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Colourless final states @ LHC
The production processes of colourless particles at the LHC are of prime 
importance as many of them are probe the electroweak sector of the Standard 
Model. 

For example:
● Higgs production
● Drell-Yan
● Vector bosons pair production
● …

In particular: The production of two off-shell vector bosons is important to 
assess background contributions in Higgs searches.
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Note: Inclusive production of on-shell W+W- and ZZ recently computed at N2LO.
[Gehrmann, Grazzini, Kallweit, Maierhofer, von Manteuffel, Pozzorini, Rathlev, Tancredi]

[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer , von Manteuffel, Pozzorini, Rathlev, Tancredi, 
Weihs ]



Emission and reabsorption of two virtual particles:

● Usually the bottleneck of N2LO computations.

● Recent progress in analytic tools for master integrals.

● All integrals necessary for diboson production @ N2LO are known.
[Caola, Melnikov, Henn, Smirnov]

[Gehrmann, von Manteuffel, Tancredi, Weihs]
[Duhr, Chavez]

Contributions @ N2LO

Double virtual



Emission of two real particles:

● Subtraction of infrared divergences is a difficult problem.

● General methods are becoming available:
➢ qT subtraction, sector decomposition based methods (STRIPPER), 

antenna subtraction, non-linear mappings, etc.
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Emission and reabsorption of two virtual particles:

● Usually the bottleneck of NNLO computations.

● Recent progress in analytic tools for master integrals.
[Caola, Melnikov, Henn, Smirnov]

[Gehrmann, von Manteuffel, Tancredi, Weihs]
[Duhr, Chavez]

Contributions @ N2LO

Real-virtualDouble realDouble virtual

Here want to look at a simple physical process with two different masses in the 
final states:

pp → ɣ*ɣ* in the large NF limit

Which already possesses some of the complications of the full calculation.
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The large NF (= number of light-quark flavors) limit is not necessarily dominant 
but can serve as an excellent means to develop analytic and numeric methods.
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The large NF limit @ N2LO
The large NF (= number of light-quark flavors) limit is not necessarily dominant 
but can serve as an excellent means to develop analytic and numeric methods.

Features:
● Physical (gauge invariant subset of diagrams).
● There is no real-virtual contribution.
● Double virtual is challenging but not too difficult (bubble insertions).
● Double real consists only of the                           channel.



Virtual: Reduction
Well-established method to deal with the virtual contributions:

● The different integrals appearing are not independent but related by 
Integration-by-parts identities (IBPs).

[Chetyrkin, Tkachov]

● These identities can be used to reduce algorithmically any integral to a 
linear combination of ‘master integrals’.

[Laporta]

● ‘The only thing left to do’: compute the master integrals analytically.

Some master integrals:
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Well-established method to deal with the virtual contributions:

● The different integrals appearing are not independent but related by 
Integration-by-parts identities (IBPs).

[Chetyrkin, Tkachov]

● These identities can be used to reduce algorithmically any integral to a 
linear combination of ‘master integrals’.

[Laporta]

● ‘The only thing left to do’: compute the master integrals analytically.

● We computed the master integrals in the spirit of Chavez & Duhr (direct 
integration), arXiv:1209.2722, and Brown arXiv:0804.1660.

● Independent computation by Caola, Melnikov, Henn & Smirnov 
(differential equations) arXiv:1404.5590, arXiv:1402.7078.

http://arxiv.org/abs/1209.2722
http://arxiv.org/abs/0804.1660
http://arxiv.org/abs/1404.5590
http://arxiv.org/abs/1402.7078


Virtual: Master integrals
Master integrals are generally complicated functions, especially when many 
scales are involved.

● Expansion in ε usually involves logarithms, (classical-)polylogarithms, 
HPLs, etc. → Whole zoo of functions!

● These functions are not independent (but relations are very complicated).

● The symbol/coproduct approach allowed to clean up this mess a bit, by 
making hidden identities among these functions explicit.

● However: there is still some arbitrariness in the choice of basis functions. 

● Can we find a basis which is ‘as simple as possible’?



Virtual: Master integrals
Master integrals are generally complicated functions, especially when many 
scales are involved.

● Expansion in ε usually involves logarithms, (classical-)polylogarithms, 
HPLs, etc. → Whole zoo of functions!

● These functions are not independent (but relations are very complicated).

● The symbol/coproduct approach allowed to clean up this mess a bit, by 
making hidden identities among these functions explicit.

● However: there is still some arbitrariness in the choice of basis functions. 

● Can we find a basis which is ‘as simple as possible’?

Idea:

Identify a priori a basis of functions with the correct analytic structure.



Construction of the basis
Algorithm:
● Obtain the alphabet of the symbol/coproduct for the master integrals.

➢ Either by direct integration, or by inspection of the differential 
equations.

● A basis of function with the right analytic properties can then be 
constructed recursively, weight by weight.

[Brown]

● Moreover, this basis is ‘as simple as possible’ in the sense that no linear 
combination of the new functions appearing at each weight can be written 
as a linear combination of product of functions of lower weight.

This restricted set of basis functions can then be studied, in order to:
● Perform the analytic continuation,
● Achieve efficient numerical evaluation.



It can be shown that triangles can be expressed through single-valued 
functions

Example: Triangles arXiv:1209.2722
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It can be shown that triangles can be expressed through single-valued 
functions

Example: Triangles

In red: the single-valued basis functions.

Only 12 indecomposable basis functions.
(up to 2 loops, weight 4)

arXiv:1209.2722

http://arxiv.org/abs/1209.2722
http://arxiv.org/abs/1209.2722


Example: Triangles
Example of a basis function for weight 3:



Real contributions
Production of ɣ*ɣ* in association with additional massless coloured particles in 
the final state:

The (squared) amplitudes become singular when external particles become soft 
or collinear to each other

● Integration over the phase space introduces divergences.

● These divergences need to be extracted to obtain a finite cross-section.

NLO NNLO



Kinematics I
Spin structure of the g* → q’q’ vertex puts strong constraints on the singularity 
structure:
● The off-shell parent gluon controls completely the singular behaviour of the 

amplitude.

● In particular: there is no single-unresolved singular limit.



Kinematics I
Spin structure of the g* → q’q’ vertex puts strong constraints on the singularity 
structure:
● The off-shell parent gluon controls completely the singular behaviour of the 

amplitude.

● In particular: there is no single-unresolved singular limit.

⇒ As far as the singularity structure is concerned, we can integrate over the 
phase-space of the final-state quarks:

off-shell gluon

● Full kinematics will be restored in a second time.
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It is a well-known fact that amplitudes factorize in singular limits:

The Sijk… are universal functions, in the sense that they are identical among all 
colourless final-states.

[Catani, Grazzini]

Asymptotic behaviour

Here, we use a pragmatic approach to extract the singularities:

● Parameterize the phase-space.

● Subtract the residue at every singular limit.

● Integrate the counterterms analytically.
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Subtraction

● Singular limits commute → counter-terms combine in a non trivial 
way.

 

● No explicit subtraction of the soft limit is needed.



Integrated counterterms I
The triple-collinear counterterms can be integrated analytically:

For the other leg:

● The functions G are identical for every colourless final-state.

● However: they are parameterization dependent.

● Same form as the PDF convolutions → analytic cancellation of ε-poles.



Integrated counterterms II



Integrated counterterms III
The final-state collinear counterterms can be integrated together

NLO real subtracted

NLO real subtracted, with modified measure:

● Very small number of counterterms.
● Poles can be cancelled analytically → 4-dimensional scheme!
● Universality of singular limits → valid for all colourless final-

states.

In summary:



Fully differential subtraction
Restore the full kinematics by extending parametrization to the final-state 
quarks, while keeping

● Singularity structure remains the same
● Triple-collinear counterterms: Singular limits are slightly more complicated 

but factorization is identical.
● Factorization in the final-state collinear limits gets modified because of spin 

correlations:

Consistent: All integrated counterterms are identical.



Results
Implemented in a new Monte Carlo program (→ framework !)

● The corrections turn out to be very small (1-2%) in the large NF limit.
● Scale variation decreases, but not drastically.



Results: Differential distributions

● Negligible effect on differential distributions.
● Good convergence of the integrals, even at the differential level:

➢ You get disgusting plots in ~5 min, and nice plots in ~20 min on a 
desktop computer.



Results: Jets

● Interestingly the N2LO NF piece decreases the 1-jet cross section. 



Summary
We looked at a simple N2LO computation with two massive particles in the final 
state (with different masses), as a means to develop analytic and numeric 
methods.

Double virtual: 
● Understanding of the analytic structure a priori, allows to identify the 

natural space of functions in which our master integrals are expressible.

● Can be extended to basically any class of master integral, but construction 
of the basis becomes increasingly complicated.

Double real:

● Fully differential subtraction with low number of counterterms.

● Analytic integration of counterterms ↦ 4-dimensional scheme.

● However, does not face the most challenging issues of double real 
computations…

✰ huhu



Thank you for your 
attention


