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Colourless final states @ LHC

The production processes of colourless particles at the LHC are of prime
importance as many of them are probe the electroweak sector of the Standard
Model.

For example:

e Higgs production

e Drell-Yan

e \ector bosons pair production
o

In particular: The production of two off-shell vector bosons is important to
assess background contributions in Higgs searches.
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Note: Inclusive production of on-shell W*W- and ZZ recently computed at N°LO.
[Gehrmann, Grazzini, Kallweit, Maierhofer, von Manteuffel, Pozzorini, Rathlev, Tancredi]

[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhofer , von Manteuffel, Pozzorini, Rathlev, Tancredi,
Welihs |



Contributions @ N%LO

Double virtual

Emission and reabsorption of two virtual particles:

e Usually the bottleneck of N°LO computations.
e Recent progress in analytic tools for master integrals.

e All integrals necessary for diboson production @ N2LO are known.
[Caola, Melnikov, Henn, Smirnov]

[Gehrmann, von Manteuffel, Tancredi, Weihs]
[Duhr, Chavez]



Contributions @ N%LO

Double virtual Double real

Emission of two real particles:
e Subtraction of infrared divergences is a difficult problem.
e General methods are becoming available:

> g, subtraction, sector decomposition based methods (STRIPPER),
antenna subtraction, non-linear mappings, etc.



Contributions @ N%LO

Double virtual Double real Real-virtual

Emission of a real particle and emission + reabsorption of a virtual particle:

e Soft and collinear limits necessary for subtraction are known in principle.
[Bern, Chalmers; Kosower ; Kosower, Uwer]

e Implementation may still be challenging.



Contributions @ N%LO

Double virtual Double real Real-virtual

Here want to look at a simple physical process with two different masses in the
final states:

pp — Y*Y* in the large NF limit

Which already possesses some of the complications of the full calculation.



The large N_limit @ N*LO

The large N (= number of light-quark flavors) limit is not necessarily dominant
but can serve as an excellent means to develop analytic and numeric methods.
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The large N_limit @ N*LO

The large N (= number of light-quark flavors) limit is not necessarily dominant
but can serve as an excellent means to develop analytic and numeric methods.

Features:

e Physical (gauge invariant subset of diagrams).

e There is no real-virtual contribution.

e Double virtual is challenging but not too difficult (bubble insertions).
([

Double real consists only of the ¢ — v*v*¢'¢’ channel.
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Virtual: Reduction

Well-established method to deal with the virtual contributions:

The different integrals appearing are not independent but related by
Integration-by-parts identities (IBPs).
[Chetyrkin, Tkachov]

These identities can be used to reduce algorithmically any integral to a
linear combination of ‘master integrals’.

[Laporta]
e ‘The only thing left to do’: compute the master integrals analytically.
Some master integrals:
P1 p3 — P3 P13
® P12
D2 P4 — P4 P2 D4




Virtual: Reduction

Well-established method to deal with the virtual contributions:

e The different integrals appearing are not independent but related by
Integration-by-parts identities (IBPs).

[Chetyrkin, Tkachov]

e These identities can be used to reduce algorithmically any integral to a
linear combination of ‘master integrals’.

[Laporta]
e ‘The only thing left to do’: compute the master integrals analytically.

e We computed the master integrals in the spirit of Chavez & Duhr (direct
integration), arXiv:1209.2722, and Brown arXiv:0804.1660.

e Independent computation by Caola, Melnikov, Henn & Smirnov
(differential equations) arXiv:1404.5590, arXiv:1402.7078.



http://arxiv.org/abs/1209.2722
http://arxiv.org/abs/0804.1660
http://arxiv.org/abs/1404.5590
http://arxiv.org/abs/1402.7078

Virtual: Master integrals

Master integrals are generally complicated functions, especially when many
scales are involved.

e Expansion in € usually involves logarithms, (classical-)polylogarithms,
HPLs, etc. — Whole zoo of functions!

e These functions are not independent (but relations are very complicated).

e The symbol/coproduct approach allowed to clean up this mess a bit, by
making hidden identities among these functions explicit.

e However: there is still some arbitrariness in the choice of basis functions.

e Can we find a basis which is ‘as simple as possible’?
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Master integrals are generally complicated functions, especially when many
scales are involved.

e Expansion in € usually involves logarithms, (classical-)polylogarithms,
HPLs, etc. —» Whole zoo of functions!

e These functions are not independent (but relations are very complicated).

e The symbol/coproduct approach allowed to clean up this mess a bit, by
making hidden identities among these functions explicit.

e However: there is still some arbitrariness in the choice of basis functions.

e Can we find a basis which is ‘as simple as possible’?

ldea:

|dentify a priori a basis of functions with the correct analytic structure.




Construction of the basis

Algorithm:
e Obtain the alphabet of the symbol/coproduct for the master integrals.

> Either by direct integration, or by inspection of the differential
equations.

e A basis of function with the right analytic properties can then be
constructed recursively, weight by weight.

[Brown]

e Moreover, this basis is ‘as simple as possible’ in the sense that no linear
combination of the new functions appearing at each weight can be written
as a linear combination of product of functions of lower weight.

This restricted set of basis functions can then be studied, in order to:

e Perform the analytic continuation,
e Achieve efficient numerical evaluation.



Example: Triangles rXiv:1200.2722

It can be shown that triangles can be expressed through single-valued
functions
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It can be shown that triangles can be expressed through single-valued
functions

,< =—2Cr£8:f)€2) (—p%)““% {7’2(2)+2€Q3(z)

+ & [(% Inulno - (o) Pa(2) + 2 Q;(z)] + 0(63)} .
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Example: Triangles rXiv:1200.2722

It can be shown that triangles can be expressed through single-valued
functions

I = = pa o

+ € [(é_lnulnv E Cg)'Pg(z) +2 +O(e3)}.

In red: the single-valued basis functions.

Only 12 indecomposable basis functions.
(up to 2 loops, weight 4)
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Example: Triangles

Example of a basis function for weight 3:
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Real contributions

Production of y*y* in association with additional massless coloured particles in
the final state:

NLO NNLO q/
g q
q v q —— o
q y* q— v*

The (squared) amplitudes become singular when external particles become soft
or collinear to each other

e Integration over the phase space introduces divergences.

e These divergences need to be extracted to obtain a finite cross-section.



Kinematics |

Spin structure of the g* — q'q’ vertex puts strong constraints on the singularity
structure:

e The off-shell parent gluon controls completely the singular behaviour of the
amplitude.

e In particular: there is no single-unresolved singular limit.



Kinematics |

Spin structure of the g* — q'q’ vertex puts strong constraints on the singularity

structure:
e The off-shell parent gluon controls completely the singular behaviour of the

amplitude.
e In particular: there is no single-unresolved singular limit.

= As far as the singularity structure is concerned, we can integrate over the
phase-space of the final-state quarks:
off-shell gluon o
0

Ale —_—
/dq)g*—>q’q’ — 5 ()1)+€ ‘

e Full kinematics will be restored in a second time.



Kinematics |l

pgr = (1 —2) [(1 — A\)p1
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Kinematics |l

4 pgx = (1 — 2) [(1 — A)p1
1—p(1—2)(1-=X)
; ; TAT T 0 - e
+1/spA(1 = \) eT]
N . (z, A\, p €10,1])

Singular limits: \ — 0 : pg* || p1 (coll.)
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Kinematics |l

T e =(1-2)|(1=N;

1= p(1—2)(1 =N
] AT A

q q
+1/spA(1 = \) eT]
A pelo
,y . Gapeb)
Singular limits: \ — 0 : pg* || p1 (coll.)
A—1 : Py~ || P2 (coll.)

p—1 : pz* =0 (massless)




Kinematics |l

pg- = (1 —2) {(1—A)p1
1 — p(1 -z}
1—(1— 2=

+1/spA(1 = \) eT]

+ A

(2, A, p € [0,1])
Singular limits: \ — 0 : pg* || p1 (coll.)
A—1 : pg= || P2 (coll.)
p—1 : pg* =0 (massless)

z—1 : pgr =0 (soft)




Asymptotic behaviour

It is a well-known fact that amplitudes factorize in singular limits:
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Asymptotic behaviour

It is a well-known fact that amplitudes factorize in singular limits:

s(1 = 5)9251 N :O::

The Si.k___ are universal functions, in the sense that they are identical among all
colouriess final-states.

[Catani, Grazzini]

Here, we use a pragmatic approach to extract the singularities:
e Parameterize the phase-space.
e Subtract the residue at every singular limit.

e Integrate the counterterms analytically.
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Subtraction
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e Singular limits commute — counter-terms combine in a non trivial
way.
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Subtraction

/ dZd)\dp% {
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Subtraction

/ dZd)\dp% {
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e Singular limits commute — counter-terms combine in a non trivial
way.



Subtraction

/ dszdpf’;') ' jﬁ

—p

2 2

s(1 — 2)2A — s(1—2)%2(1—=X) o
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e Singular limits commute — counter-terms combine in a non trivial
way.
e No explicit subtraction of the soft limit is needed.



Integrated counterterms |

The triple-collinear counterterms can be integrated analytically:

(.l

Sg+q —
/ O et ' @)W
as\2 12\ (1)

as 9 2 2€
(?) (’%) /dz G%?Q(z) oro(p1, 2p2)

The functions G are identical for every colourless final-state.

2

For the other leg:

e However: they are parameterization dependent.

e Same form as the PDF convolutions — analytic cancellation of e-poles.



Integrated counterterms li
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Integrated counterterms llI

The final-state collinear counterterms can be integrated together

/ dzd)\dp—{ = x | T

2

X

1 — z
NLO real subtracted

Sg(j ‘ 1 g 2 /
- &(?)/‘N”“NWO@
NLO real subtracted, with modified measure:
1 oy 5 S
dPnro = —=— [ d®PNnro | 7 —log | = f
6 m 3 7
In summary:

e Very small number of counterterms.

Poles can be cancelled analytically — 4-dimensional scheme!

Universality of singular limits — valid for all colourless final-
states.



Fully differential subtraction

Restore the full kinematics by extending parametrization to the final-state
quarks, while keeping

Dq’ —|—pq/ = Pg*

e Singularity structure remains the same
e Triple-collinear counterterms: Singular limits are slightly more complicated

but factorization is identical.
e Factorization in the final-state collinear limits gets modified because of spin

correlations:
M v
SHY

[ e = (GO

Consistent: All integrated counterterms are identical.
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Results

Implemented in a new Monte Carlo program (— framework !)
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e The corrections turn out to be very small (1-2%) in the large N_limit.
e Scale variation decreases, but not drastically.
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Results: Differential distributions
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Negligible effect on differential distributions.
Good convergence of the integrals, even at the differential level:
> You get disgusting plots in ~5 min, and nice plots in ~20 min on a

desktop computer.




Results: Jets
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e Interestingly the N2LO N piece decreases the 1-jet cross section.




Summary

We looked at a simple N2LO computation with two massive particles in the final
state (with different masses), as a means to develop analytic and numeric
methods.

Double virtual:

e Understanding of the analytic structure a priori, allows to identify the
natural space of functions in which our master integrals are expressible.

e Can be extended to basically any class of master integral, but construction
of the basis becomes increasingly complicated.

Double real:
e Fully differential subtraction with low number of counterterms.
e Analytic integration of counterterms — 4-dimensional scheme.

e However, does not face the most challenging issues of double real
computations...
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