Higgs-continuum and Higgs-Higgs interference effects in $gg \rightarrow VV$

Nikolas Kauer in collaboration with Claire O'Brien Royal Holloway, University of London

High Precision for Hard Processes (HP2) Galileo Galilei Institute, Florence September 4, 2014

Outline

• Overview

- $gg \rightarrow H \rightarrow ZZ, WW$: sizeable off-shell Higgs signal contribution with large signal-background interference
- Interference effects for semileptonic decay modes
- Heavy Higgs light Higgs background interference effects
- Summary

SM Higgs boson production and decay at the LHC

Discovery publications:

ATLAS, Observation of a new particle in the search for the SM Higgs boson ..., Phys. Lett. B 716 (2012) 1.

CMS, Observation of a new boson at a mass of 125 GeV ..., Phys. Lett. B 716 (2012) 30.

And many papers with updates and more detailed characterisation (couplings, spin/CP), e.g.:

ATLAS, Measurements of Higgs boson production and couplings in diboson final states ..., Phys. Lett. B **726** (2013) 88; ATLAS, Updated coupling measurements of the Higgs boson ..., ATLAS-CONF-2014-009; ATLAS, Evidence for the spin-0 nature of the Higgs boson ..., Phys. Lett. B **726** (2013) 120.

CMS, Observation of a new boson with mass near 125 GeV ..., JHEP **1306** (2013) 081; CMS, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. **110** (2013) 081803; CMS, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D **89** (2014) 092007.

SM Higgs boson production and decay at the LHC

Experimental studies have been informed by numerous theoretical papers (too many to list), summarised in Higgs physics reviews, e.g.:

A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1.

A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1.

A. Djouadi, Higgs Physics: Theory, Pramana 79 (2012) 513.

D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 1210 (2012) 196.

L. Reina, TASI 2011: lectures on Higgs-Boson Physics, arXiv:1208.5504 [hep-ph].

S. Dittmaier and M. Schumacher, The Higgs Boson in the Standard Model - From LEP to LHC: Expectations, Searches, and Discovery of a Candidate, Prog. Part. Nucl. Phys. 70 (2013) 1.

Higgs Working Group Report of the Snowmass 2013 Community Planning Study, arXiv:1310.8361 [hep-ex].

J. Ellis, Higgs Physics, arXiv:1312.5672 [hep-ph].

H. E. Logan, TASI 2013 lectures on Higgs physics within and beyond the Standard Model, arXiv:1406.1786 [hep-ph].

and the LHC Higgs Cross Section Working Group reports (also other WGs, see above):

LHC Higgs Cross Section WG, *Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables*, CERN-2011-002. LHC Higgs Cross Section WG, *Handbook of LHC Higgs Cross Sections: 2. Differential Distributions*, CERN-2012-002. LHC Higgs Cross Section WG, *Handbook of LHC Higgs Cross Sections: 3. Higgs Properties*, CERN-2013-004. LHC Higgs Cross Section WG, Interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [hep-ph].

bottom line: no compelling Standard Model deviations found so far, search continues in Run 2

$gg \rightarrow H \rightarrow ZZ, WW$: sizeable off-shell Higgs signal with large signal-background interference

• $gg \rightarrow H \rightarrow VV \rightarrow 4\ell$ and $2\ell 2\nu$ signal-background interference very well studied at LO: Glover, van der Bij (1989); Kao, Dicus (1991); Binoth, Ciccolini, NK, Krämer (2006) (gg2WW); Campbell, Ellis, Williams (2011) (MCFM); NK (2012) (gg2VV); NK, Passarino (2012); Campanario, Li, Rauch, Spira (2012); Bonvini, Caola, Forte, Melnikov, Ridolfi (2013); Caola, Melnikov (2013); NK (2013) (gg2VV); Campbell, Ellis, Williams (2013) (MCFM); Campbell, Ellis, Williams (2014) (MCFM); related interference effects: Bredenstein, Denner, Dittmaier, Weber (2006) (PROPHECY4f); YR3: Denner, Dittmaier, Mück (2013) and Anderson, Bolognesi, Caola, Gao, Gritsan, Martin, Melnikov, Schulze, Tran, Whitbeck, Zhou (2013); Chen, Cheng, Gainer, Korytov, Matchev, Milenovic, Mitselmakher, Park, Rinkevicius, Snowball (2013); Chen, Vega-Morales (2013)

- tools: MCFM-6.8, gg2VV-3.1.7 (parton-calculators and event generators)
- loop technology closing in on NLO calculation (bottleneck: heavy quark loop) Zurich and Karlsruhe groups
- gluon-fusion Higgs production and semileptonic decay: Dobrescu, Lykken (2010); Lykken, Martin, Winter (2012); Kao, Sayre (2012); ATLAS arXiv:1206.2443; ATLAS arXiv: 1206.6074; CMS PAS HIG-13-008

• □ ▶ < 同 ▶ < 三 ▶ </p>

Charged currents (representative Feynman graphs)

signal loop background tree background

new feature of signal-background interference: large tree-level graphs contribute

part of $pp \to (W \to \ell \bar{\nu})$ +2 jet @ LO and $pp \to W \to \ell \bar{\nu}$ @ NNLO

Similarly: Neutral currents (representative Feynman graphs)

$$gg \to H \to ZZ \to \ell \bar{\ell} q \bar{q}$$

Processes

$$\begin{array}{l} gg \to H \to W^- W^+ \to \ell \bar{\nu}_\ell q_u \bar{q}_d \\ gg \to H \to W^+ W^- \to \bar{\ell} \nu_\ell \bar{q}_u q_d \\ gg \to H \to ZZ \to \ell \bar{\ell} q_u \bar{q}_u \\ gg \to H \to ZZ \to \ell \bar{\ell} \bar{\ell} q_d \bar{q}_d \end{array}$$

Input parameters and settings

 $pp, \sqrt{s} = 8$ TeV, $M_H = 126$ GeV, other: default settings of gg2VV-3.1.6

Selection cuts

"minimal cuts": $p_{Tj} > 4 \text{ GeV}, p_{T\ell} > 4 \text{ GeV}$, for ZZ also: $\Delta R_{q\bar{q}} > 0.4, M_{q\bar{q}} > 4 \text{ GeV}, M_{\ell\bar{\ell}} > 4 \text{ GeV}$

LHC cuts: minimal cuts & $p_{T\ell} > 20 \text{ GeV}, p_{Tj} > 20 \text{ GeV}, p_T > 20 \text{ GeV}, |\eta_\ell| < 2.5, |\eta_j| < 4.5$

background suppression cuts: LHC cuts & $M_V - 5\Gamma_V < M_{jj} < M_V + 5\Gamma_V$

no jet clustering, technical cut: $p_{TV} > 1$ GeV to exclude numerical instabilities $\rightarrow \approx 0.3\%$ uncertainty on σ

Integrated results

using standard multi-channel phase space sampling and FeynArts/FormCalc/LoopTools adapted amplitude code, various tests

$$\mathcal{M} = \mathcal{M}_{signal} + \mathcal{M}_{background} = \mathcal{M}_{signal} + \mathcal{M}_{loop} + \mathcal{M}_{tree}$$

Notation for amplitude contributions to cross sections:

12

$$S \sim |\mathcal{M}_{signal}|^{2}$$

$$B_{full} \sim |\mathcal{M}_{background}|^{2} = |\mathcal{M}_{loop} + \mathcal{M}_{tree}$$

$$B_{loop} \sim |\mathcal{M}_{loop}|^{2}$$

$$B_{tree} \sim |\mathcal{M}_{tree}|^{2}$$

$$I_{full} \equiv I \sim 2 \operatorname{Re}(\mathcal{M}_{signal}^{*}\mathcal{M}_{background})$$

$$I_{tree} \sim 2 \operatorname{Re}(\mathcal{M}_{signal}^{*}\mathcal{M}_{tree})$$

N. Kauer Higgs-continuum and Higgs-Higgs interference effects in $gg \rightarrow VV$ HP2 @ GGI Florence 4 Sep 2014 8 / 24

Integrated results for $gg \to H \to W^-W^+ \to \ell \bar{\nu}_\ell q_u \bar{q}_d$ (minimal cuts):

$ \mathcal{M} ^2$	σ [fb]
S	49.1(2)
I_{tree}	-1.91
I_{full}	-8.02
$S + I_{tree}$	47.21(6)
$S + I_{full}$	41.1(1)
$ S + I_{full} /S$	0.84
$ S + I_{tree} /S$	0.96

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$6.73(4) \cdot 10^4$
B_{tree}	$6.84(6) \cdot 10^4$
B_{loop}	59.1(3)
$B_{full}/(B_{tree}+B_{loop})$	0.98

Integrated results for $gg \to H \to W^-W^+ \to \ell \bar{\nu}_\ell q_u \bar{q}_d$ (LHC cuts):

$ \mathcal{M} ^2$	σ [fb]
S	3.467(5)
I_{tree}	0.0
I_{full}	-4.01
$S + I_{tree}$	3.46(2)
$S + I_{full}$	-0.550(5)
$ S + I_{full} /S$	0.15
$ S + I_{tree} /S$	1

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$5.29(1) \cdot 10^3$
B_{tree}	$5.315(8) \cdot 10^3$
B_{loop}	28.6(1)
$B_{full}/(B_{tree}+B_{loop})$	0.98

Integrated results for $gg \to H \to W^-W^+ \to \ell \bar{\nu}_\ell q_u \bar{q}_d$ (bkg. suppression cuts):

$ \mathcal{M} ^2$	σ [fb]
S	2.184(1)
I_{tree}	-0.024
I_{full}	-3.8
$S + I_{tree}$	2.16(2)
$S + I_{full}$	-1.650(6)
$ S + I_{full} /S$	0.75
$ S + I_{tree} /S$	0.99

$ \mathcal{M} ^2$	σ [fb]
$B_{f_{2l}ll}$	802(2)
B_{tree}	796(1)
B_{loop}	27.2(1)
$B_{full}/(B_{tree}+B_{loop})$	0.97

Integrated results for $gg \to H \to W^+W^- \to \bar{\ell}\nu_\ell \bar{q}_u q_d$ (minimal cuts):

$ \mathcal{M} ^2$	σ [fb]
S	48.94(8)
I_{tree}	-1.47
I_{full}	-7.84
$S + I_{tree}$	47.16(9)
$S + I_{full}$	41.1(1)
$ S + I_{full} /S$	0.84
$ S + I_{tree} /S$	0.96

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$7.04(1) \cdot 10^4$
B_{tree}	$6.82(3) \cdot 10^4$
B_{loop}	59.6(4)
$B_{full}/(B_{tree}+B_{loop})$	1.03

Integrated results for $gg \to H \to W^+W^- \to \bar{\ell}\nu_\ell \bar{q}_u q_d$ (LHC cuts):

$ \mathcal{M} ^2$	σ [fb]
S	3.464(1)
I_{tree}	-0.01
I_{full}	-4.016
$S + I_{tree}$	3.45(2)
$S + I_{full}$	-0.552(4)
$ S + I_{full} /S$	0.159
$ S + I_{tree} /S$	0.99

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$5.330(6) \cdot 10^4$
B_{tree}	$5.32(1) \cdot 10^4$
B_{loop}	28.8(1)
$B_{full}/(B_{tree}+B_{loop})$	0.99

Integrated results for $gg \to H \to W^+W^- \to \bar{\ell}\nu_\ell \bar{q}_u q_d$ (bkg. suppression cuts):

$ \mathcal{M} ^2$	σ [fb]
S	2.1831(7)
I_{tree}	-0.03
I_{full}	-3.82
$S + I_{tree}$	2.15(1)
$S + I_{full}$	-1.64(1)
$ S + I_{full} /S$	0.75
$ S + I_{tree} /S$	0.98

$ \mathcal{M} ^2$	σ [fb]
B_{full}	786.2(8)
B_{tree}	797(1)
B_{loop}	27.5(1)
$B_{full}/(B_{tree}+B_{loop})$	0.95

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_u \bar{q}_u$ (minimal cuts):

$ \mathcal{M} ^2$	σ [fb]
S	1.237(4)
I_{tree}	0.458
I_{full}	-0.165
$S + I_{tree}$	1.695(7)
$S + I_{full}$	1.072(2)
$ S+I_{full} /S$	0.86
$ S + I_{tree} /S$	1.37

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$3.33(2) \cdot 10^4$
B_{tree}	$3.40(3) \cdot 10^4$
B_{loop}	1.90(1)
$B_{full}/(B_{tree}+B_{loop})$	0.98

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_u \bar{q}_u$ (LHC cuts):

$ \mathcal{M} ^2$	σ [fb]
S	0.168(1)
I_{tree}	0.008
I_{full}	-0.17
$S + I_{tree}$	0.176(1)
$S + I_{full}$	-0.0023(1)
$ S + I_{full} /S$	0.01
$ S + I_{tree} /S$	1.04

$ \mathcal{M} ^2$	σ [fb]
B_{full}	381(7)
B_{tree}	479(9)
B_{loop}	0.456(1)
$B_{full}/(B_{tree}+B_{loop})$	0.795

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_u \bar{q}_u$ (bkg. suppression cuts):

$ \mathcal{M} ^2$	σ [fb]
S	0.1420(4)
I_{tree}	-0.001
I_{full}	-0.1679
$S + I_{tree}$	0.141(3)
$S + I_{full}$	-0.0259(1)
$ S + I_{full} /S$	0.18
$ S + I_{tree} /S$	0.99

$ \mathcal{M} ^2$	σ [fb]
B_{full}	37.1(3)
B_{tree}	79.3(2)
B_{loop}	0.4249(9)
$B_{full}/(B_{tree}+B_{loop})$	0.46

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_d \bar{q}_d$ (minimal cuts):

$ \mathcal{M} ^2$	σ [fb]
S	1.858(6)
I_{tree}	-0.168
I_{full}	-0.358
$\dot{S} + I_{tree}$	1.69(1)
$S + I_{full}$	1.50(2)
$ S + I_{full} /S$	0.81
$ S + I_{tree} /S$	0.91

$ \mathcal{M} ^2$	σ [fb]
B_{full}	$3.11(4) \cdot 10^4$
B_{tree}	$3.38(7) \cdot 10^4$
B_{loop}	1.71(4)
$B_{full}/(B_{tree}+B_{loop})$	0.92

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_d \bar{q}_d$ (LHC cuts):

$ \mathcal{M} ^2$	σ [fb]
S	0.2200(8)
I_{tree}	0.005
I_{full}	-0.146
$S + I_{tree}$	0.225(3)
$S + I_{full}$	0.074(1)
$ S+I_{full} /S$	0.33
$ S + I_{tree} /S$	1.02

$ \mathcal{M} ^2$	σ [fb]
B_{full}	378(3)
B_{tree}	458(4)
B_{loop}	0.457(3)
$B_{full}/(B_{tree}+B_{loop})$	0.82

Integrated results for $gg \to H \to ZZ \to \ell \bar{\ell} q_d \bar{q}_d$ (bkg. suppression cuts):

$ \mathcal{M} ^2$	σ [fb]
S	0.1815(3)
I_{tree}	-0.001
I_{full}	-0.15
$\dot{S} + I_{tree}$	0.180(2)
$S + I_{full}$	0.0354(5)
$ S + I_{full} /S$	0.195
$ S + I_{tree} /S$	0.99

$ \mathcal{M} ^2$	σ [fb]
B_{full}	37.1(1)
B_{tree}	80.3(1)
B_{loop}	0.458(3)
$B_{full}/(B_{tree}+B_{loop})$	0.46

Differential results

 $gg \rightarrow H \rightarrow W^-W^+ \rightarrow e^- \bar{\nu}_e u \bar{d}$, LHC cuts, fb/GeV

N. Kauer Higgs-continuum and Higgs-Higgs interference effects in $gg \rightarrow VV$ HP2 @ GGI Florence 4 Sep 2014 15

Differential results

$$gg \to H \to W^-W^+ \to e^- \bar{\nu}_e u \bar{d}$$

left: minimal cuts, centre: LHC cuts, right: bkg. suppression cuts

Differential results

 $qq \rightarrow H \rightarrow W^+W^- \rightarrow e^+\nu_e \bar{u}d$

left: minimal cuts, centre: LHC cuts, right: bkg. suppression cuts

Positron Pseudorapidity

N. Kauer

Higgs-continuum and Higgs-Higgs interference effects in $gg \rightarrow VV$

HP2 @ GGI Florence

Positron Pseudorapidity

explore effects by assuming a heavy SM Higgs in addition to a SM Higgs at $M_H = 126 \text{ GeV}$ $\mu_R = \mu_F = M_{VV}/2$

right fig.: G. Passarino (arXiv:1206.3824)

What is the impact of interference with the far-offshell tail of the 126 GeV Higgs for a heavy Higgs of 300, 600 or 900 GeV?

Notation for amplitude contributions to cross sections $(X, Y \in \{heavy, light, cont\})$:

$$\sigma_{full} \sim |\mathcal{M}_{heavy} + \mathcal{M}_{light} + \mathcal{M}_{cont}|^{2}$$

$$\sigma_{X} \sim |\mathcal{M}_{X}|^{2}$$

$$\sigma_{X+Y} \sim |\mathcal{M}_{X} + \mathcal{M}_{Y}|^{2}$$

$$I_{X,Y} \sim 2 \operatorname{Re}(\mathcal{M}_{X}^{*}\mathcal{M}_{Y})$$

$$gg
ightarrow H
ightarrow W^- W^+
ightarrow \ell \bar{
u}_\ell \bar{\ell}'
u_{\ell'}$$
 (single flavour)

cuts: $p_{T\ell} > 4 \text{ GeV}$

$M_{H,heavy}$ [GeV]	300	600	900
σ_{heavy} [fb]	11.867(6)	1.4249(7)	0.14863(8)
σ_{light} [fb]		16.75(5)	
σ_{cont} [fb]	16.00(5)		
σ_{full} [fb]	44.30(4)	33.49(4)	32.04(4)
$I_{heavy,cont}/\sigma_{heavy}$	-0.026(7)	-0.48(6)	-5.7(6)
$I_{heavy,light}/\sigma_{heavy}$	0.077(5)	-0.14(4)	-0.7(4)
$I_{heavy,light}/\sigma_{heavy+light}$	0.031(2)	-0.011(3)	-0.006(3)

∃ ▶ ∢

 $gg \to H \to W^- W^+ \to \ell \bar{\nu}_\ell \bar{\ell}' \nu_{\ell'}$ (single flavour)

cuts: $p_{T\ell} > 4 \text{ GeV}$ and $|M_{WW} - M_{H,heavy}| < \Gamma_{H,heavy}$ (theoretical)

$M_{H,heavy}$ [GeV]	300	600	900
σ_{heavy} [fb]	8.086(4)	1.1588(6)	0.12570(7)
σ_{light} [fb]	0.008513(6)	0.07591(5)	0.05599(5)
σ_{cont} [fb]	0.4229(3)	0.2444(2)	0.1493(1)
σ_{full} [fb]	8.692(3)	0.2528(1)	0.2428(2)
$I_{heavy,cont}/\sigma_{heavy}$	0.0216(6)	-1.0583(8)	-0.701(2)
$I_{heavy,light}/\sigma_{heavy}$	0.0018(6)	-0.0569(6)	-0.4187(8)
$I_{heavy,light}/\sigma_{heavy+light}$	0.0018(6)	-0.0564(6)	-0.4077(8)

(no "window-type" cut applied by ATLAS)

 $gg \to H \to W^- W^+ \to \ell \bar{\nu}_\ell \bar{\ell}' \nu_{\ell'}$ (single flavour)

cuts: $p_{T\ell} > 4 \text{ GeV}$ and $|M_{WW} - M_{H,heavy}| < \Gamma_{H,heavy}$ (theoretical)

Higgs-Higgs interference is destructive (constructive) below (above) $M_{H,heavy}$

opposite behaviour than Higgs-cont interference!

 $gg \to H \to ZZ \to \ell \bar\ell \ell' \bar\ell'$ (single flavour)

cuts: $M_{\ell \bar{\ell}}, M_{\ell' \bar{\ell}'} > 4$ GeV, $p_{T\ell} > 4$ GeV

$M_{H,heavy}$ [GeV]	300	600	900
σ_{heavy} [fb]	1.0040(4)	0.13094(5)	0.013847(6)
σ_{light} [fb]	0.343(6)		
σ_{cont} [fb]	0.53(4)		
σ_{full} [fb]	2.71(3)	1.57(2)	1.48(3)
$I_{heavy,cont}/\sigma_{heavy}$	0.83(5)	4.3(3)	4.3(3)e + 01
$I_{heavy,light}/\sigma_{heavy}$	0.136(6)	0.23(5)	2.8(4)
$I_{heavy,light}/\sigma_{heavy+light}$	0.092(4)	0.06(2)	0.10(2)

N. Kauer Higgs-continuum and Higgs-Higgs interference effects in $gg \rightarrow VV$ HP2 @ GGI Florence 4 Sep 2014 22 / 3

 $gg \to H \to ZZ \to \ell \bar\ell \ell' \bar\ell'$ (single flavour)

cuts: $M_{\ell\bar{\ell}}, M_{\ell'\bar{\ell}'} > 4$ GeV, $p_{T\ell} > 4$ GeV and $|M_{ZZ} - M_{H,heavy}| < \Gamma_{H,heavy}$

$M_{H,heavy}$ [GeV]	300	600	900
σ_{heavy} [fb]	0.6811(3)	0.10668(5)	0.011761(6)
σ_{light} [fb]	0.001257(2)	0.006813(6)	0.005244(3)
σ_{cont} [fb]	0.0030(9)	0.0023(3)	0.0022(2)
σ_{full} [fb]	0.7483(5)	0.1114(3)	0.0142(2)
$I_{heavy,cont}/\sigma_{heavy}$	0.092(2)	-0.042(4)	-0.42(2)
$I_{heavy, light} / \sigma_{heavy}$	0.0011(6)	-0.0531(6)	-0.4157(6)
$I_{heavy,light}/\sigma_{heavy+light}$	0.0011(6)	-0.0526(6)	-0.4035(6)

(no "window-type" cut applied by ATLAS(?))

Heavy Higgs - light Higgs interference effects can be mitigated with "window-type" cuts, but are still significant for very large Higgs masses ($M_H\gtrsim 600~{\rm GeV}$), especially in the $gg \to H \to ZZ$ channel

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

- $gg \rightarrow H \rightarrow ZZ, WW$: sizeable off-shell Higgs signal contribution with large signal-background interference (should be taken into account, complementary physics information)
- $gg \rightarrow H \rightarrow ZZ, WW \rightarrow 4$ leptons: interference studied in great detail & tools/events available (caveat: LO); NLO calculation hard, but on agena/ in progress, also: soft approximation/resummation improvements
- Semileptonic channels $gg \to H \to WW \to \ell \nu qq'$ and $gg \to H \to ZZ \to \ell \bar{\ell} \bar{q} \bar{q}$ contribute to ongoing Higgs analysis
- First analysis of interference effects in semileptonic channels (new feature: interfering tree-level background): contribution of tree amplitude to (large) full interference is subleading and < 2% when on-shell hadronic decay cuts are applied to suppress tree-level background (compensation at differential levell, p. 17)
- First analysis of heavy Higgs light Higgs interference effects in $gg \rightarrow H \rightarrow VV$: can be significant compared to Higgs-continuum interference (can be eliminated with "window" cut, but only for fairly small $\frac{\Gamma_H}{M_{IL}}$, i.e. $M_H \lesssim 400 \text{ GeV}$)
- outlook: improved amplitude implementation in gg2VV, more detailed phenomenological studies

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト