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• Discovery marks the beginning of 
the experimental era of Higgs 
physics	



• Determination of the properties 
of the Higgs will be a challenge 
for years to come	



• Requires precision measurements 
and predictions

Great challenge for the theory community
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Motivation



• The dominant Higgs production mode at the LHC is gluon fusion	



• Loop-induced process	



• The Higgs boson is light compared to the top quark	



• The top loop can be integrated out → effective theory	



• The tree-level coupling of the gluons to the Higgs is described by a 
dimension five operator

The gluon fusion cross section
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• The gluon fusion cross-section in perturbation theory is	



!

• We compute the inclusive partonic cross section	



• The partonic cross section is a function of	



!

• In perturbation theory the partonic cross section can be expanded 

The gluon fusion cross section
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• The lower orders of the gluon fusion  
cross section have been computed	



• NLO (full theory)	



• NNLO (effective theory and sub-leading top-mass corrections)	



!

• We want to push the calculation one order higher	



• Uncharted territory in perturbation theory

The gluon fusion cross section
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[Dawson; Djouadi, Spira, Zerwas]

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

fixed order only



• Combination of loop corrections and real emissions 
computed using Feynman diagrams is the only way 
for analytic computations at N3LO at this point
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The calculation



• Combination of loop corrections and real emissions 
computed using Feynman diagrams is the only way 
for analytic computations at N3LO at this point

• Lots of Feynman diagrams	



• At NNLO:  ~1000 interference diagrams
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The calculation



• Combination of loop corrections and real emissions 
computed using Feynman diagrams is the only way 
for analytic computations at N3LO at this point

• Lots of Feynman diagrams	



• At N3LO: ~100000 interference diagrams
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The calculation



• Diagrammatic contributions at N3LO	



!

!

!

!

!

The gluon fusion cross section
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triple virtual double virtual real

real virtual squared

double real virtual triple real



• The triple virtual is directly related to the three loop QCD form 
factor	



!

• The QCD form factor is well known	



• at one loop	



• at two loops	



• at three loops	



• The pure loop contributions are not a problem in the calculation

The triple virtual
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[Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; 
Gehrmann, Glover, Huber, Ikizlerli, Studerus]



• Let us focus on the double-virtual real correction to the cross 
section	



!

• Two-loop correction to Higgs+jet	



• 2 loop master integrals are known	



• But not to high enough order in the dimensional parameter

The double-virtual real
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[Duhr, Gehrmann; 
FD, Mistlberger]

[Gehrmann, Remiddi]



!

• Two possibilities	



• Recompute 2-loop masters and do phase space integrals over them	



• Well known, requires subtractions, not feasible for complicated phase spaces, manual 	



• Compute loops and phase space in one go	



• New method, uniform treatment of loops and phase space, very automatic	



• Easily generalises to more complicated phase spaces

The double-virtual real
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• Optical theorem:	



!

!

• Discontinuities of loop integrals are phase space integrals	



• Discontinuities of loop integrals are given by Cutkosky’s rule:

Unitarity
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• Optical theorem:	



!

!

• The optical theorem can be read ‘backwards’	



• This way, phase space integrals can be expressed as unitarity cuts of loop 
integrals	



• We can compute loop integrals with cuts instead of phase space integrals	



• This makes the rich technology developed for loop integrals available

Reverse unitarity
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[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]



• Loop integrals are in general not independent but related by 
Integration-by-parts identities (IBPs)	



• The IBPs form a system of equations for a given class of loop 
integrals	



• The system can be solved algorithmically expressing all integrals 
through a small basis set of integrals (master integrals)	



!

IBPs and master integrals
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• Having access to IBP technology allows us to derive differential 
equations for master integrals	



• The derivative of a master integral w.r.t. kinematic invariants can be 
expressed as a linear combination of master integrals	



• Leads to a coupled system of linear differential equations for the 
master integrals	



!

IBPs and differential equations
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Differential equations
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• It is possible to transform the system of differential equations to a 
canonical form	



!

• Integral can have branch cuts at 	



• The formal solution of this system is

z̄ = z̄k

[Gehrmann, Remiddi; Henn]
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Multiple polylogarithms

18

• The formal path ordered exponential can be performed order by 
order in 	



• The expansion corresponds exactly to the definition of the multiple 
polylogarithms	



!

• Multiple polylogarithms are a generalisation of the classical 
polylogarithms and the HPLS, 2dHPLs, …	



• Multiple polylogarithms are very well understood by now: Symbol 
formalism, Hopf algebra structure,…
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Boundary conditions
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• What remains is fixing the boundary vector	



• Naively: We need to fix one constant per integral by evaluating the 
integral at a specific point	



• Evaluate the integral means: Feynman parametrise and analytically 
calculate the integral in the limit	



• We have 72 masters 	



• Need a better method

z̄ = z̄k



Boundary conditions
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• Another way of fixing the boundary vector is using analyticity	



• We demand that        has the correct branch structure	



• Eg. no u-channel cut in planar 4-point integrals	



• This only works for pure loop integrals, since they have a well 
defined cut structure	



• The branch structure of phase space integrals is not known in 
general	



• This method does not work for phase space integrals

L~↵
[Gehrmann, Remiddi]



Boundary decomposition
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• Is there a different method to constrain the boundary vector?	



• The solutions of the differential equations have the general 
structure	



!

• Can we find a system of differential equations for the           ?	



• What are the possible values of    ?
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Boundary decomposition
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• Recall the system matrix 	



• For small     the term with               dominates	



• The system matrix in the limit is then	



!

• The solution in the limit is	



z̄ dlog(z̄)
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Boundary decomposition
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• The general solution	



!

• The limit solution	



!

• How to connect the two?	



• Diagonalise          and go to the eigenbasis	



• However: Diagonalisation is not possible in general	



• Next-best thing: Jordan normal form
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Boundary decomposition
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• Computing the Jordan decomposition of      yields	



• A matrix containing the eigenvalues of      on its diagonal	



• This fixes the possible exponents      to be eigenvalues of     

A0

A0

k A0



Jordan normal form
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• Take a matrix	



!

• The Jordan normal form is	



!

• The rotation matrix is 	



!

• So that 

M =

0
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3 1 �3

1
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Jordan normal form
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• Jordan normal form has      blocks on the diagonal	



• If the matrix is diagonalisable the Jordan decomposition will just 
diagonalise it	



• In our example: 2 blocks J =

0

@
�2 1 0
0 �2 0
0 0 �1

1

A

b



Boundary decomposition
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• Computing the Jordan decomposition of      yields	



• A matrix containing the eigenvalues of      on its diagonal	



• This fixes the possible exponents      to be eigenvalues of     	



• A rotation matrix that takes us to the Jordan normal form	



• This allows us to rotate the differential equations to 
determine the 	



• It relates the             to the        
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Boundary decomposition
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• Using the Jordan decomposition we write the solution in the limit 
      	



• Every boundary condition    appears in combination with exactly 
one specific exponent	



• This connects to expansion by regions	



• The entries of       are the different regions 	



• By using expansion by regions we can compute
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Boundary decomposition
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• How does this reduce the amount of integrals that we have to 
compute?	



• There can at most be     independent entries in     	



• Terms with explicit logs do not appear in our case	



• Some eigenvalues can be unphysical	



• The only allowed exponents in our case are -2, -3, -4, -5, -6	



• The boundaries corresponding to other eigenvalues vanish

b ↵



Boundary decomposition
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• Computing the limit of every master : 72 integrals	



• Boundary decomposition: 15 integrals	



!

• These 15 boundaries appear in different masters	



• We can pick the simplest master to compute a boundary



Conclusion
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• We have developed a new method to solve systems of differential 
equations for combined loop and phase space integrals	



• We have used it to compute the double-virtual real corrections to 
Higgs boson production at N3LO	



• The method scales to more complicated phase spaces	



• It can be used to compute the double-real virtual contributions to 
Higgs at N3LO	



• We are on track to computing the full Higgs cross section at N3LO



Thank you for your 
attention
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