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» matrix elements are known for o** and o®V for many processes
p ¢"Vis known for many 0—4 parton, V+3 parton processes - higher

multiplicities are on the horizon
p the three contributions are separately divergent in d = 4 dimensions:

in o*R kinematical singularities as one or two partons become
unresolved yielding e-poles at O(e™, €73, €2, €1) after
integration over phase space, no explicit €-poles
in oV kinematical singularities as one parton becomes unresolved
yielding e-poles at O(e4, €') after integration over phase space
+ explicit e-poles at O(e?, €™)
in 0¥V explicit e-poles at O (e, €3, €2, €1)

How to combine to obtain finite cross section?

personal opinion: general solution is not yet available
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Approaches

> Sector decomposition
Anastasiou, Melnikov, Petriallo et al 2004-

~ Antennae subtraction
Gehrmann, Gehrmann-De Ridder, Glover et al 2004-

~ gt-subtraction
S. Catani, M. Grazzini et al 2007-

> Sector-improved phase space for real radiation
(STRIPPER) Czakon et al 2010-

~ Completely Local Subtractions for Fully Differential
Predictions at NNLO (Colorful NNLO)

Somogyi, TZ et al 2005-

~ For details see: NNLO Ante Portas (LHCPhenonet
Summer School in Hungary, June 2014)

http://www.lhcphenonet.eu/debrecen2014/
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Several options available - why a new one?
Our goal is to devise a subtraction scheme with

v fully local counter-terms (efficiency and
mathematical rigor)

v fully differential predictions

v explicit expressions including flavor and color
(color space notation is used)

v completely general construction (valid in any
order of perturbation theory)

v option to constrain subtraction near singular
regions (important check)
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e Universal IR structure of QCD (squared) matrix elements

- €-poles of one-loop amplitudes:
1

MG ({p}) = =511 (e {ph) M ({p})) + O")
GRS RS RIS
| k#£1 |

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000
- €-poles of two-loop amplitudes:

MP ({p})) =
—% (10 (e (pHIMD () + 1 (e {pHIMD ({p})) ) + O(")

S. Catani 1998, 6. Sterman, M.E.Tejeda-Yeomans 2003, S. Moch, M. Mitov 2007
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singularities (using a physical gauge)
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Extension over whole phase space using momentum mappings

(not unique):

{p}n—l—s — {ﬁ}n

|4



Momentum mappings
{p}n—l—s — {ﬁ}n

implement exact momentum conservation
recoil distributed democratically

= can be generalized to any number s of

unresolved partons
different mappings for collinear and soft limits
- collinear limit pillpr:  {p},,.; Sir, £5101)

- soft limit ps —0: (P}, == {p})
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Momentum mappings

define subtractions

VV _ _NNLO NNLO —I—O'NNLO

NNLO = _RR RV
o — O-m—‘,—2 T Jm—l—l -+ Om == Om—l—2 -+ O-m—l—l m

NNLO _ RR RR,A, RR,A4 RR, A5
Om+2 = / i {d0m+2jfm+2 —do, 5 Im — (d0m+2 m+1 = doy, 5o I
m

NNLO :/ {(dgi\il_l_/ dgii’fl)Jerl—[dai\i’fl—l—(/daii?l)Al}Jm}
m-+1 1 -

m 2 1 1

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, 6. Somogyi, ZT hep-ph/0702273



Regularized RR and RV contributions

can now be computed by numerical

Monte Carlo integrations

NNLO = _RR RV VV _ _NNLO NNLO NNLO
o — O-m—‘,—2 T O-m—l—l -+ Om == Om—l—2 -+ Om—l—l -+ Om

NNLO RR RR,A RR,A RR,A
Omts = / {d0m+2jm+2 —do,, 5y — (d0m+2 ‘g1 —doy, 12Jm) }
m—+2
NNLO - RV RR7A1 RV7A1 RR7A1 A
Ol = / { (d0m+1+/ do,, s )Jm+1— [damJrl + do,, s "
m4-1 1 1

m 2 1 1

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, 6. Somogyi, ZT hep-ph/0702273
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Integrated approximate xsections

NNLO _ _RR RV VV _ _NNLO NNLO NNLO
o) _O-m—l—Q_I_O-m—I—l_'_O-m _O-m—|—2 _|_Um+1 _|_O'm

NNLO RR RR,A RR,A RR,A
m-+2
NNLO RV RR,A; RV,A; RR,A; \ A
Ol = / { (d0m+1+/ do,, 5 )Jm—l—l_ {dJerl - do,, 5 H
m-+1 1 1

m 2 1 1

After integrating over unresolved momenta & summing
over unresolved flavors, the subtraction terms can be
written as products of insertion operators (in color
space) and lower point cross sections:

[ e A = 10((p)€) @ o

p
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Integrated approximate xsections

[agt— | 06,0110 Zm{p})}

/ {d%({p} D)[dpi] 3 (8mauu®)” Singa(pi?) ® MO ({5})P

— (87Tozsu2€)p Z

R

— (87Tozsu2€)p Z

R

\ .

R

_/[dp(R)]Sng( (R))

_J P

_/[dp(R)]Sng( (R))

- J P

_J/

N

13 ({p},; )
the integrated counter-terms [X

® den, ({5} ) |IMD ({51

® doB

n

Roc/dp(R) Singr(p (R) ) are
p

independent of the process & observable
= need to compute only once (admittedly cumbersome, though)
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Summation over unresolved flavors

» integrated counter-terms [X]i.. carry flavor
indices of unresolved patrons

= heed to sum over unresolved flavors:

technically simple, though tedious, result can be
summarized in flavor-summed integrated counter-

terms | . .
P. Bolzoni, 6. Somogyi, ZT arXiv:0905.4390

4 symbolically:

» and precisely for instance, two-flavor sum:

(...)
. S 2 =3 ()

(o) Dmt2 T {m}




Computing the integrals

» Use algebraic and symmetry relations to reduce to
a basic set = MI's (but no IBP was used)

» two strategies:
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finite parametric integrals

24
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variables

. resolve e-poles by sector
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pole coefficients are finite
parametric integrals



Computing the integrals

» Use algebraic and symmetry relations to reduce to
a basic set = MI's (but no IBP was used)

» two strategies:
.write phase space using angles 1. choose explicit parametriz-

and energies ation of phase space
.angular integrals in ferms of 2.write the parametric integral
MB representations representation in chosen
.resolve e-poles by analytic variables
continuation 3. resolve e-poles by sector
. MB integrals -> Euler-type decomposition
integrals, pole coefficients are 4. pole coefficients are finite
finite parametric integrals parametric integrals

5. evaluate parametric integrals of pole coefficients in
terms of multiple polylogs, optional: simplify result

25



Status of integrals

Int status Int status Int status Int status Int status
I@)O v ?s,o : ?afs,o : Iilz(c/)l v ?5,1 :
(k) (k,1)
IlC,l v 113,1 ( 3) ) %gl I12c,2 v 123,2 ’
(k) v 18,2 m > I1a9,2 % LK) L 25 3
1C,2 (k) v 12C 3 7 v
(k) Lis 3 Tiesz v (k,1) 25,4
T v ’ ’ 7k v v
%%3 Tisa v Tiesa v ﬁ)c 4 T2s 5
Lica v IT1ss Vv Lire 5 m=2:v/X Isspe v
(k,1) (k) T v
Lics Vv Iise Vv Tinee v 25,7 g
Tk Iis7 Vv 7(k) v Irs s
1C,6 ’ 12C,7
Insoe Vv
I(k) v I(k) v ’
1C,7 12C .8 Irs10 Y
K
Ticg Vv I§2)c,9 d Insa1 Y
(k) v
Tire 0 v 125 12
Iys13 v
T v
Int status Int status Int status Int status 25,14
) Q) G5, hm) ® fasis Y
Iirs1 Y Iiresy Y Lcq’ v Lysa * Ios16 v
(k) Usk,l,m) (k)
Tias 2 v ?2(5,2 “: Iy 5 v Toes Ipsir v
(k) (,k,l,m) (k) Z v
1125,3 v 12653 I2c,3 v Izcs,s v 122’18 X
(k) (J,k,I,m) (k) 258,19
1128,4 v Izc,4 X I2GS,4 v Tos oo VY
(k) U,k,l,m) (k) ’
I123,5 v Izc,s X Izas,s v Irs 21 v
Tiose v Iéé’,lé v Irsp2 ¥
Tios7 v Iospz Vv
1125 8 v
Ti2s9 Y
Tios,10 ¥ . . . . .
o, Y:pole coefficients are known analytically, finite numerically
sie v X:pole coefficients are known up to O(€'), rest numerically
Tios 13 Vv

26



Structure of insertion operators
recall general form for Born sections

RR,A, _ 7(0 , B
/p oAy = IO ({p} ;¢ @ do?

Insertion operators involve all possible color
connections with given number of unresolved
patrons with kinematic coefficients

for 1 unresolved parton on tree SME |M©|2:
2

(0)({p}m+1’ )_ (g Se <%> Z C(O)TQ_l_Zs(O) (7, k’)T Tk

kinematic functions con’ram poles s’ram‘mg from

O(e?) for collinear and from O(e™) for soft
G. Somogyi, ZT hep-ph/0609041
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Structure of insertion operators
recall general form for Born sections

[ deA = 10((p):€) @ o

p

for 2 unresolved patrons on tree SME |M©)]2;

I(O)({p}m, €) = {%S (52) } {Z {C(O) T2"‘ZC;O}JC TQ}TQ
N Z {Sm) Gy 4 Z Cs)0 z>Tz}

+ > Séo)’(z’k)(J’l){TiTk,TjTl}}
1,k,7,l

the iterated doubly-unresolved has the same

color structure, kinematic coefficients differ

G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919
28



Structure of insertion operators

general form at one loop

/ doj ot =10 ({p},6) @ doy, + I ({p},;€) @ do
1

for 1 unresolved parton on loop SME |MW|2:

e 2\ €72 7;
I ({p} ;) = [%SG (”—2> ] Y [Cf}iOAT?JrZSf)’( 1 G\ T,

()

) iak.al a C
> SN fa T
/ [ a,b,c
k.

present for m > 3 (four or more hard patrons)

only non-abelian contributions

G. Somogyi, ZT arXiv:0807.0509
29



Structure of insertion operators
singly-unresolved integrated singly unresolved:

/1(/1(1‘75;1§ )Al B {%{Ig())({p}m;G)aIgg)({p}m;E)} +I§?io)({p}m;e)} ®d<7,,]i

with only non-abelian contributions on iterated I:

2\ €712
10 ({p} i) = {O‘SS (Qg) } Z[C&%%C URDIL “‘“CATz’Tk}

kinematic functions contain poles s’rarhng from
O(€™3) only

G. Somogyi, ZT arXiv:0807.0509
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Structure of insertion operators

the color structures are independent of the
precise definition of subtractions (momentum
mappings), only subleading coefficients of e-
expansion in kinematic functions may depend

we computed all insertion operators (defined in our
subtraction scheme) up to O(e™2) for arbitrary m
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Cancellation of poles

we checked the cancellation of the leading and
first subleading poles (defined in our subtraction
scheme) for arbitrary m

for m=2,

» the insertion operators are independent of the
kinematics (momenta are back-to-back, so
MTI's are needed at the endpoints only)

» color algebra is trivial: T:T; = —-T; = —T3 = —Cr

so can demonstrate the cancellation of poles

33



Example: H—bb at p = my
oNNLO /m {doy¥ + /2 donii? — dop | + /1 ot + ( /1 donia )M | o

2 2 2
S 20 11CAC C 1
davvbb (04 (e )> 4B bb{ F < ACFE 602 an>

2 €4 4 2 €

[ 8 7T2 17 2 QCan 1
+ _(9 12>OACF (7—27{' )CF_ 9 ]62

[ 1 1 1 1
(859 0y (190 i) g+ B 1)

216 2 8 108
C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368

2 2
A ozs(u2) B —2C% 11CACr 5 COrng\ 1
Z/da ; ( 27 > dUH_)bb{ et T\ 4 —6CF + 2 e3

| 2 1 2 1
€

| 1
+ | — 3.36424CA CF + 22.9414CF — O.6018520an] —}
€
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Example: H—bb at p = my
oNNLO /m {doy¥ + /2 donii? — dop | + /1 ot + ( /1 donia )M | o

2\ 2 2
o 2C 11CAC C 1
AoV (C“ (M)> 4B bb{ F ( ACE | 6oz an>

2 et 4 2 €

[ 8 7T2 17 QCan 1
— a4 9 2 (2 _
+_(9+12>CACF+<2 W>CF 9 L?

€
C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368

2 2
A as(,u?) B —2C%H 11CACr 5  Crng\ 1
Z/da ; ( 2 ) dgH_)bb{ et T\ 4 —6CF + 2 €3
| 8 2 17 2C 1
-+ (--—W—>CACF—|—<—7—I—27T2>C§—|— an]

: 1
+ | — 3.36424C CF + 22.9414C2 — 0.601852(1an] }

€

' 1
+ [3.36429C s C — 22.9430C2 + 0.601851] —}
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Message:
the method works, try to apply
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Example: H—bb at p = my

Fnax in 2-jet rate with Jade clustering at ¢y, = 0.1
| | | | | | | | |

I i I

fraction of events
-
(@)

NNLO
NLO

0.5 0.51 0.92 0.53 0.54 0.5
Emax/mH

Energy spectrum of the leading jet in the rest frame of the Higgs
boson. Jets are clustered using the JADE algorithm with ycu+ = 0.1
AHL = C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368
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Example: H—bb at p = my

\ J

Elhax in 2-jet rate with Jade clustering at ye. = 0.05 Elnax in 2-jet rate with Durham clustering at ye = 0.1
I | I | I | I | I JS L L L L LN L L LI LI
” 1.0 _— """ -== 10 __ ” 1.0 __" -==1LO |

= — NNLO = — NNLO

C 0.8 Fmges NLO —] S 08 pF= NLO —]
D) = : — B B =
B 06 = 4 — = 06 - : —
- B 7 = B .
S 04 |- - 2 04 7
H&_—j 02 —  Boooooooco—ooooooodo — Lb 02 - Hoooaso00 _
. | | | - L ! : : : :E|1|.| T 1 I L L L -
=S = I S S =
27 — 17 05 =
I | L ' ' I I I O T R T T

0.5 0.51 0.52 0.53 0.54 0.55 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

Emax/mH Emax/mH

Energy spectrum of the leading jet in the rest frame of the Higgs
boson.

left: jets are clustered using the JADE algorithm with yc.+ = 0.05
right: jets are clustered using the Durham algorithm with yc.+= 0.1
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Conclusions

L
v Defined a general subtraction scheme for computing

NNLO fully differential jet cross sections (presently only
for processes with no colored particles in the initial state)

v/ Subtractions are

v fully local

v exact and explicit in color (using color state
formalism)

v Demonstrated the cancellation of €-poles for m=2

v First application: Higgs-boson decay into a b-quark pair
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