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Motivation

Vs=7TeV,L<51fb" ys=8TeV,L<19.7 b

 Discovery marks the beginning of ¢4 Prelminany

Individual Results

the experimental era of Higgs V Ho> bb arxiv1310.3687
p(m“=125.0 GeV)=10x0.5 _._E

physics

H— 1T arXiv:1401.5041

u(m =125.0 GeV) = 0.78:+ 0.27 —'—

- : : H— yy HIG-13-001

« Determination of the properties  um12s06e0=07sx027 ——
of the Higgs will be a challenge Hoy WW sooctsizig
for years to come H— ZZ arXiv:1312.5353 .

p(m =125.6 GeV) = 0.93+ 0.27
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P dUlres precision measurements
and predictions

Great challenge for the theory community



Ihe gluon fusion cross section

The dominant Higgs production mode at the LHC is gluon fusion

T
Loop-induced process > -----------

QQ QO

The Higgs boson is light compared to the top quark

BEi= (0D l0oD can be Integrated out = ellective theoty EX@

The tree-level coupling of the gluons to the Higgs Is described by a
dimension five operator |

£ Coon o CiHG, G
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Ihe gluon fusion cross section

The gluon fusion cross-section In perturbation theory Is

1
o(pp— H+ X) = TZ/ d=1 20 (g)
0

VWe compute the inclusive partonic cross section

The partonic cross section is a function of

X 2
m? . S .y
h 51 h
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In perturbation theory the partomc Cross section can be expanded
5_(2) L 5_LO( ) o QS&NLO( )_|_ o6 ANNLO( )_|_ &3 NSLQ ()_|_ .
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Ihe gluon fusion cross section

fixed order only

* The lower orders of the gluon fusion - O [8 TeV]
cross section have been computed

O @l theory)

[Dawson; Djouadi, Spira, Zerwas]

NNLO (effective theory and sub-leading top-mass corrections)

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

- We want to push the calculation one order higher

Uncharted territory in perturbation theory
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1 he calculation

« Combination of loop corrections and real emissions
computed using Feynman diagrams Is the only way

for analytic computations at N3LO at this point




1 he calculation

« Combination of loop corrections and real emissions

compu

'ed using Feynman diagrams Is the only way

foF ana

vtic computations at N3LO at this point

* Lots of Feynman diagrams

E At BINLO: ~ | 000 interference diagrams
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1 he calculation

« Combination of loop corrections and real emissions
computed using Feynman diagrams Is the only way

for analytic computations at N3LO at this point

* Lots of Feynman diagrams

« At N3LO: ~100000 interference diagrams




Ihe gluon fusion cross section

Diagrammatic contributions at N3LO
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double virtual real

double real virtual triple real



[ he triple virtual

& lile 1iDle virtual Is directly related to the three loop Q€ DHIOHR)
factor

« The QCD form factor is well known

s stone loop

e ot bvo |OO PS [Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]

o [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;
at three |OOpS Gehrmann, Glover, Huber, Ikizlerli, Studerus]

* The pure loop contributions are not a problem In the calculation
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1 he double-virtual real

e s toclls on the double-virtual real correction fo the ecréss
section

N »
"0000000000000000"‘

»

\J
.
- @: [Duhr, Gehrmann;
I FD, Mistlberger]
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Iwo-loop correction to Higgs+jet

) loop master integrals are known

[Gehrmann, Remiddi]

But not to high enough order In the dimensional parameter



1 he double-virtual real

w
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» Iwo possibilities

+ Recompute 2-loop masters and do phase space integrals over them

«  Well known, requires subtractions, not feasible for complicated phase spaces, manual

» Compute loops and phase space in one go

*  New method, uniform treatment of loops and phase space, very automatic

* Easily generalises to more complicated phase spaces
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Unitarity

Optical theorem:

X - YK

Discontinuities of loop Integrals are phase space integrals

Discontinurties of loop Integrals are given by Cutkosky’s rule:

1
D% — m? + ge

» 0T (p* —m?) = 4(p” — m*)0(p")



Reverse unitarity

Optical theorem:

X - YK

The optical theorem can be read ‘backwards’

This way, phase space integrals can be expressed as unitarity cuts of loop

mtegrals [ Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

VWe can compute loop Integrals with cuts instead of phase space integrals

This makes the rich technology developed for loop integrals available
|4



IBPs and master integrals

Loop Integrals are In general not independent but related by
Integration-by-parts identities (IBPs)

The IBPs form a system of equations for a given class of loop
integrals

The system can be solved algorithmically expressing all integrals
through a small basis set of integrals (master integrals)

TR e i yrdaan vy , 4 — .

| @

(€= 1)(2e — 1)(3 — 2)(3¢ — 1)(Be — 5)(6e — D)@{
e*(e 4+ 1)(2¢ — 3)
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IBPs and differential equations

Having access to IBP technology allows us to derive differential
equations for master integrals

The derivative of a master integral w.r.t. kinematic invariants can be
expressed as a linear combination of master integrals

L eads to a coupled system of linear differential equations for the

master integrals ;

— € dlog(l — Z) —3€ dlog(l o Z) e
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Differential equations

[t Is possible to transform the system of differential equations to a

Caﬂonical for‘m [Gehrmann, Remiddi; Henn]
glitz— e E Ao 2 W — dloglz = 2
k
>
=A

Mie tel ean nave Drancn cuts at 'z = 2¢

The formal solution of this system s
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Multiple polylogarithms

The formal path ordered exponential can be performed order by

order In €

The expansion corresponds exactly to the definition of the multiple

polylogarithms

o dt
G(al,...,an;z):/ Gla>,. a | | Li, (2 / —Lln 1 (
0

t—a1

Multiple polylogarithms are a generalisation of the classical
BC/legarithims and the HIPLS, 2dHPLs, ...

Multiple polylogarithms are very well understood by now: Symbol

formalism, Hopf algebra structure,... [Goncharov; Brown; Duhr]
|18



Boundary condrtions

What remains Is fixing the boundary vector

Naively: We need to fix one constant per integral by evaluating the

integral at a specific point

Fvaluate the integral means: Feynman parametrise and analytically
calculate the integral in the Imit z = Zg

We have /2 masters

Need a better method




Boundary condrtions

Another way of fixing the boundary vector Is using analyticity

[Gehrmann, Remiddi]
We demand that L& has the correct branch structure

Eg. no u-channel cut in planar 4-point integrals

This only works for pure loop Integrals, since they have a well
defined cut structure

The branch structure of phase space integrals is not known in
oeneral

This method does not work for phase space integrals
20



Boundary decomposition

s there a different method to constrain the boundary vector?

The solutions of the differential equations have the general
structure

-5 2

k

Can we find a system of differential equations for the Ek(Z) !

What are the possible values of k ?

]



Boundary decomposition

Recall the system matrix A = Z Ardlog(z — zi,)
k
For small Z the term with dlog(Z) dominates

The system matrix in the Imit is then

~

A = Apdlog(z)

The solution In the IImit Is

g



Boundary decomposition

& dine seneral sojution

 The limit solution 1

How to connect the two!
Diagonalise Ag and go to the eigenbasis
However: Diagonalisation is not possible in general

Next-best thing: Jordan normal form
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Boundary decomposition

Computing the Jordan decomposition of Ag yields
A matrix containing the eigenvalues of Ag on its diagonal

This fixes the possible exponents k£ to be eigenvalues of Ag

ez



Jordan normal form

e [ake a matrix

=2 ()
M — a 0 =7
9 1
* The Jordan normal form is
-2 1 0
g = 6. 72 0
0 0.
s il rotdtion matnx s 0 g
v — b =2 )
el

So that M= RJR™1

D



|ordan normal form

» Jordan normal form has b blocks on the diagonal

It the matrix I1s diagonalisable the Jordan decomposition will just
diagonalise 1t

In our example: 2 blocks 0 — —
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Boundary decomposition

Computing the Jordan decomposition of Agyields
A matrix containing the eigenvalues of Agon its diagonal
This fixes the possible exponents k to be eigenvalues of A
A rotation matrix that takes us to the Jordan normal form

This allows us to rotate the differential equations to
determine the hg(Z)

't relates the Ay (Z) to the &
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Boundary decomposition

Using the Jordan decomposition we write the solution in the [imit

11111 I — Zie (Ozio -+ 1Og(2)&i1 -+ 10g(2)2ai2 -+ .. )
Fvery boundary condition & appears In combination with exactly

one specific exponent 7
This connects to expansion by regions

Biic chitiies ol @ are the different regions

By using expansion by regions we can compute o
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Boundary decomposition

How does this reduce the amount of integrals that we have to

compute!?
There can at most be b independent entries in &
Terms with explicit logs do not appear in our case
Some eigenvalues can be unphysical
The only allowed exponents in our case are -2, -3, -4, -5, -6

The boundaries corresponding to other eigenvalues vanish

o)



Boundary decomposition

Computing the limit of every master: 72 integrals

Boundary decomposition: 15 integrals

These |5 boundaries appear in different masters

VWe can pick the simplest master to compute a boundary

30



Conclusion

VWe have developed a new method to solve systems of differential
equations for combined loop and phase space integrals

VWe have used 1t to compute the double-virtual real corrections to
Higgs boson production at N3LO

The method scales to more complicated phase spaces

[t can be used to compute the double-real virtual contributions to
Higgs at N3LO

VWWe are on track to computing the full Higgs cross section at N3LO

&
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