CALCULATING THE DOUBLE-VIRTUAL REAL CORRECTIONS TO HIGGS AT N3LO

HP2 2014

Falko Dulat ETHzürich

in collaboration with Claude Duhr, Thomas Gehrmann and Bernhard Mistlberger

Motivation

- Discovery marks the beginning of the experimental era of Higgs physics
- Determination of the properties of the Higgs will be a challenge for years to come
- Requires precision measurements and predictions

Great challenge for the theory community

- The dominant Higgs production mode at the LHC is gluon fusion
 - Loop-induced process

- The Higgs boson is light compared to the top quark
- The top loop can be integrated out → effective theory

• The tree-level coupling of the gluons to the Higgs is described by a dimension five operator $\mathcal{L} = \mathcal{L}_{\text{QCD}} - \frac{1}{4} C_1 H G^a_{\mu\nu} G^{\mu\nu}_a$

$$4v^{\circ 11}$$

• The gluon fusion cross-section in perturbation theory is

$$\sigma\left(pp \to H + X\right) = \tau \sum_{ij} \int_{\tau}^{1} dz \mathcal{L}_{ij}(z) \hat{\sigma}_{ij}\left(\frac{\tau}{z}\right)$$

- We compute the inclusive partonic cross section
- The partonic cross section is a function of

$$z = \frac{m_h^2}{\hat{s}} \longrightarrow \bar{z} = \frac{\hat{s} - m_h^2}{\hat{s}} \qquad \tau = \frac{m_h^2}{E_{cm}^2}$$

• In perturbation theory the partonic cross section can be expanded $\hat{\sigma}(z) = \hat{\sigma}^{LO}(z) + \alpha_s \hat{\sigma}^{NLO}(z) + \alpha_s^2 \hat{\sigma}^{NNLO}(z) + \alpha_s^3 \hat{\sigma}^{N3LO}(z) + \dots$

- The lower orders of the gluon fusion cross section have been computed
 - NLO (full theory)

[Dawson; Djouadi, Spira, Zerwas]

fixed order only		
	σ [8 TeV]	$\delta\sigma$ [%]
LO	9.6 pb	$\sim 25\%$
NLO	16.7 pb	~ 20%
NNLO	19.6 pb	~ 7 ~ 9%
N3LO	???	~ 4 ~ 8%

NNLO (effective theory and sub-leading top-mass corrections)

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

- We want to push the calculation one order higher
- Uncharted territory in perturbation theory

The calculation

 Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point

The calculation

- Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point
- Lots of Feynman diagrams
- At NNLO: ~1000 interference diagrams

The calculation

- Combination of loop corrections and real emissions computed using Feynman diagrams is the only way for analytic computations at N3LO at this point
- Lots of Feynman diagrams
- At N3LO: ~100000 interference diagrams

The triple virtual

The triple virtual is directly related to the three loop QCD form

- The QCD form factor is well known
 - at one loop

factor

- at two loops [Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]
- at three loops [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
- The pure loop contributions are not a problem in the calculation

The double-virtual real

Let us focus on the double-virtual real correction to the cross section

[Duhr, Gehrmann; FD, Mistlberger]

• Two-loop correction to Higgs+jet

• 2 loop master integrals are known

[Gehrmann, Remiddi]

• But not to high enough order in the dimensional parameter

The double-virtual real

- Two possibilities
 - Recompute 2-loop masters and do phase space integrals over them
 - Well known, requires subtractions, not feasible for complicated phase spaces, manual
 - Compute loops and phase space in one go
 - New method, uniform treatment of loops and phase space, very automatic
 - Easily generalises to more complicated phase spaces

Unitarity

• Optical theorem:

- Discontinuities of loop integrals are phase space integrals
- Discontinuities of loop integrals are given by Cutkosky's rule:

$$\frac{1}{p^2 - m^2 + i\epsilon} \to \delta^+(p^2 - m^2) = \delta(p^2 - m^2)\theta(p^0)$$

Reverse unitarity

• Optical theorem:

- The optical theorem can be read 'backwards'
- This way, phase space integrals can be expressed as unitarity cuts of loop integrals [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
- We can compute loop integrals with cuts instead of phase space integrals
- This makes the rich technology developed for loop integrals available

IBPs and master integrals

- Loop integrals are in general not independent but related by Integration-by-parts identities (IBPs)
- The IBPs form a system of equations for a given class of loop integrals
- The system can be solved algorithmically expressing all integrals through a small basis set of integrals (master integrals) $= -\frac{(\epsilon - 1)(2\epsilon - 1)(3\epsilon - 2)(3\epsilon - 1)(6\epsilon - 5)(6\epsilon - 1)}{\epsilon^4(\epsilon + 1)(2\epsilon - 3)}$

IBPs and differential equations

- Having access to IBP technology allows us to derive differential equations for master integrals
- The derivative of a master integral w.r.t. kinematic invariants can be expressed as a linear combination of master integrals
- Leads to a coupled system of linear differential equations for the master integrals $s m_1^2$

$$\begin{bmatrix} \partial_{\bar{z}} - 3\epsilon \operatorname{dlog}(1 - \bar{z}) \end{bmatrix} \xrightarrow{\bar{z} = 1 - z = \frac{\sigma - m_h}{s}}$$
$$= \epsilon \operatorname{dlog}(1 - \bar{z}) \xrightarrow{-3\epsilon} \operatorname{dlog}(1 - \bar{z}) \xrightarrow{-3\epsilon}$$

Differential equations

It is possible to transform the system of differential equations to a canonical form [Gehrmann, Remiddi; Henn]

$$d\vec{I}(\vec{z}) = \epsilon \sum_{k} A_k \omega_k \vec{I}(\vec{z})$$

$$\omega_k = dlog(\bar{z} - \bar{z}_k)$$

- Integral can have branch cuts at $\bar{z} = \bar{z}_k$
- The formal solution of this system is

$$\vec{I} = L\vec{\alpha}$$
$$L = \mathcal{P}e^{\epsilon \int A}$$

Multiple polylogarithms

- The formal path ordered exponential can be performed order by order in ϵ
- The expansion corresponds exactly to the definition of the multiple polylogarithms

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \mid \operatorname{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

- Multiple polylogarithms are a generalisation of the classical polylogarithms and the HPLS, 2dHPLs, ...
- Multiple polylogarithms are very well understood by now: Symbol formalism, Hopf algebra structure,... [Goncharov; Brown; Duhr]

Boundary conditions

- What remains is fixing the boundary vector
- Naively: We need to fix one constant per integral by evaluating the integral at a specific point
- Evaluate the integral means: Feynman parametrise and analytically calculate the integral in the limit $\bar{z} = \bar{z}_k$
- We have 72 masters
- Need a better method

Boundary conditions

- Another way of fixing the boundary vector is using analyticity
 - [Gehrmann, Remiddi]
- We demand that $L\vec{\alpha}$ has the correct branch structure
- Eg. no u-channel cut in planar 4-point integrals
- This only works for pure loop integrals, since they have a well defined cut structure
- The branch structure of phase space integrals is not known in general
- This method does not work for phase space integrals

- Is there a different method to constrain the boundary vector?
- The solutions of the differential equations have the general structure

$$\vec{I} = \sum_{k} \bar{z}^{-k\epsilon} \vec{h}_k(\bar{z})$$

- Can we find a system of differential equations for the $ec{h}_k(ar{z})$?
- What are the possible values of k ?

- Recall the system matrix $A = \sum_{k} A_k dlog(\bar{z} \bar{z}_k)$
- For small $ar{z}$ the term with $dlog(ar{z})$ dominates
- The system matrix in the limit is then

 $\tilde{A} = A_0 dlog(\bar{z})$

• The solution in the limit is

$$\vec{I}_0 = \bar{z}^{A_0 \epsilon} \vec{c}_0$$

The general solution

• The limit solution

- How to connect the two?
- Diagonalise A_0 and go to the eigenbasis
- However: Diagonalisation is not possible in general
- Next-best thing: Jordan normal form

- Computing the Jordan decomposition of A_0 yields
 - A matrix containing the eigenvalues of A_0 on its diagonal
 - This fixes the possible exponents $\,k\,$ to be eigenvalues of $A_0\,$

Jordan normal form

Take a matrix

$$M = \begin{pmatrix} -2 & 0 & 0 \\ 5 & 0 & -2 \\ 3 & 1 & -3 \end{pmatrix}$$

- The Jordan normal form is $J = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
- The rotation matrix is $R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$
- So that

Jordan normal form

- Jordan normal form has $\,b\,$ blocks on the diagonal
- If the matrix is diagonalisable the Jordan decomposition will just diagonalise it
- In our example: 2 blocks

$$J = \left(\begin{array}{ccc} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

- Computing the Jordan decomposition of A_0 yields
 - A matrix containing the eigenvalues of A_0 on its diagonal
 - This fixes the possible exponents $\,k\,$ to be eigenvalues of A_0
 - A rotation matrix that takes us to the Jordan normal form
 - This allows us to rotate the differential equations to determine the $\,\vec{h}_k(\bar{z})\,$
 - It relates the $ec{h}_k(ar{z})$ to the $ec{c}_0$

• Using the Jordan decomposition we write the solution in the limit

$$\lim_{\bar{z}\to 0} I = \sum_{i} \bar{z}^{i\epsilon} \left(\alpha_{i0} + \log(\bar{z})\alpha_{i1} + \log(\bar{z})^2 \alpha_{i2} + \dots \right)$$

- Every boundary condition lpha appears in combination with exactly one specific exponent i
- This connects to expansion by regions
- The entries of $\, lpha \,$ are the different regions
- By using expansion by regions we can compute lpha

- How does this reduce the amount of integrals that we have to compute?
- There can at most be b independent entries in lpha
- Terms with explicit logs do not appear in our case
- Some eigenvalues can be unphysical
 - The only allowed exponents in our case are -2, -3, -4, -5, -6
 - The boundaries corresponding to other eigenvalues vanish

- Computing the limit of every master: 72 integrals
- Boundary decomposition: **I5** integrals

- These I5 boundaries appear in different masters
- We can pick the simplest master to compute a boundary

Conclusion

- We have developed a new method to solve systems of differential equations for combined loop and phase space integrals
- We have used it to compute the double-virtual real corrections to Higgs boson production at N3LO
- The method scales to more complicated phase spaces
- It can be used to compute the double-real virtual contributions to Higgs at N3LO
- We are on track to computing the full Higgs cross section at N3LO

Thank you for your attention