO and/or POWHEG)
- NLO corrections in the ladder (for NLO parton shower MC + NNLO hard process)

# N+LO correcting HARD process, KRKnlo metho



S. Jadach (IFJ PAN, Krakow)

# MC weight with NLO corrs. to DY hard proc.



NLO correction introduced using simple positive MC weight (only one term in the sums may be kept in case of kT-ordering):

$$W_{MC}^{NLO} = 1 + \Delta_{S+V} + \sum_{j \in F} \frac{\tilde{\beta}_1(\hat{s}, \hat{p}_F, \hat{p}_B; a_j, z_{Fj})}{\bar{P}(z_{Fj}) \ d\sigma_B(\hat{s}, \hat{\theta})/d\Omega} + \sum_{j \in B} \frac{\tilde{\beta}_1(\hat{s}, \hat{p}_F, \hat{p}_B; a_j, z_{Bj})}{\bar{P}(z_{Bj}) \ d\sigma_B(\hat{s}, \hat{\theta})/d\Omega},$$

 $\bar{P}(z) \equiv \frac{1+z^2}{2}$ . The <u>IR/Col.-finite</u> real emission part is

$$egin{aligned} & ilde{eta}_1(\hat{p}_F,\hat{p}_B;q_1,q_2,k) = \Big[rac{(1-lpha)^2}{2}rac{d\sigma_B}{d\Omega_q}(\hat{s}, heta_{F1}) + rac{(1-eta)^2}{2}rac{d\sigma_B}{d\Omega_q}(\hat{s}, heta_{B2})\Big] \ & - heta_{lpha>eta}rac{1+(1-lpha-eta)^2}{2}rac{d\sigma_B}{d\Omega_q}(\hat{s},\hat{ heta}) - heta_{lpha$$

the kinematics independent virtual+soft correction is

$$\Delta_{V+S} = \frac{C_F \alpha_s}{\pi} \left(\frac{1}{3}\pi^2 - 4\right) + \frac{C_F \alpha_s}{\pi} \frac{1}{2}$$

Terms like  $\left(\frac{f(z)}{1-z}\right)_+$  in virt. corrs completely absent!

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 20 / 29

# 4. Redefine PDFs: $\overline{MS} \rightarrow MC$ scheme



#### Ratios with respect to standard $\overline{MS}$ PDFs for light quarks.



21 / 29

# MCFM MS vs. MCFM in MC scheme at NLO

Technical cross-check (using modified MCFM)

$$\begin{split} \sigma_{\text{tot}}^{\overline{\text{MS}}} &= f_q \otimes (1 + \alpha_s \, C_q^{\overline{\text{MS}}}) \otimes f_{\bar{q}} \\ \sigma_{\text{tot}}^{\text{MC}} &= (f_q + \alpha_s \Delta f_q) \otimes (1 + \alpha_s \, C_q^{\text{MC}}) \otimes (f_{\bar{q}} + \alpha_s \Delta f_{\bar{q}}) \\ &= f_q \otimes f_{\bar{q}} + \alpha_s \left( \Delta f_q \otimes f_{\bar{q}} + \Delta f_{\bar{q}} \otimes f_q + C_q^{\text{MC}} \otimes f_q \otimes f_{\bar{q}} \right) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_s^3) \end{split}$$

Drell-Yan,  $q\bar{q}$  channel,  $\alpha_s = \alpha_s(m_Z)$ :

$$C_q^{\overline{\mathrm{MS}}} \otimes f_q \otimes f_{\bar{q}} = \Delta f_q \otimes f_{\bar{q}} + \Delta f_{\bar{q}} \otimes f_q + C_q^{\mathrm{MC}} \otimes f_q \otimes f_{\bar{q}}$$
  
336.36 ± 0.09) pb =   
$$\underbrace{25.79 \,\mathrm{pb} + 25.79 \,\mathrm{pb} + 284.77 \,\mathrm{pb}}_{(336.35 \pm 0.09) \,\mathrm{pb}}$$

- Final result is scheme independent up to  $\mathcal{O}(\alpha_s^2)$ .
- Terms  $\mathcal{O}(\alpha_s^2) \simeq 16 \,\text{pb}$ , for this example;  $\mathcal{O}(\alpha_s^3) \simeq 0.2 \,\text{pb}$ .

S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 22 / 29

# MCFM MS vs. MCFM in MC scheme at NLO

Total cross section for DY,  $q\bar{q}$  channel, 8 TeV

|                       | $\sigma_{\sf tot}$ [pb] |
|-----------------------|-------------------------|
| MCFM (MS PDFs)        | $1344.1\pm0.1$          |
| MCFM (MC PDFs)        | $1361.6\pm0.3$          |
| PS+full NLO (MC PDFs) | $1355.9\pm0.8$          |

► The difference between fully corrected PS+NLO is at the level of 0.8% w.r.t. MCFM in MS scheme and 0.4% w.r.t. to MCFM in MC scheme.

# pT and rapidity distributions, KRKnlo vs MCFM



- Our KRKnlo on top of Sherpa LO MC,  $q\bar{q}$  chanel only.
- ► *y<sub>Z</sub>* distribution from KRKnlo agrees with MCFM at NLO.
- *p<sub>T</sub>* distribution suppressed at low *p<sub>T</sub>* due to Sudakov.
- Virtual correction spread over a range of p<sub>T</sub>.

S. Jadach (IFJ PAN, Krakow)

NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014 24 / 29

# KRKnlo vs. POWHEG and MC@NLO



25/29



- y<sub>Z</sub> and p<sub>T</sub> distributions very close to POWHEG (difference at low p<sub>T</sub> due to slightly different evolution variable)
- y<sub>Z</sub> very close to MC@NLO, same for low and intermediate p<sub>T</sub> (differences for the tail of p<sub>T</sub> distributions due to higher orders as expected)

► The above is for  $q\bar{q}$  chanel. Results for qG chanel still validated. S. Jadach (IFJ PAN, Krakow) NLO corrections in the parton shower Monte Carlo HP2 at CGG, Sept.2014

# NLO-corrected middle-of-the-ladder kernel, $C_F^2$



# 4)

# Define variable u<sub>pj</sub> for "u-ordering" in the middle of the ladder



S. Jadach (IFJ PAN, Krakow)

# Location and size of the (real) NLO correction for the ladder on the Sudakov log space







LO inclusive distribution features triple-log IR/coll. singularity, seen as a plateau in 2-dim. projection.

NLO correction IR/coll. finite, nonzero in the corner of the size  $\sim$  1.

## **Repetition of test for NLO-corrected ladder**



29/29

OLD: NLO MC vs. analyt. NLO kernels. Perfect agreement





# Repetition of test for NLO-corrected ladder



29/29

#### NEW: NLO contrib. to 1 kernel, 1 and 2 gluons with max. kT

LO+NLO (green), one insertions from 1 (blue) or 2 (red) hardest gluons



# Summary



- An alternative (to MC@NLO or POWHEG) scenario for NLO-corrected hard proc. and LO PSMC is worked out.
- Parton shower MC implementing complete NLO DGLAP in the ladders in exclusive way is progressing well.
- Long term N+NLO: NLO ladder + NNLO hard process, (but LO ladder + NLO hard proc. to be optimized first!)
- Most likely application: high quality QCD+EW+QED MC with hard process like W/Z/H boson production.
- Potential gains from new QCD methods are:
  - reducing h.o. QCD uncertainties
  - easier implementation of NLO and NNLO corrections to hard process.
  - better environment for low x resumm. (BFKL, CCFM),
  - and more...